Proof of Theorem psrmulr
| Step | Hyp | Ref
| Expression |
| 1 | | psrmulr.s |
. . . . 5
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 2 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 3 | | eqid 2622 |
. . . . 5
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 4 | | psrmulr.m |
. . . . 5
⊢ · =
(.r‘𝑅) |
| 5 | | eqid 2622 |
. . . . 5
⊢
(TopOpen‘𝑅) =
(TopOpen‘𝑅) |
| 6 | | psrmulr.d |
. . . . 5
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| 7 | | psrmulr.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑆) |
| 8 | | simpl 473 |
. . . . . 6
⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐼 ∈ V) |
| 9 | 1, 2, 6, 7, 8 | psrbas 19378 |
. . . . 5
⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ((Base‘𝑅) ↑𝑚
𝐷)) |
| 10 | | eqid 2622 |
. . . . . 6
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 11 | 1, 7, 3, 10 | psrplusg 19381 |
. . . . 5
⊢
(+g‘𝑆) = ( ∘𝑓
(+g‘𝑅)
↾ (𝐵 × 𝐵)) |
| 12 | | eqid 2622 |
. . . . 5
⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) |
| 13 | | eqid 2622 |
. . . . 5
⊢ (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) = (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) |
| 14 | | eqidd 2623 |
. . . . 5
⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) →
(∏t‘(𝐷 × {(TopOpen‘𝑅)})) = (∏t‘(𝐷 × {(TopOpen‘𝑅)}))) |
| 15 | | simpr 477 |
. . . . 5
⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑅 ∈ V) |
| 16 | 1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 8, 15 | psrval 19362 |
. . . 4
⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), (+g‘𝑆)〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))〉,
〈(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉})) |
| 17 | 16 | fveq2d 6195 |
. . 3
⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) →
(.r‘𝑆) =
(.r‘({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑆)〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))〉,
〈(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}))) |
| 18 | | psrmulr.t |
. . 3
⊢ ∙ =
(.r‘𝑆) |
| 19 | | fvex 6201 |
. . . . . 6
⊢
(Base‘𝑆)
∈ V |
| 20 | 7, 19 | eqeltri 2697 |
. . . . 5
⊢ 𝐵 ∈ V |
| 21 | 20, 20 | mpt2ex 7247 |
. . . 4
⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) ∈
V |
| 22 | | psrvalstr 19363 |
. . . . 5
⊢
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑆)〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))〉,
〈(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}) Struct 〈1,
9〉 |
| 23 | | mulrid 15997 |
. . . . 5
⊢
.r = Slot (.r‘ndx) |
| 24 | | snsstp3 4349 |
. . . . . 6
⊢
{〈(.r‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ⊆
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑆)〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} |
| 25 | | ssun1 3776 |
. . . . . 6
⊢
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑆)〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ⊆
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑆)〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))〉,
〈(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}) |
| 26 | 24, 25 | sstri 3612 |
. . . . 5
⊢
{〈(.r‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ⊆
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑆)〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))〉,
〈(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}) |
| 27 | 22, 23, 26 | strfv 15907 |
. . . 4
⊢ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) ∈ V → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) =
(.r‘({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑆)〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))〉,
〈(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}))) |
| 28 | 21, 27 | ax-mp 5 |
. . 3
⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) =
(.r‘({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑆)〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))〉,
〈(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉})) |
| 29 | 17, 18, 28 | 3eqtr4g 2681 |
. 2
⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) → ∙ =
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))) |
| 30 | | mpt20 6725 |
. . . 4
⊢ (𝑓 ∈ ∅, 𝑔 ∈ ∅ ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) =
∅ |
| 31 | 23 | str0 15911 |
. . . 4
⊢ ∅ =
(.r‘∅) |
| 32 | 30, 31 | eqtr2i 2645 |
. . 3
⊢
(.r‘∅) = (𝑓 ∈ ∅, 𝑔 ∈ ∅ ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) |
| 33 | | reldmpsr 19361 |
. . . . . . 7
⊢ Rel dom
mPwSer |
| 34 | 33 | ovprc 6683 |
. . . . . 6
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅) |
| 35 | 1, 34 | syl5eq 2668 |
. . . . 5
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ∅) |
| 36 | 35 | fveq2d 6195 |
. . . 4
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) →
(.r‘𝑆) =
(.r‘∅)) |
| 37 | 18, 36 | syl5eq 2668 |
. . 3
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) → ∙ =
(.r‘∅)) |
| 38 | 35 | fveq2d 6195 |
. . . . 5
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) →
(Base‘𝑆) =
(Base‘∅)) |
| 39 | | base0 15912 |
. . . . 5
⊢ ∅ =
(Base‘∅) |
| 40 | 38, 7, 39 | 3eqtr4g 2681 |
. . . 4
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅) |
| 41 | | mpt2eq12 6715 |
. . . 4
⊢ ((𝐵 = ∅ ∧ 𝐵 = ∅) → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) = (𝑓 ∈ ∅, 𝑔 ∈ ∅ ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))) |
| 42 | 40, 40, 41 | syl2anc 693 |
. . 3
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) = (𝑓 ∈ ∅, 𝑔 ∈ ∅ ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))) |
| 43 | 32, 37, 42 | 3eqtr4a 2682 |
. 2
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) → ∙ =
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))) |
| 44 | 29, 43 | pm2.61i 176 |
1
⊢ ∙ =
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) |