MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifellem4 Structured version   Visualization version   GIF version

Theorem pmtrdifellem4 17899
Description: Lemma 4 for pmtrdifel 17900. (Contributed by AV, 28-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
pmtrdifel.0 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
Assertion
Ref Expression
pmtrdifellem4 ((𝑄𝑇𝐾𝑁) → (𝑆𝐾) = 𝐾)

Proof of Theorem pmtrdifellem4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pmtrdifel.t . . . 4 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
2 pmtrdifel.r . . . 4 𝑅 = ran (pmTrsp‘𝑁)
3 pmtrdifel.0 . . . 4 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
41, 2, 3pmtrdifellem1 17896 . . 3 (𝑄𝑇𝑆𝑅)
5 eqid 2622 . . . 4 (pmTrsp‘𝑁) = (pmTrsp‘𝑁)
6 eqid 2622 . . . 4 dom (𝑆 ∖ I ) = dom (𝑆 ∖ I )
75, 2, 6pmtrffv 17879 . . 3 ((𝑆𝑅𝐾𝑁) → (𝑆𝐾) = if(𝐾 ∈ dom (𝑆 ∖ I ), (dom (𝑆 ∖ I ) ∖ {𝐾}), 𝐾))
84, 7sylan 488 . 2 ((𝑄𝑇𝐾𝑁) → (𝑆𝐾) = if(𝐾 ∈ dom (𝑆 ∖ I ), (dom (𝑆 ∖ I ) ∖ {𝐾}), 𝐾))
9 eqid 2622 . . . . . . . 8 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
10 eqid 2622 . . . . . . . 8 (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
111, 9, 10symgtrf 17889 . . . . . . 7 𝑇 ⊆ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
1211sseli 3599 . . . . . 6 (𝑄𝑇𝑄 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
139, 10symgbasf 17804 . . . . . 6 (𝑄 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) → 𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}))
14 ffn 6045 . . . . . . 7 (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → 𝑄 Fn (𝑁 ∖ {𝐾}))
15 fndifnfp 6442 . . . . . . 7 (𝑄 Fn (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) = {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥})
16 ssrab2 3687 . . . . . . . . . 10 {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} ⊆ (𝑁 ∖ {𝐾})
17 ssel2 3598 . . . . . . . . . . 11 (({𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} ⊆ (𝑁 ∖ {𝐾}) ∧ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥}) → 𝐾 ∈ (𝑁 ∖ {𝐾}))
18 eldif 3584 . . . . . . . . . . . 12 (𝐾 ∈ (𝑁 ∖ {𝐾}) ↔ (𝐾𝑁 ∧ ¬ 𝐾 ∈ {𝐾}))
19 elsng 4191 . . . . . . . . . . . . . . 15 (𝐾𝑁 → (𝐾 ∈ {𝐾} ↔ 𝐾 = 𝐾))
2019notbid 308 . . . . . . . . . . . . . 14 (𝐾𝑁 → (¬ 𝐾 ∈ {𝐾} ↔ ¬ 𝐾 = 𝐾))
21 eqid 2622 . . . . . . . . . . . . . . 15 𝐾 = 𝐾
2221pm2.24i 146 . . . . . . . . . . . . . 14 𝐾 = 𝐾 → ¬ 𝐾𝑁)
2320, 22syl6bi 243 . . . . . . . . . . . . 13 (𝐾𝑁 → (¬ 𝐾 ∈ {𝐾} → ¬ 𝐾𝑁))
2423imp 445 . . . . . . . . . . . 12 ((𝐾𝑁 ∧ ¬ 𝐾 ∈ {𝐾}) → ¬ 𝐾𝑁)
2518, 24sylbi 207 . . . . . . . . . . 11 (𝐾 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝐾𝑁)
2617, 25syl 17 . . . . . . . . . 10 (({𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} ⊆ (𝑁 ∖ {𝐾}) ∧ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥}) → ¬ 𝐾𝑁)
2716, 26mpan 706 . . . . . . . . 9 (𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} → ¬ 𝐾𝑁)
2827con2i 134 . . . . . . . 8 (𝐾𝑁 → ¬ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥})
29 eleq2 2690 . . . . . . . . 9 (dom (𝑄 ∖ I ) = {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} → (𝐾 ∈ dom (𝑄 ∖ I ) ↔ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥}))
3029notbid 308 . . . . . . . 8 (dom (𝑄 ∖ I ) = {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} → (¬ 𝐾 ∈ dom (𝑄 ∖ I ) ↔ ¬ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥}))
3128, 30syl5ibr 236 . . . . . . 7 (dom (𝑄 ∖ I ) = {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} → (𝐾𝑁 → ¬ 𝐾 ∈ dom (𝑄 ∖ I )))
3214, 15, 313syl 18 . . . . . 6 (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → (𝐾𝑁 → ¬ 𝐾 ∈ dom (𝑄 ∖ I )))
3312, 13, 323syl 18 . . . . 5 (𝑄𝑇 → (𝐾𝑁 → ¬ 𝐾 ∈ dom (𝑄 ∖ I )))
3433imp 445 . . . 4 ((𝑄𝑇𝐾𝑁) → ¬ 𝐾 ∈ dom (𝑄 ∖ I ))
351, 2, 3pmtrdifellem2 17897 . . . . . 6 (𝑄𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I ))
3635eleq2d 2687 . . . . 5 (𝑄𝑇 → (𝐾 ∈ dom (𝑆 ∖ I ) ↔ 𝐾 ∈ dom (𝑄 ∖ I )))
3736adantr 481 . . . 4 ((𝑄𝑇𝐾𝑁) → (𝐾 ∈ dom (𝑆 ∖ I ) ↔ 𝐾 ∈ dom (𝑄 ∖ I )))
3834, 37mtbird 315 . . 3 ((𝑄𝑇𝐾𝑁) → ¬ 𝐾 ∈ dom (𝑆 ∖ I ))
3938iffalsed 4097 . 2 ((𝑄𝑇𝐾𝑁) → if(𝐾 ∈ dom (𝑆 ∖ I ), (dom (𝑆 ∖ I ) ∖ {𝐾}), 𝐾) = 𝐾)
408, 39eqtrd 2656 1 ((𝑄𝑇𝐾𝑁) → (𝑆𝐾) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  {crab 2916  cdif 3571  wss 3574  ifcif 4086  {csn 4177   cuni 4436   I cid 5023  dom cdm 5114  ran crn 5115   Fn wfn 5883  wf 5884  cfv 5888  Basecbs 15857  SymGrpcsymg 17797  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-tset 15960  df-symg 17798  df-pmtr 17862
This theorem is referenced by:  pmtrdifwrdel2lem1  17904
  Copyright terms: Public domain W3C validator