MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrmulfval Structured version   Visualization version   GIF version

Theorem psrmulfval 19385
Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
psrmulr.s 𝑆 = (𝐼 mPwSer 𝑅)
psrmulr.b 𝐵 = (Base‘𝑆)
psrmulr.m · = (.r𝑅)
psrmulr.t = (.r𝑆)
psrmulr.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrmulfval.i (𝜑𝐹𝐵)
psrmulfval.r (𝜑𝐺𝐵)
Assertion
Ref Expression
psrmulfval (𝜑 → (𝐹 𝐺) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘𝑓𝑥)))))))
Distinct variable groups:   𝑥,𝑘,𝐵   𝑦,𝑘,𝐷,𝑥   ,𝑘,𝑥,𝑦,𝐼   𝜑,𝑘,𝑥   𝑘,𝐹,𝑥   𝑘,𝐺,𝑥   · ,𝑘,𝑥   𝑅,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑦,)   𝐵(𝑦,)   𝐷()   𝑅(𝑦,)   𝑆(𝑥,𝑦,,𝑘)   (𝑥,𝑦,,𝑘)   · (𝑦,)   𝐹(𝑦,)   𝐺(𝑦,)

Proof of Theorem psrmulfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrmulfval.i . 2 (𝜑𝐹𝐵)
2 psrmulfval.r . 2 (𝜑𝐺𝐵)
3 fveq1 6190 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
4 fveq1 6190 . . . . . . 7 (𝑔 = 𝐺 → (𝑔‘(𝑘𝑓𝑥)) = (𝐺‘(𝑘𝑓𝑥)))
53, 4oveqan12d 6669 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥) · (𝑔‘(𝑘𝑓𝑥))) = ((𝐹𝑥) · (𝐺‘(𝑘𝑓𝑥))))
65mpteq2dv 4745 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘𝑓𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘𝑓𝑥)))))
76oveq2d 6666 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘𝑓𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘𝑓𝑥))))))
87mpteq2dv 4745 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘𝑓𝑥)))))) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘𝑓𝑥)))))))
9 psrmulr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
10 psrmulr.b . . . 4 𝐵 = (Base‘𝑆)
11 psrmulr.m . . . 4 · = (.r𝑅)
12 psrmulr.t . . . 4 = (.r𝑆)
13 psrmulr.d . . . 4 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
149, 10, 11, 12, 13psrmulr 19384 . . 3 = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘𝑓𝑥)))))))
15 ovex 6678 . . . . 5 (ℕ0𝑚 𝐼) ∈ V
1613, 15rabex2 4815 . . . 4 𝐷 ∈ V
1716mptex 6486 . . 3 (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘𝑓𝑥)))))) ∈ V
188, 14, 17ovmpt2a 6791 . 2 ((𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘𝑓𝑥)))))))
191, 2, 18syl2anc 693 1 (𝜑 → (𝐹 𝐺) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘𝑓𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916   class class class wbr 4653  cmpt 4729  ccnv 5113  cima 5117  cfv 5888  (class class class)co 6650  𝑓 cof 6895  𝑟 cofr 6896  𝑚 cmap 7857  Fincfn 7955  cle 10075  cmin 10266  cn 11020  0cn0 11292  Basecbs 15857  .rcmulr 15942   Σg cgsu 16101   mPwSer cmps 19351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-psr 19356
This theorem is referenced by:  psrmulval  19386  psrmulcllem  19387  psrdi  19406  psrdir  19407  psrass23l  19408  psrcom  19409  psrass23  19410  resspsrmul  19417  mplmul  19443  psropprmul  19608  coe1mul2  19639
  Copyright terms: Public domain W3C validator