MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem1 Structured version   Visualization version   GIF version

Theorem chebbnd1lem1 25158
Description: Lemma for chebbnd1 25161: show a lower bound on π(𝑥) at even integers using similar techniques to those used to prove bpos 25018. (Note that the expression 𝐾 is actually equal to 2 · 𝑁, but proving that is not necessary for the proof, and it's too much work.) The key to the proof is bposlem1 25009, which shows that each term in the expansion ((2 · 𝑁)C𝑁) = ∏𝑝 ∈ ℙ (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) is at most 2 · 𝑁, so that the sum really only has nonzero elements up to 2 · 𝑁, and since each term is at most 2 · 𝑁, after taking logs we get the inequality π(2 · 𝑁) · log(2 · 𝑁) ≤ log((2 · 𝑁)C𝑁), and bclbnd 25005 finishes the proof. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 15-Apr-2016.)
Hypothesis
Ref Expression
chebbnd1lem1.1 𝐾 = if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁))
Assertion
Ref Expression
chebbnd1lem1 (𝑁 ∈ (ℤ‘4) → (log‘((4↑𝑁) / 𝑁)) < ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))))

Proof of Theorem chebbnd1lem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 4nn 11187 . . . . . 6 4 ∈ ℕ
2 eluznn 11758 . . . . . . . 8 ((4 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘4)) → 𝑁 ∈ ℕ)
31, 2mpan 706 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℕ)
43nnnn0d 11351 . . . . . 6 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℕ0)
5 nnexpcl 12873 . . . . . 6 ((4 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (4↑𝑁) ∈ ℕ)
61, 4, 5sylancr 695 . . . . 5 (𝑁 ∈ (ℤ‘4) → (4↑𝑁) ∈ ℕ)
76nnrpd 11870 . . . 4 (𝑁 ∈ (ℤ‘4) → (4↑𝑁) ∈ ℝ+)
83nnrpd 11870 . . . 4 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℝ+)
97, 8rpdivcld 11889 . . 3 (𝑁 ∈ (ℤ‘4) → ((4↑𝑁) / 𝑁) ∈ ℝ+)
109relogcld 24369 . 2 (𝑁 ∈ (ℤ‘4) → (log‘((4↑𝑁) / 𝑁)) ∈ ℝ)
11 fzctr 12451 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
124, 11syl 17 . . . . 5 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ (0...(2 · 𝑁)))
13 bccl2 13110 . . . . 5 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
1412, 13syl 17 . . . 4 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ ℕ)
1514nnrpd 11870 . . 3 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ ℝ+)
1615relogcld 24369 . 2 (𝑁 ∈ (ℤ‘4) → (log‘((2 · 𝑁)C𝑁)) ∈ ℝ)
17 2z 11409 . . . . . . 7 2 ∈ ℤ
18 eluzelz 11697 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℤ)
19 zmulcl 11426 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
2017, 18, 19sylancr 695 . . . . . 6 (𝑁 ∈ (ℤ‘4) → (2 · 𝑁) ∈ ℤ)
2120zred 11482 . . . . 5 (𝑁 ∈ (ℤ‘4) → (2 · 𝑁) ∈ ℝ)
22 ppicl 24857 . . . . 5 ((2 · 𝑁) ∈ ℝ → (π‘(2 · 𝑁)) ∈ ℕ0)
2321, 22syl 17 . . . 4 (𝑁 ∈ (ℤ‘4) → (π‘(2 · 𝑁)) ∈ ℕ0)
2423nn0red 11352 . . 3 (𝑁 ∈ (ℤ‘4) → (π‘(2 · 𝑁)) ∈ ℝ)
25 2nn 11185 . . . . . 6 2 ∈ ℕ
26 nnmulcl 11043 . . . . . 6 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
2725, 3, 26sylancr 695 . . . . 5 (𝑁 ∈ (ℤ‘4) → (2 · 𝑁) ∈ ℕ)
2827nnrpd 11870 . . . 4 (𝑁 ∈ (ℤ‘4) → (2 · 𝑁) ∈ ℝ+)
2928relogcld 24369 . . 3 (𝑁 ∈ (ℤ‘4) → (log‘(2 · 𝑁)) ∈ ℝ)
3024, 29remulcld 10070 . 2 (𝑁 ∈ (ℤ‘4) → ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))) ∈ ℝ)
31 bclbnd 25005 . . 3 (𝑁 ∈ (ℤ‘4) → ((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁))
32 logltb 24346 . . . 4 ((((4↑𝑁) / 𝑁) ∈ ℝ+ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ+) → (((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁) ↔ (log‘((4↑𝑁) / 𝑁)) < (log‘((2 · 𝑁)C𝑁))))
339, 15, 32syl2anc 693 . . 3 (𝑁 ∈ (ℤ‘4) → (((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁) ↔ (log‘((4↑𝑁) / 𝑁)) < (log‘((2 · 𝑁)C𝑁))))
3431, 33mpbid 222 . 2 (𝑁 ∈ (ℤ‘4) → (log‘((4↑𝑁) / 𝑁)) < (log‘((2 · 𝑁)C𝑁)))
35 chebbnd1lem1.1 . . . . . . . 8 𝐾 = if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁))
3627, 14ifcld 4131 . . . . . . . 8 (𝑁 ∈ (ℤ‘4) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ∈ ℕ)
3735, 36syl5eqel 2705 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 𝐾 ∈ ℕ)
3837nnred 11035 . . . . . 6 (𝑁 ∈ (ℤ‘4) → 𝐾 ∈ ℝ)
39 ppicl 24857 . . . . . 6 (𝐾 ∈ ℝ → (π𝐾) ∈ ℕ0)
4038, 39syl 17 . . . . 5 (𝑁 ∈ (ℤ‘4) → (π𝐾) ∈ ℕ0)
4140nn0red 11352 . . . 4 (𝑁 ∈ (ℤ‘4) → (π𝐾) ∈ ℝ)
4241, 29remulcld 10070 . . 3 (𝑁 ∈ (ℤ‘4) → ((π𝐾) · (log‘(2 · 𝑁))) ∈ ℝ)
43 fzfid 12772 . . . . . 6 (𝑁 ∈ (ℤ‘4) → (1...𝐾) ∈ Fin)
44 inss1 3833 . . . . . 6 ((1...𝐾) ∩ ℙ) ⊆ (1...𝐾)
45 ssfi 8180 . . . . . 6 (((1...𝐾) ∈ Fin ∧ ((1...𝐾) ∩ ℙ) ⊆ (1...𝐾)) → ((1...𝐾) ∩ ℙ) ∈ Fin)
4643, 44, 45sylancl 694 . . . . 5 (𝑁 ∈ (ℤ‘4) → ((1...𝐾) ∩ ℙ) ∈ Fin)
4737nnzd 11481 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → 𝐾 ∈ ℤ)
4814nnzd 11481 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ ℤ)
4914nnred 11035 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ ℝ)
50 min2 12021 . . . . . . . . . . . 12 (((2 · 𝑁) ∈ ℝ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ ((2 · 𝑁)C𝑁))
5121, 49, 50syl2anc 693 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘4) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ ((2 · 𝑁)C𝑁))
5235, 51syl5eqbr 4688 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → 𝐾 ≤ ((2 · 𝑁)C𝑁))
53 eluz2 11693 . . . . . . . . . 10 (((2 · 𝑁)C𝑁) ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ ((2 · 𝑁)C𝑁) ∈ ℤ ∧ 𝐾 ≤ ((2 · 𝑁)C𝑁)))
5447, 48, 52, 53syl3anbrc 1246 . . . . . . . . 9 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ (ℤ𝐾))
55 fzss2 12381 . . . . . . . . 9 (((2 · 𝑁)C𝑁) ∈ (ℤ𝐾) → (1...𝐾) ⊆ (1...((2 · 𝑁)C𝑁)))
5654, 55syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘4) → (1...𝐾) ⊆ (1...((2 · 𝑁)C𝑁)))
57 ssrin 3838 . . . . . . . 8 ((1...𝐾) ⊆ (1...((2 · 𝑁)C𝑁)) → ((1...𝐾) ∩ ℙ) ⊆ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
5856, 57syl 17 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → ((1...𝐾) ∩ ℙ) ⊆ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
5958sselda 3603 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
60 inss1 3833 . . . . . . . . . . 11 ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ⊆ (1...((2 · 𝑁)C𝑁))
61 simpr 477 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
6260, 61sseldi 3601 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ (1...((2 · 𝑁)C𝑁)))
63 elfznn 12370 . . . . . . . . . 10 (𝑘 ∈ (1...((2 · 𝑁)C𝑁)) → 𝑘 ∈ ℕ)
6462, 63syl 17 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ℕ)
65 inss2 3834 . . . . . . . . . . 11 ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ⊆ ℙ
6665, 61sseldi 3601 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ℙ)
6714adantr 481 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
6866, 67pccld 15555 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
6964, 68nnexpcld 13030 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℕ)
7069nnrpd 11870 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ+)
7170relogcld 24369 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℝ)
7259, 71syldan 487 . . . . 5 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℝ)
7329adantr 481 . . . . 5 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(2 · 𝑁)) ∈ ℝ)
74 elin 3796 . . . . . . . . 9 (𝑘 ∈ ((1...𝐾) ∩ ℙ) ↔ (𝑘 ∈ (1...𝐾) ∧ 𝑘 ∈ ℙ))
7574simprbi 480 . . . . . . . 8 (𝑘 ∈ ((1...𝐾) ∩ ℙ) → 𝑘 ∈ ℙ)
76 bposlem1 25009 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℙ) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
773, 75, 76syl2an 494 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
7859, 70syldan 487 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ+)
7978reeflogd 24370 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) = (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))
8028adantr 481 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (2 · 𝑁) ∈ ℝ+)
8180reeflogd 24370 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (exp‘(log‘(2 · 𝑁))) = (2 · 𝑁))
8277, 79, 813brtr4d 4685 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) ≤ (exp‘(log‘(2 · 𝑁))))
83 efle 14848 . . . . . . 7 (((log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℝ ∧ (log‘(2 · 𝑁)) ∈ ℝ) → ((log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ (log‘(2 · 𝑁)) ↔ (exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) ≤ (exp‘(log‘(2 · 𝑁)))))
8472, 73, 83syl2anc 693 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → ((log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ (log‘(2 · 𝑁)) ↔ (exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) ≤ (exp‘(log‘(2 · 𝑁)))))
8582, 84mpbird 247 . . . . 5 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ (log‘(2 · 𝑁)))
8646, 72, 73, 85fsumle 14531 . . . 4 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)))
8771recnd 10068 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℂ)
8859, 87syldan 487 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℂ)
89 eldifn 3733 . . . . . . . . . . . . 13 (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) → ¬ 𝑘 ∈ ((1...𝐾) ∩ ℙ))
9089adantl 482 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ¬ 𝑘 ∈ ((1...𝐾) ∩ ℙ))
91 simpr 477 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)))
9291eldifad 3586 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
9360, 92sseldi 3601 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ (1...((2 · 𝑁)C𝑁)))
9493, 63syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ℕ)
9594adantrr 753 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ℕ)
9695nnred 11035 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ℝ)
9792, 69syldan 487 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℕ)
9897nnred 11035 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ)
9998adantrr 753 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ)
10021adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (2 · 𝑁) ∈ ℝ)
10195nncnd 11036 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ℂ)
102101exp1d 13003 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑1) = 𝑘)
10395nnge1d 11063 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 1 ≤ 𝑘)
104 simprr 796 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)
105 nnuz 11723 . . . . . . . . . . . . . . . . . . . . 21 ℕ = (ℤ‘1)
106104, 105syl6eleq 2711 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ (ℤ‘1))
10796, 103, 106leexp2ad 13041 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑1) ≤ (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))
108102, 107eqbrtrrd 4677 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))
1093adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑁 ∈ ℕ)
11065, 92sseldi 3601 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ℙ)
111110adantrr 753 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ℙ)
112109, 111, 76syl2anc 693 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
11396, 99, 100, 108, 112letrd 10194 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ (2 · 𝑁))
114 elfzle2 12345 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...((2 · 𝑁)C𝑁)) → 𝑘 ≤ ((2 · 𝑁)C𝑁))
11593, 114syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ≤ ((2 · 𝑁)C𝑁))
116115adantrr 753 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ ((2 · 𝑁)C𝑁))
11749adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → ((2 · 𝑁)C𝑁) ∈ ℝ)
118 lemin 12023 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ) → (𝑘 ≤ if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ↔ (𝑘 ≤ (2 · 𝑁) ∧ 𝑘 ≤ ((2 · 𝑁)C𝑁))))
11996, 100, 117, 118syl3anc 1326 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 ≤ if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ↔ (𝑘 ≤ (2 · 𝑁) ∧ 𝑘 ≤ ((2 · 𝑁)C𝑁))))
120113, 116, 119mpbir2and 957 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)))
121120, 35syl6breqr 4695 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘𝐾)
12237adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝐾 ∈ ℕ)
123122nnzd 11481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝐾 ∈ ℤ)
124 fznn 12408 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℤ → (𝑘 ∈ (1...𝐾) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝐾)))
125123, 124syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 ∈ (1...𝐾) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝐾)))
12695, 121, 125mpbir2and 957 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ (1...𝐾))
127126, 111elind 3798 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ((1...𝐾) ∩ ℙ))
128127expr 643 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ → 𝑘 ∈ ((1...𝐾) ∩ ℙ)))
12990, 128mtod 189 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ¬ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)
13092, 68syldan 487 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
131 elnn0 11294 . . . . . . . . . . . . 13 ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0 ↔ ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ ∨ (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0))
132130, 131sylib 208 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ ∨ (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0))
133132ord 392 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (¬ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ → (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0))
134129, 133mpd 15 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0)
135134oveq2d 6666 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) = (𝑘↑0))
13694nncnd 11036 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ℂ)
137136exp0d 13002 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑0) = 1)
138135, 137eqtrd 2656 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) = 1)
139138fveq2d 6195 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = (log‘1))
140 log1 24332 . . . . . . 7 (log‘1) = 0
141139, 140syl6eq 2672 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = 0)
142 fzfid 12772 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → (1...((2 · 𝑁)C𝑁)) ∈ Fin)
143 ssfi 8180 . . . . . . 7 (((1...((2 · 𝑁)C𝑁)) ∈ Fin ∧ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ⊆ (1...((2 · 𝑁)C𝑁))) → ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∈ Fin)
144142, 60, 143sylancl 694 . . . . . 6 (𝑁 ∈ (ℤ‘4) → ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∈ Fin)
14558, 88, 141, 144fsumss 14456 . . . . 5 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))))
14664nnrpd 11870 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ℝ+)
14768nn0zd 11480 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ)
148 relogexp 24342 . . . . . . 7 ((𝑘 ∈ ℝ+ ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = ((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)))
149146, 147, 148syl2anc 693 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = ((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)))
150149sumeq2dv 14433 . . . . 5 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)))
151 pclogsum 24940 . . . . . 6 (((2 · 𝑁)C𝑁) ∈ ℕ → Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)) = (log‘((2 · 𝑁)C𝑁)))
15214, 151syl 17 . . . . 5 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)) = (log‘((2 · 𝑁)C𝑁)))
153145, 150, 1523eqtrd 2660 . . . 4 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = (log‘((2 · 𝑁)C𝑁)))
15429recnd 10068 . . . . . 6 (𝑁 ∈ (ℤ‘4) → (log‘(2 · 𝑁)) ∈ ℂ)
155 fsumconst 14522 . . . . . 6 ((((1...𝐾) ∩ ℙ) ∈ Fin ∧ (log‘(2 · 𝑁)) ∈ ℂ) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)) = ((#‘((1...𝐾) ∩ ℙ)) · (log‘(2 · 𝑁))))
15646, 154, 155syl2anc 693 . . . . 5 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)) = ((#‘((1...𝐾) ∩ ℙ)) · (log‘(2 · 𝑁))))
157 2eluzge1 11734 . . . . . . 7 2 ∈ (ℤ‘1)
158 ppival2g 24855 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 2 ∈ (ℤ‘1)) → (π𝐾) = (#‘((1...𝐾) ∩ ℙ)))
15947, 157, 158sylancl 694 . . . . . 6 (𝑁 ∈ (ℤ‘4) → (π𝐾) = (#‘((1...𝐾) ∩ ℙ)))
160159oveq1d 6665 . . . . 5 (𝑁 ∈ (ℤ‘4) → ((π𝐾) · (log‘(2 · 𝑁))) = ((#‘((1...𝐾) ∩ ℙ)) · (log‘(2 · 𝑁))))
161156, 160eqtr4d 2659 . . . 4 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)) = ((π𝐾) · (log‘(2 · 𝑁))))
16286, 153, 1613brtr3d 4684 . . 3 (𝑁 ∈ (ℤ‘4) → (log‘((2 · 𝑁)C𝑁)) ≤ ((π𝐾) · (log‘(2 · 𝑁))))
163 min1 12020 . . . . . . 7 (((2 · 𝑁) ∈ ℝ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ (2 · 𝑁))
16421, 49, 163syl2anc 693 . . . . . 6 (𝑁 ∈ (ℤ‘4) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ (2 · 𝑁))
16535, 164syl5eqbr 4688 . . . . 5 (𝑁 ∈ (ℤ‘4) → 𝐾 ≤ (2 · 𝑁))
166 ppiwordi 24888 . . . . 5 ((𝐾 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ 𝐾 ≤ (2 · 𝑁)) → (π𝐾) ≤ (π‘(2 · 𝑁)))
16738, 21, 165, 166syl3anc 1326 . . . 4 (𝑁 ∈ (ℤ‘4) → (π𝐾) ≤ (π‘(2 · 𝑁)))
168 1red 10055 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 1 ∈ ℝ)
169 2re 11090 . . . . . . . 8 2 ∈ ℝ
170169a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 2 ∈ ℝ)
171 1lt2 11194 . . . . . . . 8 1 < 2
172171a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 1 < 2)
173 2t1e2 11176 . . . . . . . 8 (2 · 1) = 2
1743nnge1d 11063 . . . . . . . . 9 (𝑁 ∈ (ℤ‘4) → 1 ≤ 𝑁)
175 eluzelre 11698 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℝ)
176 2pos 11112 . . . . . . . . . . . 12 0 < 2
177169, 176pm3.2i 471 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
178177a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → (2 ∈ ℝ ∧ 0 < 2))
179 lemul2 10876 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
180168, 175, 178, 179syl3anc 1326 . . . . . . . . 9 (𝑁 ∈ (ℤ‘4) → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
181174, 180mpbid 222 . . . . . . . 8 (𝑁 ∈ (ℤ‘4) → (2 · 1) ≤ (2 · 𝑁))
182173, 181syl5eqbrr 4689 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 2 ≤ (2 · 𝑁))
183168, 170, 21, 172, 182ltletrd 10197 . . . . . 6 (𝑁 ∈ (ℤ‘4) → 1 < (2 · 𝑁))
18421, 183rplogcld 24375 . . . . 5 (𝑁 ∈ (ℤ‘4) → (log‘(2 · 𝑁)) ∈ ℝ+)
18541, 24, 184lemul1d 11915 . . . 4 (𝑁 ∈ (ℤ‘4) → ((π𝐾) ≤ (π‘(2 · 𝑁)) ↔ ((π𝐾) · (log‘(2 · 𝑁))) ≤ ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁)))))
186167, 185mpbid 222 . . 3 (𝑁 ∈ (ℤ‘4) → ((π𝐾) · (log‘(2 · 𝑁))) ≤ ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))))
18716, 42, 30, 162, 186letrd 10194 . 2 (𝑁 ∈ (ℤ‘4) → (log‘((2 · 𝑁)C𝑁)) ≤ ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))))
18810, 16, 30, 34, 187ltletrd 10197 1 (𝑁 ∈ (ℤ‘4) → (log‘((4↑𝑁) / 𝑁)) < ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  cdif 3571  cin 3573  wss 3574  ifcif 4086   class class class wbr 4653  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941   < clt 10074  cle 10075   / cdiv 10684  cn 11020  2c2 11070  4c4 11072  0cn0 11292  cz 11377  cuz 11687  +crp 11832  ...cfz 12326  cexp 12860  Ccbc 13089  #chash 13117  Σcsu 14416  expce 14792  cprime 15385   pCnt cpc 15541  logclog 24301  πcppi 24820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-ppi 24826
This theorem is referenced by:  chebbnd1lem3  25160
  Copyright terms: Public domain W3C validator