MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem3 Structured version   Visualization version   GIF version

Theorem asinlem3 24598
Description: The argument to the logarithm in df-asin 24592 has nonnegative real part. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinlem3 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))

Proof of Theorem asinlem3
StepHypRef Expression
1 0red 10041 . 2 (𝐴 ∈ ℂ → 0 ∈ ℝ)
2 imcl 13851 . 2 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
3 ax-icn 9995 . . . . . . . . 9 i ∈ ℂ
4 negcl 10281 . . . . . . . . . 10 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
54adantr 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → -𝐴 ∈ ℂ)
6 mulcl 10020 . . . . . . . . 9 ((i ∈ ℂ ∧ -𝐴 ∈ ℂ) → (i · -𝐴) ∈ ℂ)
73, 5, 6sylancr 695 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (i · -𝐴) ∈ ℂ)
8 ax-1cn 9994 . . . . . . . . . 10 1 ∈ ℂ
95sqcld 13006 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (-𝐴↑2) ∈ ℂ)
10 subcl 10280 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (-𝐴↑2) ∈ ℂ) → (1 − (-𝐴↑2)) ∈ ℂ)
118, 9, 10sylancr 695 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 − (-𝐴↑2)) ∈ ℂ)
1211sqrtcld 14176 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (√‘(1 − (-𝐴↑2))) ∈ ℂ)
137, 12addcld 10059 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ∈ ℂ)
14 asinlem 24595 . . . . . . . 8 (-𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0)
155, 14syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0)
1613, 15absrpcld 14187 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) ∈ ℝ+)
17 2z 11409 . . . . . 6 2 ∈ ℤ
18 rpexpcl 12879 . . . . . 6 (((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2) ∈ ℝ+)
1916, 17, 18sylancl 694 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2) ∈ ℝ+)
2019rprecred 11883 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) ∈ ℝ)
2113cjcld 13936 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) ∈ ℂ)
2221recld 13934 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))) ∈ ℝ)
2319rpreccld 11882 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) ∈ ℝ+)
2423rpge0d 11876 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ (1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)))
25 imneg 13873 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴))
2625adantr 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℑ‘-𝐴) = -(ℑ‘𝐴))
272le0neg2d 10600 . . . . . . . 8 (𝐴 ∈ ℂ → (0 ≤ (ℑ‘𝐴) ↔ -(ℑ‘𝐴) ≤ 0))
2827biimpa 501 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → -(ℑ‘𝐴) ≤ 0)
2926, 28eqbrtrd 4675 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℑ‘-𝐴) ≤ 0)
30 asinlem3a 24597 . . . . . 6 ((-𝐴 ∈ ℂ ∧ (ℑ‘-𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
315, 29, 30syl2anc 693 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ (ℜ‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
3213recjd 13944 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))) = (ℜ‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
3331, 32breqtrrd 4681 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
3420, 22, 24, 33mulge0d 10604 . . 3 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))))
35 recval 14062 . . . . . . 7 ((((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ∈ ℂ ∧ ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0) → (1 / ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = ((∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)))
3613, 15, 35syl2anc 693 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 / ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = ((∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)))
37 asinlem2 24596 . . . . . . . . 9 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)
3837adantr 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)
3938eqcomd 2628 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 1 = (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
40 1cnd 10056 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 1 ∈ ℂ)
41 simpl 473 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 𝐴 ∈ ℂ)
42 mulcl 10020 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
433, 41, 42sylancr 695 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (i · 𝐴) ∈ ℂ)
44 sqcl 12925 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
4544adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (𝐴↑2) ∈ ℂ)
46 subcl 10280 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
478, 45, 46sylancr 695 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 − (𝐴↑2)) ∈ ℂ)
4847sqrtcld 14176 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (√‘(1 − (𝐴↑2))) ∈ ℂ)
4943, 48addcld 10059 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ)
5040, 49, 13, 15divmul3d 10835 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((1 / ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ↔ 1 = (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
5139, 50mpbird 247 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 / ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
5219rpcnd 11874 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2) ∈ ℂ)
5319rpne0d 11877 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2) ≠ 0)
5421, 52, 53divrec2d 10805 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) = ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
5536, 51, 543eqtr3d 2664 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) = ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
5655fveq2d 6195 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = (ℜ‘((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))))
5720, 21remul2d 13967 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))) = ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))))
5856, 57eqtrd 2656 . . 3 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))))
5934, 58breqtrrd 4681 . 2 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
60 asinlem3a 24597 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
611, 2, 59, 60lecasei 10143 1 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937  ici 9938   + caddc 9939   · cmul 9941  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  2c2 11070  cz 11377  +crp 11832  cexp 12860  ccj 13836  cre 13837  cim 13838  csqrt 13973  abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  asinneg  24613  asinbnd  24626  dvasin  33496
  Copyright terms: Public domain W3C validator