| Step | Hyp | Ref
| Expression |
| 1 | | resqrex 13991 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) → ∃𝑦 ∈ ℝ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) |
| 2 | | simp1l 1085 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 𝐴 ∈ ℝ) |
| 3 | | recn 10026 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
| 4 | | sqrtval 13977 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(√‘𝐴) =
(℩𝑥 ∈
ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑥) ∧ (i
· 𝑥) ∉
ℝ+))) |
| 5 | 2, 3, 4 | 3syl 18 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (√‘𝐴) = (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉
ℝ+))) |
| 6 | | simp3r 1090 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (𝑦↑2) = 𝐴) |
| 7 | | simp3l 1089 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 0 ≤ 𝑦) |
| 8 | | rere 13862 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ →
(ℜ‘𝑦) = 𝑦) |
| 9 | 8 | 3ad2ant2 1083 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (ℜ‘𝑦) = 𝑦) |
| 10 | 7, 9 | breqtrrd 4681 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 0 ≤ (ℜ‘𝑦)) |
| 11 | | rennim 13979 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ → (i
· 𝑦) ∉
ℝ+) |
| 12 | 11 | 3ad2ant2 1083 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (i · 𝑦) ∉
ℝ+) |
| 13 | 6, 10, 12 | 3jca 1242 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉
ℝ+)) |
| 14 | | recn 10026 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) |
| 15 | 14 | 3ad2ant2 1083 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 𝑦 ∈ ℂ) |
| 16 | | resqreu 13993 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉
ℝ+)) |
| 17 | 16 | 3ad2ant1 1082 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉
ℝ+)) |
| 18 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2)) |
| 19 | 18 | eqeq1d 2624 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑥↑2) = 𝐴 ↔ (𝑦↑2) = 𝐴)) |
| 20 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (ℜ‘𝑥) = (ℜ‘𝑦)) |
| 21 | 20 | breq2d 4665 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤
(ℜ‘𝑦))) |
| 22 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (i · 𝑥) = (i · 𝑦)) |
| 23 | | neleq1 2902 |
. . . . . . . . . 10
⊢ ((i
· 𝑥) = (i ·
𝑦) → ((i ·
𝑥) ∉
ℝ+ ↔ (i · 𝑦) ∉
ℝ+)) |
| 24 | 22, 23 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((i · 𝑥) ∉ ℝ+ ↔ (i
· 𝑦) ∉
ℝ+)) |
| 25 | 19, 21, 24 | 3anbi123d 1399 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)
↔ ((𝑦↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑦) ∧ (i
· 𝑦) ∉
ℝ+))) |
| 26 | 25 | riota2 6633 |
. . . . . . 7
⊢ ((𝑦 ∈ ℂ ∧
∃!𝑥 ∈ ℂ
((𝑥↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑥) ∧ (i
· 𝑥) ∉
ℝ+)) → (((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)
↔ (℩𝑥
∈ ℂ ((𝑥↑2)
= 𝐴 ∧ 0 ≤
(ℜ‘𝑥) ∧ (i
· 𝑥) ∉
ℝ+)) = 𝑦)) |
| 27 | 15, 17, 26 | syl2anc 693 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)
↔ (℩𝑥
∈ ℂ ((𝑥↑2)
= 𝐴 ∧ 0 ≤
(ℜ‘𝑥) ∧ (i
· 𝑥) ∉
ℝ+)) = 𝑦)) |
| 28 | 13, 27 | mpbid 222 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
= 𝑦) |
| 29 | 5, 28 | eqtrd 2656 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (√‘𝐴) = 𝑦) |
| 30 | | simp2 1062 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 𝑦 ∈ ℝ) |
| 31 | 29, 30 | eqeltrd 2701 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (√‘𝐴) ∈ ℝ) |
| 32 | 31 | rexlimdv3a 3033 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) → (∃𝑦 ∈ ℝ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴) → (√‘𝐴) ∈ ℝ)) |
| 33 | 1, 32 | mpd 15 |
1
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) →
(√‘𝐴) ∈
ℝ) |