MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqreu Structured version   Visualization version   GIF version

Theorem sqreu 14100
Description: Existence and uniqueness for the square root function in general. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
sqreu (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Distinct variable group:   𝑥,𝐴

Proof of Theorem sqreu
StepHypRef Expression
1 abscl 14018 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
21recnd 10068 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ)
3 subneg 10330 . . . . . . 7 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐴) − -𝐴) = ((abs‘𝐴) + 𝐴))
42, 3mpancom 703 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) − -𝐴) = ((abs‘𝐴) + 𝐴))
54eqeq1d 2624 . . . . 5 (𝐴 ∈ ℂ → (((abs‘𝐴) − -𝐴) = 0 ↔ ((abs‘𝐴) + 𝐴) = 0))
6 negcl 10281 . . . . . 6 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
72, 6subeq0ad 10402 . . . . 5 (𝐴 ∈ ℂ → (((abs‘𝐴) − -𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
85, 7bitr3d 270 . . . 4 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
9 ax-icn 9995 . . . . . . 7 i ∈ ℂ
10 absge0 14027 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
111, 10jca 554 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
12 eleq1 2689 . . . . . . . . . . . 12 ((abs‘𝐴) = -𝐴 → ((abs‘𝐴) ∈ ℝ ↔ -𝐴 ∈ ℝ))
13 breq2 4657 . . . . . . . . . . . 12 ((abs‘𝐴) = -𝐴 → (0 ≤ (abs‘𝐴) ↔ 0 ≤ -𝐴))
1412, 13anbi12d 747 . . . . . . . . . . 11 ((abs‘𝐴) = -𝐴 → (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ↔ (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴)))
1511, 14syl5ib 234 . . . . . . . . . 10 ((abs‘𝐴) = -𝐴 → (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴)))
1615impcom 446 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴))
17 resqrtcl 13994 . . . . . . . . 9 ((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) → (√‘-𝐴) ∈ ℝ)
1816, 17syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (√‘-𝐴) ∈ ℝ)
1918recnd 10068 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (√‘-𝐴) ∈ ℂ)
20 mulcl 10020 . . . . . . 7 ((i ∈ ℂ ∧ (√‘-𝐴) ∈ ℂ) → (i · (√‘-𝐴)) ∈ ℂ)
219, 19, 20sylancr 695 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (i · (√‘-𝐴)) ∈ ℂ)
22 sqrtneglem 14007 . . . . . . . 8 ((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) → (((i · (√‘-𝐴))↑2) = --𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+))
2316, 22syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (((i · (√‘-𝐴))↑2) = --𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+))
24 negneg 10331 . . . . . . . . . 10 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
2524adantr 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → --𝐴 = 𝐴)
2625eqeq2d 2632 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (((i · (√‘-𝐴))↑2) = --𝐴 ↔ ((i · (√‘-𝐴))↑2) = 𝐴))
27263anbi1d 1403 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → ((((i · (√‘-𝐴))↑2) = --𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+) ↔ (((i · (√‘-𝐴))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+)))
2823, 27mpbid 222 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (((i · (√‘-𝐴))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+))
29 oveq1 6657 . . . . . . . . 9 (𝑥 = (i · (√‘-𝐴)) → (𝑥↑2) = ((i · (√‘-𝐴))↑2))
3029eqeq1d 2624 . . . . . . . 8 (𝑥 = (i · (√‘-𝐴)) → ((𝑥↑2) = 𝐴 ↔ ((i · (√‘-𝐴))↑2) = 𝐴))
31 fveq2 6191 . . . . . . . . 9 (𝑥 = (i · (√‘-𝐴)) → (ℜ‘𝑥) = (ℜ‘(i · (√‘-𝐴))))
3231breq2d 4665 . . . . . . . 8 (𝑥 = (i · (√‘-𝐴)) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘(i · (√‘-𝐴)))))
33 oveq2 6658 . . . . . . . . 9 (𝑥 = (i · (√‘-𝐴)) → (i · 𝑥) = (i · (i · (√‘-𝐴))))
34 neleq1 2902 . . . . . . . . 9 ((i · 𝑥) = (i · (i · (√‘-𝐴))) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (i · (√‘-𝐴))) ∉ ℝ+))
3533, 34syl 17 . . . . . . . 8 (𝑥 = (i · (√‘-𝐴)) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (i · (√‘-𝐴))) ∉ ℝ+))
3630, 32, 353anbi123d 1399 . . . . . . 7 (𝑥 = (i · (√‘-𝐴)) → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (((i · (√‘-𝐴))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+)))
3736rspcev 3309 . . . . . 6 (((i · (√‘-𝐴)) ∈ ℂ ∧ (((i · (√‘-𝐴))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+)) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
3821, 28, 37syl2anc 693 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
3938ex 450 . . . 4 (𝐴 ∈ ℂ → ((abs‘𝐴) = -𝐴 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
408, 39sylbid 230 . . 3 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) = 0 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
41 resqrtcl 13994 . . . . . . . . 9 (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (√‘(abs‘𝐴)) ∈ ℝ)
421, 10, 41syl2anc 693 . . . . . . . 8 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℝ)
4342recnd 10068 . . . . . . 7 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℂ)
4443adantr 481 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (√‘(abs‘𝐴)) ∈ ℂ)
45 addcl 10018 . . . . . . . . 9 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐴) + 𝐴) ∈ ℂ)
462, 45mpancom 703 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘𝐴) + 𝐴) ∈ ℂ)
4746adantr 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((abs‘𝐴) + 𝐴) ∈ ℂ)
48 abscl 14018 . . . . . . . . . 10 (((abs‘𝐴) + 𝐴) ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℝ)
4946, 48syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℝ)
5049recnd 10068 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℂ)
5150adantr 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℂ)
5246abs00ad 14030 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴)) = 0 ↔ ((abs‘𝐴) + 𝐴) = 0))
5352necon3bid 2838 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴)) ≠ 0 ↔ ((abs‘𝐴) + 𝐴) ≠ 0))
5453biimpar 502 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ≠ 0)
5547, 51, 54divcld 10801 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ ℂ)
5644, 55mulcld 10060 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℂ)
57 eqid 2622 . . . . . 6 ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))
5857sqreulem 14099 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
59 oveq1 6657 . . . . . . . 8 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (𝑥↑2) = (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2))
6059eqeq1d 2624 . . . . . . 7 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → ((𝑥↑2) = 𝐴 ↔ (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴))
61 fveq2 6191 . . . . . . . 8 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (ℜ‘𝑥) = (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))))
6261breq2d 4665 . . . . . . 7 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))))))
63 oveq2 6658 . . . . . . . 8 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (i · 𝑥) = (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))))
64 neleq1 2902 . . . . . . . 8 ((i · 𝑥) = (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) → ((i · 𝑥) ∉ ℝ+ ↔ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
6563, 64syl 17 . . . . . . 7 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → ((i · 𝑥) ∉ ℝ+ ↔ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
6660, 62, 653anbi123d 1399 . . . . . 6 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+)))
6766rspcev 3309 . . . . 5 ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℂ ∧ ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+)) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
6856, 58, 67syl2anc 693 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
6968ex 450 . . 3 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) ≠ 0 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
7040, 69pm2.61dne 2880 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
71 sqrmo 13992 . 2 (𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
72 reu5 3159 . 2 (∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
7370, 71, 72sylanbrc 698 1 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wnel 2897  wrex 2913  ∃!wreu 2914  ∃*wrmo 2915   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  ici 9938   + caddc 9939   · cmul 9941  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  2c2 11070  +crp 11832  cexp 12860  cre 13837  csqrt 13973  abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  sqrtcl  14101  sqrtthlem  14102  eqsqrtd  14107
  Copyright terms: Public domain W3C validator