Step | Hyp | Ref
| Expression |
1 | | i1ff 23443 |
. . . . . . . 8
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
2 | 1 | ffvelrnda 6359 |
. . . . . . 7
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (𝐹‘𝑥) ∈
ℝ) |
3 | | i1ff 23443 |
. . . . . . . 8
⊢ (𝐺 ∈ dom ∫1
→ 𝐺:ℝ⟶ℝ) |
4 | 3 | ffvelrnda 6359 |
. . . . . . 7
⊢ ((𝐺 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (𝐺‘𝑥) ∈
ℝ) |
5 | | absreim 14033 |
. . . . . . 7
⊢ (((𝐹‘𝑥) ∈ ℝ ∧ (𝐺‘𝑥) ∈ ℝ) → (abs‘((𝐹‘𝑥) + (i · (𝐺‘𝑥)))) = (√‘(((𝐹‘𝑥)↑2) + ((𝐺‘𝑥)↑2)))) |
6 | 2, 4, 5 | syl2an 494 |
. . . . . 6
⊢ (((𝐹 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
∧ (𝐺 ∈ dom
∫1 ∧ 𝑥
∈ ℝ)) → (abs‘((𝐹‘𝑥) + (i · (𝐺‘𝑥)))) = (√‘(((𝐹‘𝑥)↑2) + ((𝐺‘𝑥)↑2)))) |
7 | 6 | anandirs 874 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → (abs‘((𝐹‘𝑥) + (i · (𝐺‘𝑥)))) = (√‘(((𝐹‘𝑥)↑2) + ((𝐺‘𝑥)↑2)))) |
8 | 2 | recnd 10068 |
. . . . . . . . 9
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (𝐹‘𝑥) ∈
ℂ) |
9 | 8 | sqvald 13005 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ ((𝐹‘𝑥)↑2) = ((𝐹‘𝑥) · (𝐹‘𝑥))) |
10 | 4 | recnd 10068 |
. . . . . . . . 9
⊢ ((𝐺 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (𝐺‘𝑥) ∈
ℂ) |
11 | 10 | sqvald 13005 |
. . . . . . . 8
⊢ ((𝐺 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ ((𝐺‘𝑥)↑2) = ((𝐺‘𝑥) · (𝐺‘𝑥))) |
12 | 9, 11 | oveqan12d 6669 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
∧ (𝐺 ∈ dom
∫1 ∧ 𝑥
∈ ℝ)) → (((𝐹‘𝑥)↑2) + ((𝐺‘𝑥)↑2)) = (((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥)))) |
13 | 12 | anandirs 874 |
. . . . . 6
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → (((𝐹‘𝑥)↑2) + ((𝐺‘𝑥)↑2)) = (((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥)))) |
14 | 13 | fveq2d 6195 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → (√‘(((𝐹‘𝑥)↑2) + ((𝐺‘𝑥)↑2))) = (√‘(((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥))))) |
15 | 7, 14 | eqtrd 2656 |
. . . 4
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → (abs‘((𝐹‘𝑥) + (i · (𝐺‘𝑥)))) = (√‘(((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥))))) |
16 | 15 | mpteq2dva 4744 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (𝑥 ∈ ℝ ↦ (abs‘((𝐹‘𝑥) + (i · (𝐺‘𝑥))))) = (𝑥 ∈ ℝ ↦
(√‘(((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥)))))) |
17 | | ax-icn 9995 |
. . . . . . 7
⊢ i ∈
ℂ |
18 | | mulcl 10020 |
. . . . . . 7
⊢ ((i
∈ ℂ ∧ (𝐺‘𝑥) ∈ ℂ) → (i · (𝐺‘𝑥)) ∈ ℂ) |
19 | 17, 10, 18 | sylancr 695 |
. . . . . 6
⊢ ((𝐺 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (i · (𝐺‘𝑥)) ∈ ℂ) |
20 | | addcl 10018 |
. . . . . 6
⊢ (((𝐹‘𝑥) ∈ ℂ ∧ (i · (𝐺‘𝑥)) ∈ ℂ) → ((𝐹‘𝑥) + (i · (𝐺‘𝑥))) ∈ ℂ) |
21 | 8, 19, 20 | syl2an 494 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
∧ (𝐺 ∈ dom
∫1 ∧ 𝑥
∈ ℝ)) → ((𝐹‘𝑥) + (i · (𝐺‘𝑥))) ∈ ℂ) |
22 | 21 | anandirs 874 |
. . . 4
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → ((𝐹‘𝑥) + (i · (𝐺‘𝑥))) ∈ ℂ) |
23 | | reex 10027 |
. . . . . 6
⊢ ℝ
∈ V |
24 | 23 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ℝ ∈ V) |
25 | 2 | adantlr 751 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
26 | | ovexd 6680 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → (i · (𝐺‘𝑥)) ∈ V) |
27 | 1 | feqmptd 6249 |
. . . . . 6
⊢ (𝐹 ∈ dom ∫1
→ 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹‘𝑥))) |
28 | 27 | adantr 481 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → 𝐹
= (𝑥 ∈ ℝ ↦
(𝐹‘𝑥))) |
29 | 23 | a1i 11 |
. . . . . . 7
⊢ (𝐺 ∈ dom ∫1
→ ℝ ∈ V) |
30 | 17 | a1i 11 |
. . . . . . 7
⊢ ((𝐺 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ i ∈ ℂ) |
31 | | fconstmpt 5163 |
. . . . . . . 8
⊢ (ℝ
× {i}) = (𝑥 ∈
ℝ ↦ i) |
32 | 31 | a1i 11 |
. . . . . . 7
⊢ (𝐺 ∈ dom ∫1
→ (ℝ × {i}) = (𝑥 ∈ ℝ ↦ i)) |
33 | 3 | feqmptd 6249 |
. . . . . . 7
⊢ (𝐺 ∈ dom ∫1
→ 𝐺 = (𝑥 ∈ ℝ ↦ (𝐺‘𝑥))) |
34 | 29, 30, 4, 32, 33 | offval2 6914 |
. . . . . 6
⊢ (𝐺 ∈ dom ∫1
→ ((ℝ × {i}) ∘𝑓 · 𝐺) = (𝑥 ∈ ℝ ↦ (i · (𝐺‘𝑥)))) |
35 | 34 | adantl 482 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ((ℝ × {i}) ∘𝑓
· 𝐺) = (𝑥 ∈ ℝ ↦ (i
· (𝐺‘𝑥)))) |
36 | 24, 25, 26, 28, 35 | offval2 6914 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (𝐹 ∘𝑓 + ((ℝ
× {i}) ∘𝑓 · 𝐺)) = (𝑥 ∈ ℝ ↦ ((𝐹‘𝑥) + (i · (𝐺‘𝑥))))) |
37 | | absf 14077 |
. . . . . 6
⊢
abs:ℂ⟶ℝ |
38 | 37 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → abs:ℂ⟶ℝ) |
39 | 38 | feqmptd 6249 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → abs = (𝑦 ∈ ℂ ↦ (abs‘𝑦))) |
40 | | fveq2 6191 |
. . . 4
⊢ (𝑦 = ((𝐹‘𝑥) + (i · (𝐺‘𝑥))) → (abs‘𝑦) = (abs‘((𝐹‘𝑥) + (i · (𝐺‘𝑥))))) |
41 | 22, 36, 39, 40 | fmptco 6396 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (abs ∘ (𝐹 ∘𝑓 + ((ℝ
× {i}) ∘𝑓 · 𝐺))) = (𝑥 ∈ ℝ ↦ (abs‘((𝐹‘𝑥) + (i · (𝐺‘𝑥)))))) |
42 | 8, 8 | mulcld 10060 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ ((𝐹‘𝑥) · (𝐹‘𝑥)) ∈ ℂ) |
43 | 10, 10 | mulcld 10060 |
. . . . . 6
⊢ ((𝐺 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ ((𝐺‘𝑥) · (𝐺‘𝑥)) ∈ ℂ) |
44 | | addcl 10018 |
. . . . . 6
⊢ ((((𝐹‘𝑥) · (𝐹‘𝑥)) ∈ ℂ ∧ ((𝐺‘𝑥) · (𝐺‘𝑥)) ∈ ℂ) → (((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥))) ∈ ℂ) |
45 | 42, 43, 44 | syl2an 494 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
∧ (𝐺 ∈ dom
∫1 ∧ 𝑥
∈ ℝ)) → (((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥))) ∈ ℂ) |
46 | 45 | anandirs 874 |
. . . 4
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → (((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥))) ∈ ℂ) |
47 | 42 | adantlr 751 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → ((𝐹‘𝑥) · (𝐹‘𝑥)) ∈ ℂ) |
48 | 43 | adantll 750 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → ((𝐺‘𝑥) · (𝐺‘𝑥)) ∈ ℂ) |
49 | 23 | a1i 11 |
. . . . . . 7
⊢ (𝐹 ∈ dom ∫1
→ ℝ ∈ V) |
50 | 49, 2, 2, 27, 27 | offval2 6914 |
. . . . . 6
⊢ (𝐹 ∈ dom ∫1
→ (𝐹
∘𝑓 · 𝐹) = (𝑥 ∈ ℝ ↦ ((𝐹‘𝑥) · (𝐹‘𝑥)))) |
51 | 50 | adantr 481 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (𝐹 ∘𝑓 · 𝐹) = (𝑥 ∈ ℝ ↦ ((𝐹‘𝑥) · (𝐹‘𝑥)))) |
52 | 29, 4, 4, 33, 33 | offval2 6914 |
. . . . . 6
⊢ (𝐺 ∈ dom ∫1
→ (𝐺
∘𝑓 · 𝐺) = (𝑥 ∈ ℝ ↦ ((𝐺‘𝑥) · (𝐺‘𝑥)))) |
53 | 52 | adantl 482 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (𝐺 ∘𝑓 · 𝐺) = (𝑥 ∈ ℝ ↦ ((𝐺‘𝑥) · (𝐺‘𝑥)))) |
54 | 24, 47, 48, 51, 53 | offval2 6914 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺)) = (𝑥 ∈ ℝ ↦ (((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥))))) |
55 | | sqrtf 14103 |
. . . . . 6
⊢
√:ℂ⟶ℂ |
56 | 55 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → √:ℂ⟶ℂ) |
57 | 56 | feqmptd 6249 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → √ = (𝑦 ∈ ℂ ↦ (√‘𝑦))) |
58 | | fveq2 6191 |
. . . 4
⊢ (𝑦 = (((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥))) → (√‘𝑦) = (√‘(((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥))))) |
59 | 46, 54, 57, 58 | fmptco 6396 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (√ ∘ ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺))) = (𝑥 ∈ ℝ ↦
(√‘(((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥)))))) |
60 | 16, 41, 59 | 3eqtr4d 2666 |
. 2
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (abs ∘ (𝐹 ∘𝑓 + ((ℝ
× {i}) ∘𝑓 · 𝐺))) = (√ ∘ ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺)))) |
61 | | elrege0 12278 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,)+∞) ↔
(𝑥 ∈ ℝ ∧ 0
≤ 𝑥)) |
62 | | resqrtcl 13994 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) →
(√‘𝑥) ∈
ℝ) |
63 | 61, 62 | sylbi 207 |
. . . . . 6
⊢ (𝑥 ∈ (0[,)+∞) →
(√‘𝑥) ∈
ℝ) |
64 | 63 | adantl 482 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ (0[,)+∞)) → (√‘𝑥) ∈ ℝ) |
65 | | id 22 |
. . . . . . . . 9
⊢
(√:ℂ⟶ℂ →
√:ℂ⟶ℂ) |
66 | 65 | feqmptd 6249 |
. . . . . . . 8
⊢
(√:ℂ⟶ℂ → √ = (𝑥 ∈ ℂ ↦ (√‘𝑥))) |
67 | 55, 66 | ax-mp 5 |
. . . . . . 7
⊢ √ =
(𝑥 ∈ ℂ ↦
(√‘𝑥)) |
68 | 67 | reseq1i 5392 |
. . . . . 6
⊢ (√
↾ (0[,)+∞)) = ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾
(0[,)+∞)) |
69 | | rge0ssre 12280 |
. . . . . . . 8
⊢
(0[,)+∞) ⊆ ℝ |
70 | | ax-resscn 9993 |
. . . . . . . 8
⊢ ℝ
⊆ ℂ |
71 | 69, 70 | sstri 3612 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ ℂ |
72 | | resmpt 5449 |
. . . . . . 7
⊢
((0[,)+∞) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ (0[,)+∞)) =
(𝑥 ∈ (0[,)+∞)
↦ (√‘𝑥))) |
73 | 71, 72 | ax-mp 5 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ↦
(√‘𝑥)) ↾
(0[,)+∞)) = (𝑥 ∈
(0[,)+∞) ↦ (√‘𝑥)) |
74 | 68, 73 | eqtri 2644 |
. . . . 5
⊢ (√
↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥)) |
75 | 64, 74 | fmptd 6385 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (√ ↾
(0[,)+∞)):(0[,)+∞)⟶ℝ) |
76 | | ge0addcl 12284 |
. . . . . 6
⊢ ((𝑥 ∈ (0[,)+∞) ∧
𝑦 ∈ (0[,)+∞))
→ (𝑥 + 𝑦) ∈
(0[,)+∞)) |
77 | 76 | adantl 482 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ (𝑥
∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞)) |
78 | | oveq12 6659 |
. . . . . . . . 9
⊢ ((𝑧 = 𝐹 ∧ 𝑧 = 𝐹) → (𝑧 ∘𝑓 · 𝑧) = (𝐹 ∘𝑓 · 𝐹)) |
79 | 78 | anidms 677 |
. . . . . . . 8
⊢ (𝑧 = 𝐹 → (𝑧 ∘𝑓 · 𝑧) = (𝐹 ∘𝑓 · 𝐹)) |
80 | 79 | feq1d 6030 |
. . . . . . 7
⊢ (𝑧 = 𝐹 → ((𝑧 ∘𝑓 · 𝑧):ℝ⟶(0[,)+∞)
↔ (𝐹
∘𝑓 · 𝐹):ℝ⟶(0[,)+∞))) |
81 | | i1ff 23443 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ dom ∫1
→ 𝑧:ℝ⟶ℝ) |
82 | 81 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (𝑧‘𝑥) ∈
ℝ) |
83 | 82, 82 | remulcld 10070 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ ((𝑧‘𝑥) · (𝑧‘𝑥)) ∈ ℝ) |
84 | 82 | msqge0d 10596 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ 0 ≤ ((𝑧‘𝑥) · (𝑧‘𝑥))) |
85 | | elrege0 12278 |
. . . . . . . . . 10
⊢ (((𝑧‘𝑥) · (𝑧‘𝑥)) ∈ (0[,)+∞) ↔ (((𝑧‘𝑥) · (𝑧‘𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑧‘𝑥) · (𝑧‘𝑥)))) |
86 | 83, 84, 85 | sylanbrc 698 |
. . . . . . . . 9
⊢ ((𝑧 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ ((𝑧‘𝑥) · (𝑧‘𝑥)) ∈ (0[,)+∞)) |
87 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ ↦ ((𝑧‘𝑥) · (𝑧‘𝑥))) = (𝑥 ∈ ℝ ↦ ((𝑧‘𝑥) · (𝑧‘𝑥))) |
88 | 86, 87 | fmptd 6385 |
. . . . . . . 8
⊢ (𝑧 ∈ dom ∫1
→ (𝑥 ∈ ℝ
↦ ((𝑧‘𝑥) · (𝑧‘𝑥))):ℝ⟶(0[,)+∞)) |
89 | 23 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑧 ∈ dom ∫1
→ ℝ ∈ V) |
90 | 81 | feqmptd 6249 |
. . . . . . . . . 10
⊢ (𝑧 ∈ dom ∫1
→ 𝑧 = (𝑥 ∈ ℝ ↦ (𝑧‘𝑥))) |
91 | 89, 82, 82, 90, 90 | offval2 6914 |
. . . . . . . . 9
⊢ (𝑧 ∈ dom ∫1
→ (𝑧
∘𝑓 · 𝑧) = (𝑥 ∈ ℝ ↦ ((𝑧‘𝑥) · (𝑧‘𝑥)))) |
92 | 91 | feq1d 6030 |
. . . . . . . 8
⊢ (𝑧 ∈ dom ∫1
→ ((𝑧
∘𝑓 · 𝑧):ℝ⟶(0[,)+∞) ↔ (𝑥 ∈ ℝ ↦ ((𝑧‘𝑥) · (𝑧‘𝑥))):ℝ⟶(0[,)+∞))) |
93 | 88, 92 | mpbird 247 |
. . . . . . 7
⊢ (𝑧 ∈ dom ∫1
→ (𝑧
∘𝑓 · 𝑧):ℝ⟶(0[,)+∞)) |
94 | 80, 93 | vtoclga 3272 |
. . . . . 6
⊢ (𝐹 ∈ dom ∫1
→ (𝐹
∘𝑓 · 𝐹):ℝ⟶(0[,)+∞)) |
95 | 94 | adantr 481 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (𝐹 ∘𝑓 · 𝐹):ℝ⟶(0[,)+∞)) |
96 | | oveq12 6659 |
. . . . . . . . 9
⊢ ((𝑧 = 𝐺 ∧ 𝑧 = 𝐺) → (𝑧 ∘𝑓 · 𝑧) = (𝐺 ∘𝑓 · 𝐺)) |
97 | 96 | anidms 677 |
. . . . . . . 8
⊢ (𝑧 = 𝐺 → (𝑧 ∘𝑓 · 𝑧) = (𝐺 ∘𝑓 · 𝐺)) |
98 | 97 | feq1d 6030 |
. . . . . . 7
⊢ (𝑧 = 𝐺 → ((𝑧 ∘𝑓 · 𝑧):ℝ⟶(0[,)+∞)
↔ (𝐺
∘𝑓 · 𝐺):ℝ⟶(0[,)+∞))) |
99 | 98, 93 | vtoclga 3272 |
. . . . . 6
⊢ (𝐺 ∈ dom ∫1
→ (𝐺
∘𝑓 · 𝐺):ℝ⟶(0[,)+∞)) |
100 | 99 | adantl 482 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (𝐺 ∘𝑓 · 𝐺):ℝ⟶(0[,)+∞)) |
101 | | inidm 3822 |
. . . . 5
⊢ (ℝ
∩ ℝ) = ℝ |
102 | 77, 95, 100, 24, 24, 101 | off 6912 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺)):ℝ⟶(0[,)+∞)) |
103 | | fco2 6059 |
. . . 4
⊢
(((√ ↾ (0[,)+∞)):(0[,)+∞)⟶ℝ ∧
((𝐹
∘𝑓 · 𝐹) ∘𝑓 + (𝐺 ∘𝑓
· 𝐺)):ℝ⟶(0[,)+∞)) →
(√ ∘ ((𝐹
∘𝑓 · 𝐹) ∘𝑓 + (𝐺 ∘𝑓
· 𝐺))):ℝ⟶ℝ) |
104 | 75, 102, 103 | syl2anc 693 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (√ ∘ ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺))):ℝ⟶ℝ) |
105 | | rnco 5641 |
. . . 4
⊢ ran
(√ ∘ ((𝐹
∘𝑓 · 𝐹) ∘𝑓 + (𝐺 ∘𝑓
· 𝐺))) = ran
(√ ↾ ran ((𝐹
∘𝑓 · 𝐹) ∘𝑓 + (𝐺 ∘𝑓
· 𝐺))) |
106 | | ffn 6045 |
. . . . . . . 8
⊢
(√:ℂ⟶ℂ → √ Fn
ℂ) |
107 | 55, 106 | ax-mp 5 |
. . . . . . 7
⊢ √
Fn ℂ |
108 | | readdcl 10019 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) |
109 | 108 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ (𝑥
∈ ℝ ∧ 𝑦
∈ ℝ)) → (𝑥
+ 𝑦) ∈
ℝ) |
110 | | remulcl 10021 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) |
111 | 110 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ dom ∫1
∧ (𝑥 ∈ ℝ
∧ 𝑦 ∈ ℝ))
→ (𝑥 · 𝑦) ∈
ℝ) |
112 | 111, 1, 1, 49, 49, 101 | off 6912 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ dom ∫1
→ (𝐹
∘𝑓 · 𝐹):ℝ⟶ℝ) |
113 | 112 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (𝐹 ∘𝑓 · 𝐹):ℝ⟶ℝ) |
114 | 110 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ dom ∫1
∧ (𝑥 ∈ ℝ
∧ 𝑦 ∈ ℝ))
→ (𝑥 · 𝑦) ∈
ℝ) |
115 | 114, 3, 3, 29, 29, 101 | off 6912 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ dom ∫1
→ (𝐺
∘𝑓 · 𝐺):ℝ⟶ℝ) |
116 | 115 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (𝐺 ∘𝑓 · 𝐺):ℝ⟶ℝ) |
117 | 109, 113,
116, 24, 24, 101 | off 6912 |
. . . . . . . . 9
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺)):ℝ⟶ℝ) |
118 | | frn 6053 |
. . . . . . . . 9
⊢ (((𝐹 ∘𝑓
· 𝐹)
∘𝑓 + (𝐺 ∘𝑓 · 𝐺)):ℝ⟶ℝ →
ran ((𝐹
∘𝑓 · 𝐹) ∘𝑓 + (𝐺 ∘𝑓
· 𝐺)) ⊆
ℝ) |
119 | 117, 118 | syl 17 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ran ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺)) ⊆ ℝ) |
120 | 119, 70 | syl6ss 3615 |
. . . . . . 7
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ran ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺)) ⊆ ℂ) |
121 | | fnssres 6004 |
. . . . . . 7
⊢ ((√
Fn ℂ ∧ ran ((𝐹
∘𝑓 · 𝐹) ∘𝑓 + (𝐺 ∘𝑓
· 𝐺)) ⊆
ℂ) → (√ ↾ ran ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺))) Fn ran ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺))) |
122 | 107, 120,
121 | sylancr 695 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (√ ↾ ran ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺))) Fn ran ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺))) |
123 | | id 22 |
. . . . . . . . . 10
⊢ (𝐹 ∈ dom ∫1
→ 𝐹 ∈ dom
∫1) |
124 | 123, 123 | i1fmul 23463 |
. . . . . . . . 9
⊢ (𝐹 ∈ dom ∫1
→ (𝐹
∘𝑓 · 𝐹) ∈ dom
∫1) |
125 | 124 | adantr 481 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (𝐹 ∘𝑓 · 𝐹) ∈ dom
∫1) |
126 | | id 22 |
. . . . . . . . . 10
⊢ (𝐺 ∈ dom ∫1
→ 𝐺 ∈ dom
∫1) |
127 | 126, 126 | i1fmul 23463 |
. . . . . . . . 9
⊢ (𝐺 ∈ dom ∫1
→ (𝐺
∘𝑓 · 𝐺) ∈ dom
∫1) |
128 | 127 | adantl 482 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (𝐺 ∘𝑓 · 𝐺) ∈ dom
∫1) |
129 | 125, 128 | i1fadd 23462 |
. . . . . . 7
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺)) ∈ dom
∫1) |
130 | | i1frn 23444 |
. . . . . . 7
⊢ (((𝐹 ∘𝑓
· 𝐹)
∘𝑓 + (𝐺 ∘𝑓 · 𝐺)) ∈ dom ∫1
→ ran ((𝐹
∘𝑓 · 𝐹) ∘𝑓 + (𝐺 ∘𝑓
· 𝐺)) ∈
Fin) |
131 | 129, 130 | syl 17 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ran ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺)) ∈ Fin) |
132 | | fnfi 8238 |
. . . . . 6
⊢
(((√ ↾ ran ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺))) Fn ran ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺)) ∧ ran ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺)) ∈ Fin) → (√ ↾ ran
((𝐹
∘𝑓 · 𝐹) ∘𝑓 + (𝐺 ∘𝑓
· 𝐺))) ∈
Fin) |
133 | 122, 131,
132 | syl2anc 693 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (√ ↾ ran ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺))) ∈ Fin) |
134 | | rnfi 8249 |
. . . . 5
⊢ ((√
↾ ran ((𝐹
∘𝑓 · 𝐹) ∘𝑓 + (𝐺 ∘𝑓
· 𝐺))) ∈ Fin
→ ran (√ ↾ ran ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺))) ∈ Fin) |
135 | 133, 134 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ran (√ ↾ ran ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺))) ∈ Fin) |
136 | 105, 135 | syl5eqel 2705 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ran (√ ∘ ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺))) ∈ Fin) |
137 | | cnvco 5308 |
. . . . . . 7
⊢ ◡(√ ∘ ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺))) = (◡((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺)) ∘ ◡√) |
138 | 137 | imaeq1i 5463 |
. . . . . 6
⊢ (◡(√ ∘ ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺))) “ {𝑥}) = ((◡((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺)) ∘ ◡√) “ {𝑥}) |
139 | | imaco 5640 |
. . . . . 6
⊢ ((◡((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺)) ∘ ◡√) “ {𝑥}) = (◡((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺)) “ (◡√ “ {𝑥})) |
140 | 138, 139 | eqtri 2644 |
. . . . 5
⊢ (◡(√ ∘ ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺))) “ {𝑥}) = (◡((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺)) “ (◡√ “ {𝑥})) |
141 | | i1fima 23445 |
. . . . . 6
⊢ (((𝐹 ∘𝑓
· 𝐹)
∘𝑓 + (𝐺 ∘𝑓 · 𝐺)) ∈ dom ∫1
→ (◡((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺)) “ (◡√ “ {𝑥})) ∈ dom vol) |
142 | 129, 141 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (◡((𝐹 ∘𝑓
· 𝐹)
∘𝑓 + (𝐺 ∘𝑓 · 𝐺)) “ (◡√ “ {𝑥})) ∈ dom vol) |
143 | 140, 142 | syl5eqel 2705 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (◡(√
∘ ((𝐹
∘𝑓 · 𝐹) ∘𝑓 + (𝐺 ∘𝑓
· 𝐺))) “
{𝑥}) ∈ dom
vol) |
144 | 143 | adantr 481 |
. . 3
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ (ran (√ ∘ ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺))) ∖ {0})) → (◡(√ ∘ ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺))) “ {𝑥}) ∈ dom vol) |
145 | 140 | fveq2i 6194 |
. . . 4
⊢
(vol‘(◡(√ ∘
((𝐹
∘𝑓 · 𝐹) ∘𝑓 + (𝐺 ∘𝑓
· 𝐺))) “
{𝑥})) = (vol‘(◡((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺)) “ (◡√ “ {𝑥}))) |
146 | | eldifsni 4320 |
. . . . . . . 8
⊢ (𝑥 ∈ (ran (√ ∘
((𝐹
∘𝑓 · 𝐹) ∘𝑓 + (𝐺 ∘𝑓
· 𝐺))) ∖ {0})
→ 𝑥 ≠
0) |
147 | | c0ex 10034 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
148 | 147 | elsn 4192 |
. . . . . . . . . . 11
⊢ (0 ∈
{𝑥} ↔ 0 = 𝑥) |
149 | | eqcom 2629 |
. . . . . . . . . . 11
⊢ (0 =
𝑥 ↔ 𝑥 = 0) |
150 | 148, 149 | bitri 264 |
. . . . . . . . . 10
⊢ (0 ∈
{𝑥} ↔ 𝑥 = 0) |
151 | 150 | necon3bbii 2841 |
. . . . . . . . 9
⊢ (¬ 0
∈ {𝑥} ↔ 𝑥 ≠ 0) |
152 | | sqrt0 13982 |
. . . . . . . . . 10
⊢
(√‘0) = 0 |
153 | 152 | eleq1i 2692 |
. . . . . . . . 9
⊢
((√‘0) ∈ {𝑥} ↔ 0 ∈ {𝑥}) |
154 | 151, 153 | xchnxbir 323 |
. . . . . . . 8
⊢ (¬
(√‘0) ∈ {𝑥} ↔ 𝑥 ≠ 0) |
155 | 146, 154 | sylibr 224 |
. . . . . . 7
⊢ (𝑥 ∈ (ran (√ ∘
((𝐹
∘𝑓 · 𝐹) ∘𝑓 + (𝐺 ∘𝑓
· 𝐺))) ∖ {0})
→ ¬ (√‘0) ∈ {𝑥}) |
156 | 155 | olcd 408 |
. . . . . 6
⊢ (𝑥 ∈ (ran (√ ∘
((𝐹
∘𝑓 · 𝐹) ∘𝑓 + (𝐺 ∘𝑓
· 𝐺))) ∖ {0})
→ (¬ 0 ∈ ℂ ∨ ¬ (√‘0) ∈ {𝑥})) |
157 | | ianor 509 |
. . . . . . 7
⊢ (¬ (0
∈ ℂ ∧ (√‘0) ∈ {𝑥}) ↔ (¬ 0 ∈ ℂ ∨ ¬
(√‘0) ∈ {𝑥})) |
158 | | elpreima 6337 |
. . . . . . . 8
⊢ (√
Fn ℂ → (0 ∈ (◡√
“ {𝑥}) ↔ (0
∈ ℂ ∧ (√‘0) ∈ {𝑥}))) |
159 | 55, 106, 158 | mp2b 10 |
. . . . . . 7
⊢ (0 ∈
(◡√ “ {𝑥}) ↔ (0 ∈ ℂ ∧
(√‘0) ∈ {𝑥})) |
160 | 157, 159 | xchnxbir 323 |
. . . . . 6
⊢ (¬ 0
∈ (◡√ “ {𝑥}) ↔ (¬ 0 ∈
ℂ ∨ ¬ (√‘0) ∈ {𝑥})) |
161 | 156, 160 | sylibr 224 |
. . . . 5
⊢ (𝑥 ∈ (ran (√ ∘
((𝐹
∘𝑓 · 𝐹) ∘𝑓 + (𝐺 ∘𝑓
· 𝐺))) ∖ {0})
→ ¬ 0 ∈ (◡√ “
{𝑥})) |
162 | | i1fima2 23446 |
. . . . 5
⊢ ((((𝐹 ∘𝑓
· 𝐹)
∘𝑓 + (𝐺 ∘𝑓 · 𝐺)) ∈ dom ∫1
∧ ¬ 0 ∈ (◡√ “
{𝑥})) →
(vol‘(◡((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺)) “ (◡√ “ {𝑥}))) ∈ ℝ) |
163 | 129, 161,
162 | syl2an 494 |
. . . 4
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ (ran (√ ∘ ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺))) ∖ {0})) → (vol‘(◡((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺)) “ (◡√ “ {𝑥}))) ∈ ℝ) |
164 | 145, 163 | syl5eqel 2705 |
. . 3
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ (ran (√ ∘ ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺))) ∖ {0})) → (vol‘(◡(√ ∘ ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺))) “ {𝑥})) ∈ ℝ) |
165 | 104, 136,
144, 164 | i1fd 23448 |
. 2
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (√ ∘ ((𝐹 ∘𝑓 · 𝐹) ∘𝑓 +
(𝐺
∘𝑓 · 𝐺))) ∈ dom
∫1) |
166 | 60, 165 | eqeltrd 2701 |
1
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (abs ∘ (𝐹 ∘𝑓 + ((ℝ
× {i}) ∘𝑓 · 𝐺))) ∈ dom
∫1) |