| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recnz | Structured version Visualization version GIF version | ||
| Description: The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005.) |
| Ref | Expression |
|---|---|
| recnz | ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recgt1i 10920 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (0 < (1 / 𝐴) ∧ (1 / 𝐴) < 1)) | |
| 2 | 1 | simprd 479 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (1 / 𝐴) < 1) |
| 3 | 1 | simpld 475 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < (1 / 𝐴)) |
| 4 | zgt0ge1 11431 | . . . 4 ⊢ ((1 / 𝐴) ∈ ℤ → (0 < (1 / 𝐴) ↔ 1 ≤ (1 / 𝐴))) | |
| 5 | 3, 4 | syl5ibcom 235 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ((1 / 𝐴) ∈ ℤ → 1 ≤ (1 / 𝐴))) |
| 6 | 1re 10039 | . . . 4 ⊢ 1 ∈ ℝ | |
| 7 | 0lt1 10550 | . . . . . . . 8 ⊢ 0 < 1 | |
| 8 | 0re 10040 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 9 | lttr 10114 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴)) | |
| 10 | 8, 6, 9 | mp3an12 1414 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴)) |
| 11 | 7, 10 | mpani 712 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (1 < 𝐴 → 0 < 𝐴)) |
| 12 | 11 | imdistani 726 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| 13 | gt0ne0 10493 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ≠ 0) |
| 15 | rereccl 10743 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ) | |
| 16 | 14, 15 | syldan 487 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (1 / 𝐴) ∈ ℝ) |
| 17 | lenlt 10116 | . . . 4 ⊢ ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (1 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 1)) | |
| 18 | 6, 16, 17 | sylancr 695 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (1 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 1)) |
| 19 | 5, 18 | sylibd 229 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ((1 / 𝐴) ∈ ℤ → ¬ (1 / 𝐴) < 1)) |
| 20 | 2, 19 | mt2d 131 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∈ wcel 1990 ≠ wne 2794 class class class wbr 4653 (class class class)co 6650 ℝcr 9935 0cc0 9936 1c1 9937 < clt 10074 ≤ cle 10075 / cdiv 10684 ℤcz 11377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 |
| This theorem is referenced by: halfnz 11455 facndiv 13075 dvdsprmpweqle 15590 |
| Copyright terms: Public domain | W3C validator |