MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recval Structured version   Visualization version   GIF version

Theorem recval 14062
Description: Reciprocal expressed with a real denominator. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
recval ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) = ((∗‘𝐴) / ((abs‘𝐴)↑2)))

Proof of Theorem recval
StepHypRef Expression
1 cjcl 13845 . . . . . . 7 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
21adantr 481 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘𝐴) ∈ ℂ)
3 simpl 473 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
42, 3mulcomd 10061 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((∗‘𝐴) · 𝐴) = (𝐴 · (∗‘𝐴)))
5 absvalsq 14020 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
65adantr 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
74, 6eqtr4d 2659 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((∗‘𝐴) · 𝐴) = ((abs‘𝐴)↑2))
8 abscl 14018 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
98adantr 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
109recnd 10068 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
1110sqcld 13006 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) ∈ ℂ)
12 cjne0 13903 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ (∗‘𝐴) ≠ 0))
1312biimpa 501 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘𝐴) ≠ 0)
1411, 2, 3, 13divmuld 10823 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((((abs‘𝐴)↑2) / (∗‘𝐴)) = 𝐴 ↔ ((∗‘𝐴) · 𝐴) = ((abs‘𝐴)↑2)))
157, 14mpbird 247 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((abs‘𝐴)↑2) / (∗‘𝐴)) = 𝐴)
1615oveq2d 6666 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / (((abs‘𝐴)↑2) / (∗‘𝐴))) = (1 / 𝐴))
17 abs00 14029 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
1817necon3bid 2838 . . . . 5 (𝐴 ∈ ℂ → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
1918biimpar 502 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≠ 0)
20 sqne0 12930 . . . . 5 ((abs‘𝐴) ∈ ℂ → (((abs‘𝐴)↑2) ≠ 0 ↔ (abs‘𝐴) ≠ 0))
2110, 20syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((abs‘𝐴)↑2) ≠ 0 ↔ (abs‘𝐴) ≠ 0))
2219, 21mpbird 247 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) ≠ 0)
2311, 2, 22, 13recdivd 10818 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / (((abs‘𝐴)↑2) / (∗‘𝐴))) = ((∗‘𝐴) / ((abs‘𝐴)↑2)))
2416, 23eqtr3d 2658 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) = ((∗‘𝐴) / ((abs‘𝐴)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941   / cdiv 10684  2c2 11070  cexp 12860  ccj 13836  abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  tanregt0  24285  root1cj  24497  lawcoslem1  24545  asinlem3  24598  sum2dchr  24999
  Copyright terms: Public domain W3C validator