Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpmulg Structured version   Visualization version   Unicode version

Theorem relexpmulg 38002
Description: With ordered exponents, the composition of powers of a relation is the relation raised to the product of exponents. (Contributed by RP, 13-Jun-2020.)
Assertion
Ref Expression
relexpmulg  |-  ( ( ( R  e.  V  /\  I  =  ( J  x.  K )  /\  ( I  =  0  ->  J  <_  K
) )  /\  ( J  e.  NN0  /\  K  e.  NN0 ) )  -> 
( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) )

Proof of Theorem relexpmulg
StepHypRef Expression
1 elnn0 11294 . . . 4  |-  ( J  e.  NN0  <->  ( J  e.  NN  \/  J  =  0 ) )
2 elnn0 11294 . . . . . 6  |-  ( K  e.  NN0  <->  ( K  e.  NN  \/  K  =  0 ) )
3 relexpmulnn 38001 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  I  =  ( J  x.  K )
)  /\  ( J  e.  NN  /\  K  e.  NN ) )  -> 
( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) )
433adantl3 1219 . . . . . . . . 9  |-  ( ( ( R  e.  V  /\  I  =  ( J  x.  K )  /\  ( I  =  0  ->  J  <_  K
) )  /\  ( J  e.  NN  /\  K  e.  NN ) )  -> 
( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) )
54expcom 451 . . . . . . . 8  |-  ( ( J  e.  NN  /\  K  e.  NN )  ->  ( ( R  e.  V  /\  I  =  ( J  x.  K
)  /\  ( I  =  0  ->  J  <_  K ) )  -> 
( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) )
65expcom 451 . . . . . . 7  |-  ( K  e.  NN  ->  ( J  e.  NN  ->  ( ( R  e.  V  /\  I  =  ( J  x.  K )  /\  ( I  =  0  ->  J  <_  K
) )  ->  (
( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) ) )
7 simprr 796 . . . . . . . . . . . . 13  |-  ( ( ( K  =  0  /\  J  e.  NN )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
) ) )  ->  I  =  ( J  x.  K ) )
8 simpll 790 . . . . . . . . . . . . . 14  |-  ( ( ( K  =  0  /\  J  e.  NN )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
) ) )  ->  K  =  0 )
98oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ( ( K  =  0  /\  J  e.  NN )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
) ) )  -> 
( J  x.  K
)  =  ( J  x.  0 ) )
10 simplr 792 . . . . . . . . . . . . . . 15  |-  ( ( ( K  =  0  /\  J  e.  NN )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
) ) )  ->  J  e.  NN )
1110nncnd 11036 . . . . . . . . . . . . . 14  |-  ( ( ( K  =  0  /\  J  e.  NN )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
) ) )  ->  J  e.  CC )
1211mul01d 10235 . . . . . . . . . . . . 13  |-  ( ( ( K  =  0  /\  J  e.  NN )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
) ) )  -> 
( J  x.  0 )  =  0 )
137, 9, 123eqtrd 2660 . . . . . . . . . . . 12  |-  ( ( ( K  =  0  /\  J  e.  NN )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
) ) )  ->  I  =  0 )
14 simpl 473 . . . . . . . . . . . . 13  |-  ( ( ( K  =  0  /\  J  e.  NN )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
) ) )  -> 
( K  =  0  /\  J  e.  NN ) )
15 nnnle0 11051 . . . . . . . . . . . . . . 15  |-  ( J  e.  NN  ->  -.  J  <_  0 )
1615adantl 482 . . . . . . . . . . . . . 14  |-  ( ( K  =  0  /\  J  e.  NN )  ->  -.  J  <_  0 )
17 simpl 473 . . . . . . . . . . . . . . 15  |-  ( ( K  =  0  /\  J  e.  NN )  ->  K  =  0 )
1817breq2d 4665 . . . . . . . . . . . . . 14  |-  ( ( K  =  0  /\  J  e.  NN )  ->  ( J  <_  K 
<->  J  <_  0 ) )
1916, 18mtbird 315 . . . . . . . . . . . . 13  |-  ( ( K  =  0  /\  J  e.  NN )  ->  -.  J  <_  K )
2014, 19syl 17 . . . . . . . . . . . 12  |-  ( ( ( K  =  0  /\  J  e.  NN )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
) ) )  ->  -.  J  <_  K )
21 mth8 158 . . . . . . . . . . . 12  |-  ( I  =  0  ->  ( -.  J  <_  K  ->  -.  ( I  =  0  ->  J  <_  K
) ) )
2213, 20, 21sylc 65 . . . . . . . . . . 11  |-  ( ( ( K  =  0  /\  J  e.  NN )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
) ) )  ->  -.  ( I  =  0  ->  J  <_  K
) )
2322pm2.21d 118 . . . . . . . . . 10  |-  ( ( ( K  =  0  /\  J  e.  NN )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
) ) )  -> 
( ( I  =  0  ->  J  <_  K )  ->  ( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) )
2423exp32 631 . . . . . . . . 9  |-  ( ( K  =  0  /\  J  e.  NN )  ->  ( R  e.  V  ->  ( I  =  ( J  x.  K )  ->  (
( I  =  0  ->  J  <_  K
)  ->  ( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) ) ) )
25243impd 1281 . . . . . . . 8  |-  ( ( K  =  0  /\  J  e.  NN )  ->  ( ( R  e.  V  /\  I  =  ( J  x.  K )  /\  (
I  =  0  ->  J  <_  K ) )  ->  ( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) )
2625ex 450 . . . . . . 7  |-  ( K  =  0  ->  ( J  e.  NN  ->  ( ( R  e.  V  /\  I  =  ( J  x.  K )  /\  ( I  =  0  ->  J  <_  K
) )  ->  (
( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) ) )
276, 26jaoi 394 . . . . . 6  |-  ( ( K  e.  NN  \/  K  =  0 )  ->  ( J  e.  NN  ->  ( ( R  e.  V  /\  I  =  ( J  x.  K )  /\  (
I  =  0  ->  J  <_  K ) )  ->  ( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) ) )
282, 27sylbi 207 . . . . 5  |-  ( K  e.  NN0  ->  ( J  e.  NN  ->  (
( R  e.  V  /\  I  =  ( J  x.  K )  /\  ( I  =  0  ->  J  <_  K
) )  ->  (
( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) ) )
29 simplr 792 . . . . . . . . . . 11  |-  ( ( ( K  e.  NN0  /\  J  =  0 )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
)  /\  ( I  =  0  ->  J  <_  K ) ) )  ->  J  =  0 )
3029oveq2d 6666 . . . . . . . . . 10  |-  ( ( ( K  e.  NN0  /\  J  =  0 )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
)  /\  ( I  =  0  ->  J  <_  K ) ) )  ->  ( R ^r  J )  =  ( R ^r  0 ) )
31 simpr1 1067 . . . . . . . . . . 11  |-  ( ( ( K  e.  NN0  /\  J  =  0 )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
)  /\  ( I  =  0  ->  J  <_  K ) ) )  ->  R  e.  V
)
32 relexp0g 13762 . . . . . . . . . . 11  |-  ( R  e.  V  ->  ( R ^r  0 )  =  (  _I  |`  ( dom  R  u.  ran  R
) ) )
3331, 32syl 17 . . . . . . . . . 10  |-  ( ( ( K  e.  NN0  /\  J  =  0 )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
)  /\  ( I  =  0  ->  J  <_  K ) ) )  ->  ( R ^r  0 )  =  (  _I  |`  ( dom  R  u.  ran  R
) ) )
3430, 33eqtrd 2656 . . . . . . . . 9  |-  ( ( ( K  e.  NN0  /\  J  =  0 )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
)  /\  ( I  =  0  ->  J  <_  K ) ) )  ->  ( R ^r  J )  =  (  _I  |`  ( dom  R  u.  ran  R ) ) )
3534oveq1d 6665 . . . . . . . 8  |-  ( ( ( K  e.  NN0  /\  J  =  0 )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
)  /\  ( I  =  0  ->  J  <_  K ) ) )  ->  ( ( R ^r  J ) ^r  K )  =  ( (  _I  |`  ( dom  R  u.  ran  R ) ) ^r  K ) )
36 dmexg 7097 . . . . . . . . . . 11  |-  ( R  e.  V  ->  dom  R  e.  _V )
37 rnexg 7098 . . . . . . . . . . 11  |-  ( R  e.  V  ->  ran  R  e.  _V )
38 unexg 6959 . . . . . . . . . . 11  |-  ( ( dom  R  e.  _V  /\ 
ran  R  e.  _V )  ->  ( dom  R  u.  ran  R )  e. 
_V )
3936, 37, 38syl2anc 693 . . . . . . . . . 10  |-  ( R  e.  V  ->  ( dom  R  u.  ran  R
)  e.  _V )
4031, 39syl 17 . . . . . . . . 9  |-  ( ( ( K  e.  NN0  /\  J  =  0 )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
)  /\  ( I  =  0  ->  J  <_  K ) ) )  ->  ( dom  R  u.  ran  R )  e. 
_V )
41 simpll 790 . . . . . . . . 9  |-  ( ( ( K  e.  NN0  /\  J  =  0 )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
)  /\  ( I  =  0  ->  J  <_  K ) ) )  ->  K  e.  NN0 )
42 relexpiidm 37996 . . . . . . . . 9  |-  ( ( ( dom  R  u.  ran  R )  e.  _V  /\  K  e.  NN0 )  ->  ( (  _I  |`  ( dom  R  u.  ran  R
) ) ^r  K )  =  (  _I  |`  ( dom  R  u.  ran  R ) ) )
4340, 41, 42syl2anc 693 . . . . . . . 8  |-  ( ( ( K  e.  NN0  /\  J  =  0 )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
)  /\  ( I  =  0  ->  J  <_  K ) ) )  ->  ( (  _I  |`  ( dom  R  u.  ran  R ) ) ^r  K )  =  (  _I  |`  ( dom  R  u.  ran  R ) ) )
44 simpr2 1068 . . . . . . . . . . 11  |-  ( ( ( K  e.  NN0  /\  J  =  0 )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
)  /\  ( I  =  0  ->  J  <_  K ) ) )  ->  I  =  ( J  x.  K ) )
4529oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( K  e.  NN0  /\  J  =  0 )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
)  /\  ( I  =  0  ->  J  <_  K ) ) )  ->  ( J  x.  K )  =  ( 0  x.  K ) )
4641nn0cnd 11353 . . . . . . . . . . . 12  |-  ( ( ( K  e.  NN0  /\  J  =  0 )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
)  /\  ( I  =  0  ->  J  <_  K ) ) )  ->  K  e.  CC )
4746mul02d 10234 . . . . . . . . . . 11  |-  ( ( ( K  e.  NN0  /\  J  =  0 )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
)  /\  ( I  =  0  ->  J  <_  K ) ) )  ->  ( 0  x.  K )  =  0 )
4844, 45, 473eqtrd 2660 . . . . . . . . . 10  |-  ( ( ( K  e.  NN0  /\  J  =  0 )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
)  /\  ( I  =  0  ->  J  <_  K ) ) )  ->  I  =  0 )
4948oveq2d 6666 . . . . . . . . 9  |-  ( ( ( K  e.  NN0  /\  J  =  0 )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
)  /\  ( I  =  0  ->  J  <_  K ) ) )  ->  ( R ^r  I )  =  ( R ^r 
0 ) )
5049, 33eqtr2d 2657 . . . . . . . 8  |-  ( ( ( K  e.  NN0  /\  J  =  0 )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
)  /\  ( I  =  0  ->  J  <_  K ) ) )  ->  (  _I  |`  ( dom  R  u.  ran  R
) )  =  ( R ^r  I ) )
5135, 43, 503eqtrd 2660 . . . . . . 7  |-  ( ( ( K  e.  NN0  /\  J  =  0 )  /\  ( R  e.  V  /\  I  =  ( J  x.  K
)  /\  ( I  =  0  ->  J  <_  K ) ) )  ->  ( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) )
5251ex 450 . . . . . 6  |-  ( ( K  e.  NN0  /\  J  =  0 )  ->  ( ( R  e.  V  /\  I  =  ( J  x.  K )  /\  (
I  =  0  ->  J  <_  K ) )  ->  ( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) )
5352ex 450 . . . . 5  |-  ( K  e.  NN0  ->  ( J  =  0  ->  (
( R  e.  V  /\  I  =  ( J  x.  K )  /\  ( I  =  0  ->  J  <_  K
) )  ->  (
( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) ) )
5428, 53jaod 395 . . . 4  |-  ( K  e.  NN0  ->  ( ( J  e.  NN  \/  J  =  0 )  ->  ( ( R  e.  V  /\  I  =  ( J  x.  K )  /\  (
I  =  0  ->  J  <_  K ) )  ->  ( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) ) )
551, 54syl5bi 232 . . 3  |-  ( K  e.  NN0  ->  ( J  e.  NN0  ->  ( ( R  e.  V  /\  I  =  ( J  x.  K )  /\  (
I  =  0  ->  J  <_  K ) )  ->  ( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) ) )
5655impcom 446 . 2  |-  ( ( J  e.  NN0  /\  K  e.  NN0 )  -> 
( ( R  e.  V  /\  I  =  ( J  x.  K
)  /\  ( I  =  0  ->  J  <_  K ) )  -> 
( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) )
5756impcom 446 1  |-  ( ( ( R  e.  V  /\  I  =  ( J  x.  K )  /\  ( I  =  0  ->  J  <_  K
) )  /\  ( J  e.  NN0  /\  K  e.  NN0 ) )  -> 
( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572   class class class wbr 4653    _I cid 5023   dom cdm 5114   ran crn 5115    |` cres 5116  (class class class)co 6650   0cc0 9936    x. cmul 9941    <_ cle 10075   NNcn 11020   NN0cn0 11292   ^r crelexp 13760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-relexp 13761
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator