Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexp0a Structured version   Visualization version   GIF version

Theorem relexp0a 38008
Description: Absorbtion law for zeroth power of a relation. (Contributed by RP, 17-Jun-2020.)
Assertion
Ref Expression
relexp0a ((𝐴𝑉𝑁 ∈ ℕ0) → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0))

Proof of Theorem relexp0a
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 11294 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 oveq2 6658 . . . . . . . 8 (𝑥 = 1 → (𝐴𝑟𝑥) = (𝐴𝑟1))
32oveq1d 6665 . . . . . . 7 (𝑥 = 1 → ((𝐴𝑟𝑥)↑𝑟0) = ((𝐴𝑟1)↑𝑟0))
43sseq1d 3632 . . . . . 6 (𝑥 = 1 → (((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0) ↔ ((𝐴𝑟1)↑𝑟0) ⊆ (𝐴𝑟0)))
54imbi2d 330 . . . . 5 (𝑥 = 1 → ((𝐴𝑉 → ((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0)) ↔ (𝐴𝑉 → ((𝐴𝑟1)↑𝑟0) ⊆ (𝐴𝑟0))))
6 oveq2 6658 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴𝑟𝑥) = (𝐴𝑟𝑦))
76oveq1d 6665 . . . . . . 7 (𝑥 = 𝑦 → ((𝐴𝑟𝑥)↑𝑟0) = ((𝐴𝑟𝑦)↑𝑟0))
87sseq1d 3632 . . . . . 6 (𝑥 = 𝑦 → (((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0) ↔ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)))
98imbi2d 330 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝑉 → ((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0)) ↔ (𝐴𝑉 → ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0))))
10 oveq2 6658 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝐴𝑟𝑥) = (𝐴𝑟(𝑦 + 1)))
1110oveq1d 6665 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝐴𝑟𝑥)↑𝑟0) = ((𝐴𝑟(𝑦 + 1))↑𝑟0))
1211sseq1d 3632 . . . . . 6 (𝑥 = (𝑦 + 1) → (((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0) ↔ ((𝐴𝑟(𝑦 + 1))↑𝑟0) ⊆ (𝐴𝑟0)))
1312imbi2d 330 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝐴𝑉 → ((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0)) ↔ (𝐴𝑉 → ((𝐴𝑟(𝑦 + 1))↑𝑟0) ⊆ (𝐴𝑟0))))
14 oveq2 6658 . . . . . . . 8 (𝑥 = 𝑁 → (𝐴𝑟𝑥) = (𝐴𝑟𝑁))
1514oveq1d 6665 . . . . . . 7 (𝑥 = 𝑁 → ((𝐴𝑟𝑥)↑𝑟0) = ((𝐴𝑟𝑁)↑𝑟0))
1615sseq1d 3632 . . . . . 6 (𝑥 = 𝑁 → (((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0) ↔ ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0)))
1716imbi2d 330 . . . . 5 (𝑥 = 𝑁 → ((𝐴𝑉 → ((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0)) ↔ (𝐴𝑉 → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0))))
18 relexp1g 13766 . . . . . . 7 (𝐴𝑉 → (𝐴𝑟1) = 𝐴)
1918oveq1d 6665 . . . . . 6 (𝐴𝑉 → ((𝐴𝑟1)↑𝑟0) = (𝐴𝑟0))
20 ssid 3624 . . . . . 6 (𝐴𝑟0) ⊆ (𝐴𝑟0)
2119, 20syl6eqss 3655 . . . . 5 (𝐴𝑉 → ((𝐴𝑟1)↑𝑟0) ⊆ (𝐴𝑟0))
22 simp2 1062 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → 𝐴𝑉)
23 simp1 1061 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → 𝑦 ∈ ℕ)
24 relexpsucnnr 13765 . . . . . . . . . 10 ((𝐴𝑉𝑦 ∈ ℕ) → (𝐴𝑟(𝑦 + 1)) = ((𝐴𝑟𝑦) ∘ 𝐴))
2524oveq1d 6665 . . . . . . . . 9 ((𝐴𝑉𝑦 ∈ ℕ) → ((𝐴𝑟(𝑦 + 1))↑𝑟0) = (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0))
2622, 23, 25syl2anc 693 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ((𝐴𝑟(𝑦 + 1))↑𝑟0) = (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0))
27 ovex 6678 . . . . . . . . . . . . 13 (𝐴𝑟𝑦) ∈ V
28 coexg 7117 . . . . . . . . . . . . 13 (((𝐴𝑟𝑦) ∈ V ∧ 𝐴𝑉) → ((𝐴𝑟𝑦) ∘ 𝐴) ∈ V)
2927, 28mpan 706 . . . . . . . . . . . 12 (𝐴𝑉 → ((𝐴𝑟𝑦) ∘ 𝐴) ∈ V)
30 relexp0g 13762 . . . . . . . . . . . 12 (((𝐴𝑟𝑦) ∘ 𝐴) ∈ V → (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0) = ( I ↾ (dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴))))
3129, 30syl 17 . . . . . . . . . . 11 (𝐴𝑉 → (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0) = ( I ↾ (dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴))))
32 dmcoss 5385 . . . . . . . . . . . . 13 dom ((𝐴𝑟𝑦) ∘ 𝐴) ⊆ dom 𝐴
33 rncoss 5386 . . . . . . . . . . . . 13 ran ((𝐴𝑟𝑦) ∘ 𝐴) ⊆ ran (𝐴𝑟𝑦)
34 unss12 3785 . . . . . . . . . . . . 13 ((dom ((𝐴𝑟𝑦) ∘ 𝐴) ⊆ dom 𝐴 ∧ ran ((𝐴𝑟𝑦) ∘ 𝐴) ⊆ ran (𝐴𝑟𝑦)) → (dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴)) ⊆ (dom 𝐴 ∪ ran (𝐴𝑟𝑦)))
3532, 33, 34mp2an 708 . . . . . . . . . . . 12 (dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴)) ⊆ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))
36 ssres2 5425 . . . . . . . . . . . 12 ((dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴)) ⊆ (dom 𝐴 ∪ ran (𝐴𝑟𝑦)) → ( I ↾ (dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴))) ⊆ ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))))
3735, 36ax-mp 5 . . . . . . . . . . 11 ( I ↾ (dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴))) ⊆ ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦)))
3831, 37syl6eqss 3655 . . . . . . . . . 10 (𝐴𝑉 → (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0) ⊆ ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))))
3922, 38syl 17 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0) ⊆ ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))))
40 resundi 5410 . . . . . . . . . . 11 ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))) = (( I ↾ dom 𝐴) ∪ ( I ↾ ran (𝐴𝑟𝑦)))
41 ssun1 3776 . . . . . . . . . . . . . . 15 dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
42 ssres2 5425 . . . . . . . . . . . . . . 15 (dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) → ( I ↾ dom 𝐴) ⊆ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
4341, 42ax-mp 5 . . . . . . . . . . . . . 14 ( I ↾ dom 𝐴) ⊆ ( I ↾ (dom 𝐴 ∪ ran 𝐴))
44 relexp0g 13762 . . . . . . . . . . . . . 14 (𝐴𝑉 → (𝐴𝑟0) = ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
4543, 44syl5sseqr 3654 . . . . . . . . . . . . 13 (𝐴𝑉 → ( I ↾ dom 𝐴) ⊆ (𝐴𝑟0))
4645adantr 481 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ( I ↾ dom 𝐴) ⊆ (𝐴𝑟0))
47 ssun2 3777 . . . . . . . . . . . . . . 15 ran (𝐴𝑟𝑦) ⊆ (dom (𝐴𝑟𝑦) ∪ ran (𝐴𝑟𝑦))
48 ssres2 5425 . . . . . . . . . . . . . . 15 (ran (𝐴𝑟𝑦) ⊆ (dom (𝐴𝑟𝑦) ∪ ran (𝐴𝑟𝑦)) → ( I ↾ ran (𝐴𝑟𝑦)) ⊆ ( I ↾ (dom (𝐴𝑟𝑦) ∪ ran (𝐴𝑟𝑦))))
4947, 48ax-mp 5 . . . . . . . . . . . . . 14 ( I ↾ ran (𝐴𝑟𝑦)) ⊆ ( I ↾ (dom (𝐴𝑟𝑦) ∪ ran (𝐴𝑟𝑦)))
50 relexp0g 13762 . . . . . . . . . . . . . . 15 ((𝐴𝑟𝑦) ∈ V → ((𝐴𝑟𝑦)↑𝑟0) = ( I ↾ (dom (𝐴𝑟𝑦) ∪ ran (𝐴𝑟𝑦))))
5127, 50ax-mp 5 . . . . . . . . . . . . . 14 ((𝐴𝑟𝑦)↑𝑟0) = ( I ↾ (dom (𝐴𝑟𝑦) ∪ ran (𝐴𝑟𝑦)))
5249, 51sseqtr4i 3638 . . . . . . . . . . . . 13 ( I ↾ ran (𝐴𝑟𝑦)) ⊆ ((𝐴𝑟𝑦)↑𝑟0)
53 simpr 477 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0))
5452, 53syl5ss 3614 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ( I ↾ ran (𝐴𝑟𝑦)) ⊆ (𝐴𝑟0))
5546, 54unssd 3789 . . . . . . . . . . 11 ((𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → (( I ↾ dom 𝐴) ∪ ( I ↾ ran (𝐴𝑟𝑦))) ⊆ (𝐴𝑟0))
5640, 55syl5eqss 3649 . . . . . . . . . 10 ((𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))) ⊆ (𝐴𝑟0))
57563adant1 1079 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))) ⊆ (𝐴𝑟0))
5839, 57sstrd 3613 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0) ⊆ (𝐴𝑟0))
5926, 58eqsstrd 3639 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ((𝐴𝑟(𝑦 + 1))↑𝑟0) ⊆ (𝐴𝑟0))
60593exp 1264 . . . . . 6 (𝑦 ∈ ℕ → (𝐴𝑉 → (((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0) → ((𝐴𝑟(𝑦 + 1))↑𝑟0) ⊆ (𝐴𝑟0))))
6160a2d 29 . . . . 5 (𝑦 ∈ ℕ → ((𝐴𝑉 → ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → (𝐴𝑉 → ((𝐴𝑟(𝑦 + 1))↑𝑟0) ⊆ (𝐴𝑟0))))
625, 9, 13, 17, 21, 61nnind 11038 . . . 4 (𝑁 ∈ ℕ → (𝐴𝑉 → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0)))
63 oveq2 6658 . . . . . . . 8 (𝑁 = 0 → (𝐴𝑟𝑁) = (𝐴𝑟0))
6463oveq1d 6665 . . . . . . 7 (𝑁 = 0 → ((𝐴𝑟𝑁)↑𝑟0) = ((𝐴𝑟0)↑𝑟0))
65 relexp0idm 38007 . . . . . . 7 (𝐴𝑉 → ((𝐴𝑟0)↑𝑟0) = (𝐴𝑟0))
6664, 65sylan9eq 2676 . . . . . 6 ((𝑁 = 0 ∧ 𝐴𝑉) → ((𝐴𝑟𝑁)↑𝑟0) = (𝐴𝑟0))
67 eqimss 3657 . . . . . 6 (((𝐴𝑟𝑁)↑𝑟0) = (𝐴𝑟0) → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0))
6866, 67syl 17 . . . . 5 ((𝑁 = 0 ∧ 𝐴𝑉) → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0))
6968ex 450 . . . 4 (𝑁 = 0 → (𝐴𝑉 → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0)))
7062, 69jaoi 394 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝐴𝑉 → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0)))
711, 70sylbi 207 . 2 (𝑁 ∈ ℕ0 → (𝐴𝑉 → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0)))
7271impcom 446 1 ((𝐴𝑉𝑁 ∈ ℕ0) → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  wss 3574   I cid 5023  dom cdm 5114  ran crn 5115  cres 5116  ccom 5118  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  cn 11020  0cn0 11292  𝑟crelexp 13760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-relexp 13761
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator