Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resmgmhm Structured version   Visualization version   GIF version

Theorem resmgmhm 41798
Description: Restriction of a magma homomorphism to a submagma is a homomorphism. (Contributed by AV, 26-Feb-2020.)
Hypothesis
Ref Expression
resmgmhm.u 𝑈 = (𝑆s 𝑋)
Assertion
Ref Expression
resmgmhm ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (𝐹𝑋) ∈ (𝑈 MgmHom 𝑇))

Proof of Theorem resmgmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmrcl 41781 . . . 4 (𝐹 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
21simprd 479 . . 3 (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝑇 ∈ Mgm)
3 resmgmhm.u . . . 4 𝑈 = (𝑆s 𝑋)
43submgmmgm 41795 . . 3 (𝑋 ∈ (SubMgm‘𝑆) → 𝑈 ∈ Mgm)
52, 4anim12ci 591 . 2 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (𝑈 ∈ Mgm ∧ 𝑇 ∈ Mgm))
6 eqid 2622 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
7 eqid 2622 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
86, 7mgmhmf 41784 . . . . 5 (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
96submgmss 41792 . . . . 5 (𝑋 ∈ (SubMgm‘𝑆) → 𝑋 ⊆ (Base‘𝑆))
10 fssres 6070 . . . . 5 ((𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑋 ⊆ (Base‘𝑆)) → (𝐹𝑋):𝑋⟶(Base‘𝑇))
118, 9, 10syl2an 494 . . . 4 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (𝐹𝑋):𝑋⟶(Base‘𝑇))
129adantl 482 . . . . . 6 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → 𝑋 ⊆ (Base‘𝑆))
133, 6ressbas2 15931 . . . . . 6 (𝑋 ⊆ (Base‘𝑆) → 𝑋 = (Base‘𝑈))
1412, 13syl 17 . . . . 5 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → 𝑋 = (Base‘𝑈))
1514feq2d 6031 . . . 4 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → ((𝐹𝑋):𝑋⟶(Base‘𝑇) ↔ (𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇)))
1611, 15mpbid 222 . . 3 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇))
17 simpll 790 . . . . . . 7 (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝐹 ∈ (𝑆 MgmHom 𝑇))
189ad2antlr 763 . . . . . . . 8 (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑋 ⊆ (Base‘𝑆))
19 simprl 794 . . . . . . . 8 (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
2018, 19sseldd 3604 . . . . . . 7 (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 ∈ (Base‘𝑆))
21 simprr 796 . . . . . . . 8 (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
2218, 21sseldd 3604 . . . . . . 7 (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑦 ∈ (Base‘𝑆))
23 eqid 2622 . . . . . . . 8 (+g𝑆) = (+g𝑆)
24 eqid 2622 . . . . . . . 8 (+g𝑇) = (+g𝑇)
256, 23, 24mgmhmlin 41786 . . . . . . 7 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2617, 20, 22, 25syl3anc 1326 . . . . . 6 (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2723submgmcl 41794 . . . . . . . . 9 ((𝑋 ∈ (SubMgm‘𝑆) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝑆)𝑦) ∈ 𝑋)
28273expb 1266 . . . . . . . 8 ((𝑋 ∈ (SubMgm‘𝑆) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(+g𝑆)𝑦) ∈ 𝑋)
2928adantll 750 . . . . . . 7 (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(+g𝑆)𝑦) ∈ 𝑋)
30 fvres 6207 . . . . . . 7 ((𝑥(+g𝑆)𝑦) ∈ 𝑋 → ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (𝐹‘(𝑥(+g𝑆)𝑦)))
3129, 30syl 17 . . . . . 6 (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (𝐹‘(𝑥(+g𝑆)𝑦)))
32 fvres 6207 . . . . . . . 8 (𝑥𝑋 → ((𝐹𝑋)‘𝑥) = (𝐹𝑥))
33 fvres 6207 . . . . . . . 8 (𝑦𝑋 → ((𝐹𝑋)‘𝑦) = (𝐹𝑦))
3432, 33oveqan12d 6669 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3534adantl 482 . . . . . 6 (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3626, 31, 353eqtr4d 2666 . . . . 5 (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)))
3736ralrimivva 2971 . . . 4 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)))
383, 23ressplusg 15993 . . . . . . . . . 10 (𝑋 ∈ (SubMgm‘𝑆) → (+g𝑆) = (+g𝑈))
3938adantl 482 . . . . . . . . 9 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (+g𝑆) = (+g𝑈))
4039oveqd 6667 . . . . . . . 8 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (𝑥(+g𝑆)𝑦) = (𝑥(+g𝑈)𝑦))
4140fveq2d 6195 . . . . . . 7 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)))
4241eqeq1d 2624 . . . . . 6 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ↔ ((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦))))
4314, 42raleqbidv 3152 . . . . 5 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (∀𝑦𝑋 ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦))))
4414, 43raleqbidv 3152 . . . 4 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (∀𝑥𝑋𝑦𝑋 ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦))))
4537, 44mpbid 222 . . 3 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)))
4616, 45jca 554 . 2 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → ((𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦))))
47 eqid 2622 . . 3 (Base‘𝑈) = (Base‘𝑈)
48 eqid 2622 . . 3 (+g𝑈) = (+g𝑈)
4947, 7, 48, 24ismgmhm 41783 . 2 ((𝐹𝑋) ∈ (𝑈 MgmHom 𝑇) ↔ ((𝑈 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ ((𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)))))
505, 46, 49sylanbrc 698 1 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (𝐹𝑋) ∈ (𝑈 MgmHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wss 3574  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  Basecbs 15857  s cress 15858  +gcplusg 15941  Mgmcmgm 17240   MgmHom cmgmhm 41777  SubMgmcsubmgm 41778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mgm 17242  df-mgmhm 41779  df-submgm 41780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator