| Step | Hyp | Ref
| Expression |
| 1 | | 4nn 11187 |
. . . . . 6
⊢ 4 ∈
ℕ |
| 2 | | eluznn 11758 |
. . . . . . . 8
⊢ ((4
∈ ℕ ∧ 𝑁
∈ (ℤ≥‘4)) → 𝑁 ∈ ℕ) |
| 3 | 1, 2 | mpan 706 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘4) → 𝑁 ∈ ℕ) |
| 4 | 3 | nnnn0d 11351 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘4) → 𝑁 ∈
ℕ0) |
| 5 | | nnexpcl 12873 |
. . . . . 6
⊢ ((4
∈ ℕ ∧ 𝑁
∈ ℕ0) → (4↑𝑁) ∈ ℕ) |
| 6 | 1, 4, 5 | sylancr 695 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘4) → (4↑𝑁) ∈ ℕ) |
| 7 | 6 | nnrpd 11870 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘4) → (4↑𝑁) ∈
ℝ+) |
| 8 | 3 | nnrpd 11870 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘4) → 𝑁 ∈
ℝ+) |
| 9 | 7, 8 | rpdivcld 11889 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘4) → ((4↑𝑁) / 𝑁) ∈
ℝ+) |
| 10 | 9 | relogcld 24369 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘4) → (log‘((4↑𝑁) / 𝑁)) ∈ ℝ) |
| 11 | | fzctr 12451 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈ (0...(2
· 𝑁))) |
| 12 | 4, 11 | syl 17 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘4) → 𝑁 ∈ (0...(2 · 𝑁))) |
| 13 | | bccl2 13110 |
. . . . 5
⊢ (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ) |
| 14 | 12, 13 | syl 17 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘4) → ((2 · 𝑁)C𝑁) ∈ ℕ) |
| 15 | 14 | nnrpd 11870 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘4) → ((2 · 𝑁)C𝑁) ∈
ℝ+) |
| 16 | 15 | relogcld 24369 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘4) → (log‘((2 · 𝑁)C𝑁)) ∈ ℝ) |
| 17 | | 2z 11409 |
. . . . . . 7
⊢ 2 ∈
ℤ |
| 18 | | eluzelz 11697 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘4) → 𝑁 ∈ ℤ) |
| 19 | | zmulcl 11426 |
. . . . . . 7
⊢ ((2
∈ ℤ ∧ 𝑁
∈ ℤ) → (2 · 𝑁) ∈ ℤ) |
| 20 | 17, 18, 19 | sylancr 695 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘4) → (2 · 𝑁) ∈ ℤ) |
| 21 | 20 | zred 11482 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘4) → (2 · 𝑁) ∈ ℝ) |
| 22 | | ppicl 24857 |
. . . . 5
⊢ ((2
· 𝑁) ∈ ℝ
→ (π‘(2 · 𝑁)) ∈
ℕ0) |
| 23 | 21, 22 | syl 17 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘4) → (π‘(2 · 𝑁)) ∈
ℕ0) |
| 24 | 23 | nn0red 11352 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘4) → (π‘(2 · 𝑁)) ∈
ℝ) |
| 25 | | 2nn 11185 |
. . . . . 6
⊢ 2 ∈
ℕ |
| 26 | | nnmulcl 11043 |
. . . . . 6
⊢ ((2
∈ ℕ ∧ 𝑁
∈ ℕ) → (2 · 𝑁) ∈ ℕ) |
| 27 | 25, 3, 26 | sylancr 695 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘4) → (2 · 𝑁) ∈ ℕ) |
| 28 | 27 | nnrpd 11870 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘4) → (2 · 𝑁) ∈
ℝ+) |
| 29 | 28 | relogcld 24369 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘4) → (log‘(2 · 𝑁)) ∈
ℝ) |
| 30 | 24, 29 | remulcld 10070 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘4) → ((π‘(2 · 𝑁)) · (log‘(2
· 𝑁))) ∈
ℝ) |
| 31 | | bclbnd 25005 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘4) → ((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁)) |
| 32 | | logltb 24346 |
. . . 4
⊢
((((4↑𝑁) /
𝑁) ∈
ℝ+ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ+) →
(((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁) ↔ (log‘((4↑𝑁) / 𝑁)) < (log‘((2 · 𝑁)C𝑁)))) |
| 33 | 9, 15, 32 | syl2anc 693 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘4) → (((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁) ↔ (log‘((4↑𝑁) / 𝑁)) < (log‘((2 · 𝑁)C𝑁)))) |
| 34 | 31, 33 | mpbid 222 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘4) → (log‘((4↑𝑁) / 𝑁)) < (log‘((2 · 𝑁)C𝑁))) |
| 35 | | chebbnd1lem1.1 |
. . . . . . . 8
⊢ 𝐾 = if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) |
| 36 | 27, 14 | ifcld 4131 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘4) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ∈ ℕ) |
| 37 | 35, 36 | syl5eqel 2705 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘4) → 𝐾 ∈ ℕ) |
| 38 | 37 | nnred 11035 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘4) → 𝐾 ∈ ℝ) |
| 39 | | ppicl 24857 |
. . . . . 6
⊢ (𝐾 ∈ ℝ →
(π‘𝐾)
∈ ℕ0) |
| 40 | 38, 39 | syl 17 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘4) → (π‘𝐾) ∈
ℕ0) |
| 41 | 40 | nn0red 11352 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘4) → (π‘𝐾) ∈ ℝ) |
| 42 | 41, 29 | remulcld 10070 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘4) → ((π‘𝐾) · (log‘(2 · 𝑁))) ∈
ℝ) |
| 43 | | fzfid 12772 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘4) → (1...𝐾) ∈ Fin) |
| 44 | | inss1 3833 |
. . . . . 6
⊢
((1...𝐾) ∩
ℙ) ⊆ (1...𝐾) |
| 45 | | ssfi 8180 |
. . . . . 6
⊢
(((1...𝐾) ∈ Fin
∧ ((1...𝐾) ∩
ℙ) ⊆ (1...𝐾))
→ ((1...𝐾) ∩
ℙ) ∈ Fin) |
| 46 | 43, 44, 45 | sylancl 694 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘4) → ((1...𝐾) ∩ ℙ) ∈
Fin) |
| 47 | 37 | nnzd 11481 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘4) → 𝐾 ∈ ℤ) |
| 48 | 14 | nnzd 11481 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘4) → ((2 · 𝑁)C𝑁) ∈ ℤ) |
| 49 | 14 | nnred 11035 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘4) → ((2 · 𝑁)C𝑁) ∈ ℝ) |
| 50 | | min2 12021 |
. . . . . . . . . . . 12
⊢ (((2
· 𝑁) ∈ ℝ
∧ ((2 · 𝑁)C𝑁) ∈ ℝ) → if((2
· 𝑁) ≤ ((2
· 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ ((2 · 𝑁)C𝑁)) |
| 51 | 21, 49, 50 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘4) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ ((2 · 𝑁)C𝑁)) |
| 52 | 35, 51 | syl5eqbr 4688 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘4) → 𝐾 ≤ ((2 · 𝑁)C𝑁)) |
| 53 | | eluz2 11693 |
. . . . . . . . . 10
⊢ (((2
· 𝑁)C𝑁) ∈
(ℤ≥‘𝐾) ↔ (𝐾 ∈ ℤ ∧ ((2 · 𝑁)C𝑁) ∈ ℤ ∧ 𝐾 ≤ ((2 · 𝑁)C𝑁))) |
| 54 | 47, 48, 52, 53 | syl3anbrc 1246 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘4) → ((2 · 𝑁)C𝑁) ∈ (ℤ≥‘𝐾)) |
| 55 | | fzss2 12381 |
. . . . . . . . 9
⊢ (((2
· 𝑁)C𝑁) ∈
(ℤ≥‘𝐾) → (1...𝐾) ⊆ (1...((2 · 𝑁)C𝑁))) |
| 56 | 54, 55 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘4) → (1...𝐾) ⊆ (1...((2 · 𝑁)C𝑁))) |
| 57 | | ssrin 3838 |
. . . . . . . 8
⊢
((1...𝐾) ⊆
(1...((2 · 𝑁)C𝑁)) → ((1...𝐾) ∩ ℙ) ⊆
((1...((2 · 𝑁)C𝑁)) ∩
ℙ)) |
| 58 | 56, 57 | syl 17 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘4) → ((1...𝐾) ∩ ℙ) ⊆ ((1...((2 ·
𝑁)C𝑁)) ∩ ℙ)) |
| 59 | 58 | sselda 3603 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) |
| 60 | | inss1 3833 |
. . . . . . . . . . 11
⊢ ((1...((2
· 𝑁)C𝑁)) ∩ ℙ) ⊆
(1...((2 · 𝑁)C𝑁)) |
| 61 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) |
| 62 | 60, 61 | sseldi 3601 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ (1...((2 · 𝑁)C𝑁))) |
| 63 | | elfznn 12370 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...((2 · 𝑁)C𝑁)) → 𝑘 ∈ ℕ) |
| 64 | 62, 63 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ℕ) |
| 65 | | inss2 3834 |
. . . . . . . . . . 11
⊢ ((1...((2
· 𝑁)C𝑁)) ∩ ℙ) ⊆
ℙ |
| 66 | 65, 61 | sseldi 3601 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ℙ) |
| 67 | 14 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → ((2 · 𝑁)C𝑁) ∈ ℕ) |
| 68 | 66, 67 | pccld 15555 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈
ℕ0) |
| 69 | 64, 68 | nnexpcld 13030 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℕ) |
| 70 | 69 | nnrpd 11870 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈
ℝ+) |
| 71 | 70 | relogcld 24369 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℝ) |
| 72 | 59, 71 | syldan 487 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℝ) |
| 73 | 29 | adantr 481 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(2
· 𝑁)) ∈
ℝ) |
| 74 | | elin 3796 |
. . . . . . . . 9
⊢ (𝑘 ∈ ((1...𝐾) ∩ ℙ) ↔ (𝑘 ∈ (1...𝐾) ∧ 𝑘 ∈ ℙ)) |
| 75 | 74 | simprbi 480 |
. . . . . . . 8
⊢ (𝑘 ∈ ((1...𝐾) ∩ ℙ) → 𝑘 ∈ ℙ) |
| 76 | | bposlem1 25009 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℙ) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁)) |
| 77 | 3, 75, 76 | syl2an 494 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁)) |
| 78 | 59, 70 | syldan 487 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈
ℝ+) |
| 79 | 78 | reeflogd 24370 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) →
(exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) = (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) |
| 80 | 28 | adantr 481 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (2 · 𝑁) ∈
ℝ+) |
| 81 | 80 | reeflogd 24370 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) →
(exp‘(log‘(2 · 𝑁))) = (2 · 𝑁)) |
| 82 | 77, 79, 81 | 3brtr4d 4685 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) →
(exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) ≤ (exp‘(log‘(2 ·
𝑁)))) |
| 83 | | efle 14848 |
. . . . . . 7
⊢
(((log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℝ ∧ (log‘(2
· 𝑁)) ∈
ℝ) → ((log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ (log‘(2 · 𝑁)) ↔
(exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) ≤ (exp‘(log‘(2 ·
𝑁))))) |
| 84 | 72, 73, 83 | syl2anc 693 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → ((log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ (log‘(2 · 𝑁)) ↔
(exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) ≤ (exp‘(log‘(2 ·
𝑁))))) |
| 85 | 82, 84 | mpbird 247 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ (log‘(2 · 𝑁))) |
| 86 | 46, 72, 73, 85 | fsumle 14531 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁))) |
| 87 | 71 | recnd 10068 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℂ) |
| 88 | 59, 87 | syldan 487 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℂ) |
| 89 | | eldifn 3733 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (((1...((2 ·
𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) → ¬
𝑘 ∈ ((1...𝐾) ∩
ℙ)) |
| 90 | 89 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ¬
𝑘 ∈ ((1...𝐾) ∩
ℙ)) |
| 91 | | simpr 477 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ (((1...((2 ·
𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩
ℙ))) |
| 92 | 91 | eldifad 3586 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) |
| 93 | 60, 92 | sseldi 3601 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ (1...((2 · 𝑁)C𝑁))) |
| 94 | 93, 63 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈
ℕ) |
| 95 | 94 | adantrr 753 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈
ℕ) |
| 96 | 95 | nnred 11035 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈
ℝ) |
| 97 | 92, 69 | syldan 487 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℕ) |
| 98 | 97 | nnred 11035 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ) |
| 99 | 98 | adantrr 753 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ) |
| 100 | 21 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (2 · 𝑁) ∈
ℝ) |
| 101 | 95 | nncnd 11036 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈
ℂ) |
| 102 | 101 | exp1d 13003 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑1) = 𝑘) |
| 103 | 95 | nnge1d 11063 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 1 ≤ 𝑘) |
| 104 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ) |
| 105 | | nnuz 11723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℕ =
(ℤ≥‘1) |
| 106 | 104, 105 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈
(ℤ≥‘1)) |
| 107 | 96, 103, 106 | leexp2ad 13041 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑1) ≤ (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) |
| 108 | 102, 107 | eqbrtrrd 4677 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) |
| 109 | 3 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑁 ∈ ℕ) |
| 110 | 65, 92 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈
ℙ) |
| 111 | 110 | adantrr 753 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈
ℙ) |
| 112 | 109, 111,
76 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁)) |
| 113 | 96, 99, 100, 108, 112 | letrd 10194 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ (2 · 𝑁)) |
| 114 | | elfzle2 12345 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (1...((2 · 𝑁)C𝑁)) → 𝑘 ≤ ((2 · 𝑁)C𝑁)) |
| 115 | 93, 114 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ≤ ((2 · 𝑁)C𝑁)) |
| 116 | 115 | adantrr 753 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ ((2 · 𝑁)C𝑁)) |
| 117 | 49 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → ((2 ·
𝑁)C𝑁) ∈ ℝ) |
| 118 | | lemin 12023 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℝ ∧ (2
· 𝑁) ∈ ℝ
∧ ((2 · 𝑁)C𝑁) ∈ ℝ) → (𝑘 ≤ if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ↔ (𝑘 ≤ (2 · 𝑁) ∧ 𝑘 ≤ ((2 · 𝑁)C𝑁)))) |
| 119 | 96, 100, 117, 118 | syl3anc 1326 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 ≤ if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ↔ (𝑘 ≤ (2 · 𝑁) ∧ 𝑘 ≤ ((2 · 𝑁)C𝑁)))) |
| 120 | 113, 116,
119 | mpbir2and 957 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁))) |
| 121 | 120, 35 | syl6breqr 4695 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ 𝐾) |
| 122 | 37 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝐾 ∈ ℕ) |
| 123 | 122 | nnzd 11481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝐾 ∈ ℤ) |
| 124 | | fznn 12408 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ ℤ → (𝑘 ∈ (1...𝐾) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≤ 𝐾))) |
| 125 | 123, 124 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 ∈ (1...𝐾) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≤ 𝐾))) |
| 126 | 95, 121, 125 | mpbir2and 957 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ (1...𝐾)) |
| 127 | 126, 111 | elind 3798 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ((1...𝐾) ∩ ℙ)) |
| 128 | 127 | expr 643 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) →
((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ → 𝑘 ∈ ((1...𝐾) ∩ ℙ))) |
| 129 | 90, 128 | mtod 189 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ¬
(𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ) |
| 130 | 92, 68 | syldan 487 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈
ℕ0) |
| 131 | | elnn0 11294 |
. . . . . . . . . . . . 13
⊢ ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0 ↔ ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ ∨ (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0)) |
| 132 | 130, 131 | sylib 208 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) →
((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ ∨ (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0)) |
| 133 | 132 | ord 392 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (¬
(𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ → (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0)) |
| 134 | 129, 133 | mpd 15 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0) |
| 135 | 134 | oveq2d 6666 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) = (𝑘↑0)) |
| 136 | 94 | nncnd 11036 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈
ℂ) |
| 137 | 136 | exp0d 13002 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑0) = 1) |
| 138 | 135, 137 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) = 1) |
| 139 | 138 | fveq2d 6195 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) →
(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = (log‘1)) |
| 140 | | log1 24332 |
. . . . . . 7
⊢
(log‘1) = 0 |
| 141 | 139, 140 | syl6eq 2672 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) →
(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = 0) |
| 142 | | fzfid 12772 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘4) → (1...((2 · 𝑁)C𝑁)) ∈ Fin) |
| 143 | | ssfi 8180 |
. . . . . . 7
⊢
(((1...((2 · 𝑁)C𝑁)) ∈ Fin ∧ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ⊆ (1...((2 ·
𝑁)C𝑁))) → ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∈
Fin) |
| 144 | 142, 60, 143 | sylancl 694 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘4) → ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∈
Fin) |
| 145 | 58, 88, 141, 144 | fsumss 14456 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) |
| 146 | 64 | nnrpd 11870 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ℝ+) |
| 147 | 68 | nn0zd 11480 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ) |
| 148 | | relogexp 24342 |
. . . . . . 7
⊢ ((𝑘 ∈ ℝ+
∧ (𝑘 pCnt ((2 ·
𝑁)C𝑁)) ∈ ℤ) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = ((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘))) |
| 149 | 146, 147,
148 | syl2anc 693 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = ((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘))) |
| 150 | 149 | sumeq2dv 14433 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘4) → Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘))) |
| 151 | | pclogsum 24940 |
. . . . . 6
⊢ (((2
· 𝑁)C𝑁) ∈ ℕ →
Σ𝑘 ∈ ((1...((2
· 𝑁)C𝑁)) ∩ ℙ)((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)) = (log‘((2 · 𝑁)C𝑁))) |
| 152 | 14, 151 | syl 17 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘4) → Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)) = (log‘((2 · 𝑁)C𝑁))) |
| 153 | 145, 150,
152 | 3eqtrd 2660 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = (log‘((2 · 𝑁)C𝑁))) |
| 154 | 29 | recnd 10068 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘4) → (log‘(2 · 𝑁)) ∈
ℂ) |
| 155 | | fsumconst 14522 |
. . . . . 6
⊢
((((1...𝐾) ∩
ℙ) ∈ Fin ∧ (log‘(2 · 𝑁)) ∈ ℂ) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)) = ((#‘((1...𝐾) ∩ ℙ)) ·
(log‘(2 · 𝑁)))) |
| 156 | 46, 154, 155 | syl2anc 693 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)) = ((#‘((1...𝐾) ∩ ℙ)) ·
(log‘(2 · 𝑁)))) |
| 157 | | 2eluzge1 11734 |
. . . . . . 7
⊢ 2 ∈
(ℤ≥‘1) |
| 158 | | ppival2g 24855 |
. . . . . . 7
⊢ ((𝐾 ∈ ℤ ∧ 2 ∈
(ℤ≥‘1)) → (π‘𝐾) = (#‘((1...𝐾) ∩ ℙ))) |
| 159 | 47, 157, 158 | sylancl 694 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘4) → (π‘𝐾) = (#‘((1...𝐾) ∩ ℙ))) |
| 160 | 159 | oveq1d 6665 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘4) → ((π‘𝐾) · (log‘(2 · 𝑁))) = ((#‘((1...𝐾) ∩ ℙ)) ·
(log‘(2 · 𝑁)))) |
| 161 | 156, 160 | eqtr4d 2659 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)) = ((π‘𝐾) · (log‘(2
· 𝑁)))) |
| 162 | 86, 153, 161 | 3brtr3d 4684 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘4) → (log‘((2 · 𝑁)C𝑁)) ≤ ((π‘𝐾) · (log‘(2
· 𝑁)))) |
| 163 | | min1 12020 |
. . . . . . 7
⊢ (((2
· 𝑁) ∈ ℝ
∧ ((2 · 𝑁)C𝑁) ∈ ℝ) → if((2
· 𝑁) ≤ ((2
· 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ (2 · 𝑁)) |
| 164 | 21, 49, 163 | syl2anc 693 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘4) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ (2 · 𝑁)) |
| 165 | 35, 164 | syl5eqbr 4688 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘4) → 𝐾 ≤ (2 · 𝑁)) |
| 166 | | ppiwordi 24888 |
. . . . 5
⊢ ((𝐾 ∈ ℝ ∧ (2
· 𝑁) ∈ ℝ
∧ 𝐾 ≤ (2 ·
𝑁)) →
(π‘𝐾) ≤
(π‘(2 · 𝑁))) |
| 167 | 38, 21, 165, 166 | syl3anc 1326 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘4) → (π‘𝐾) ≤ (π‘(2 · 𝑁))) |
| 168 | | 1red 10055 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘4) → 1 ∈ ℝ) |
| 169 | | 2re 11090 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
| 170 | 169 | a1i 11 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘4) → 2 ∈ ℝ) |
| 171 | | 1lt2 11194 |
. . . . . . . 8
⊢ 1 <
2 |
| 172 | 171 | a1i 11 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘4) → 1 < 2) |
| 173 | | 2t1e2 11176 |
. . . . . . . 8
⊢ (2
· 1) = 2 |
| 174 | 3 | nnge1d 11063 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘4) → 1 ≤ 𝑁) |
| 175 | | eluzelre 11698 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘4) → 𝑁 ∈ ℝ) |
| 176 | | 2pos 11112 |
. . . . . . . . . . . 12
⊢ 0 <
2 |
| 177 | 169, 176 | pm3.2i 471 |
. . . . . . . . . . 11
⊢ (2 ∈
ℝ ∧ 0 < 2) |
| 178 | 177 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘4) → (2 ∈ ℝ ∧ 0 <
2)) |
| 179 | | lemul2 10876 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ ∧ 𝑁
∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2
· 𝑁))) |
| 180 | 168, 175,
178, 179 | syl3anc 1326 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘4) → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 ·
𝑁))) |
| 181 | 174, 180 | mpbid 222 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘4) → (2 · 1) ≤ (2 · 𝑁)) |
| 182 | 173, 181 | syl5eqbrr 4689 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘4) → 2 ≤ (2 · 𝑁)) |
| 183 | 168, 170,
21, 172, 182 | ltletrd 10197 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘4) → 1 < (2 · 𝑁)) |
| 184 | 21, 183 | rplogcld 24375 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘4) → (log‘(2 · 𝑁)) ∈
ℝ+) |
| 185 | 41, 24, 184 | lemul1d 11915 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘4) → ((π‘𝐾) ≤ (π‘(2 · 𝑁)) ↔
((π‘𝐾)
· (log‘(2 · 𝑁))) ≤ ((π‘(2 ·
𝑁)) · (log‘(2
· 𝑁))))) |
| 186 | 167, 185 | mpbid 222 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘4) → ((π‘𝐾) · (log‘(2 · 𝑁))) ≤ ((π‘(2
· 𝑁)) ·
(log‘(2 · 𝑁)))) |
| 187 | 16, 42, 30, 162, 186 | letrd 10194 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘4) → (log‘((2 · 𝑁)C𝑁)) ≤ ((π‘(2 ·
𝑁)) · (log‘(2
· 𝑁)))) |
| 188 | 10, 16, 30, 34, 187 | ltletrd 10197 |
1
⊢ (𝑁 ∈
(ℤ≥‘4) → (log‘((4↑𝑁) / 𝑁)) < ((π‘(2 ·
𝑁)) · (log‘(2
· 𝑁)))) |