![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resstopn | Structured version Visualization version GIF version |
Description: The topology of a restricted structure. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
resstopn.1 | ⊢ 𝐻 = (𝐾 ↾s 𝐴) |
resstopn.2 | ⊢ 𝐽 = (TopOpen‘𝐾) |
Ref | Expression |
---|---|
resstopn | ⊢ (𝐽 ↾t 𝐴) = (TopOpen‘𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6201 | . . . . 5 ⊢ (TopSet‘𝐾) ∈ V | |
2 | fvex 6201 | . . . . 5 ⊢ (Base‘𝐾) ∈ V | |
3 | restco 20968 | . . . . 5 ⊢ (((TopSet‘𝐾) ∈ V ∧ (Base‘𝐾) ∈ V ∧ 𝐴 ∈ V) → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴))) | |
4 | 1, 2, 3 | mp3an12 1414 | . . . 4 ⊢ (𝐴 ∈ V → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴))) |
5 | resstopn.1 | . . . . . 6 ⊢ 𝐻 = (𝐾 ↾s 𝐴) | |
6 | eqid 2622 | . . . . . 6 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
7 | 5, 6 | resstset 16046 | . . . . 5 ⊢ (𝐴 ∈ V → (TopSet‘𝐾) = (TopSet‘𝐻)) |
8 | incom 3805 | . . . . . 6 ⊢ ((Base‘𝐾) ∩ 𝐴) = (𝐴 ∩ (Base‘𝐾)) | |
9 | eqid 2622 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
10 | 5, 9 | ressbas 15930 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∩ (Base‘𝐾)) = (Base‘𝐻)) |
11 | 8, 10 | syl5eq 2668 | . . . . 5 ⊢ (𝐴 ∈ V → ((Base‘𝐾) ∩ 𝐴) = (Base‘𝐻)) |
12 | 7, 11 | oveq12d 6668 | . . . 4 ⊢ (𝐴 ∈ V → ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = ((TopSet‘𝐻) ↾t (Base‘𝐻))) |
13 | 4, 12 | eqtrd 2656 | . . 3 ⊢ (𝐴 ∈ V → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐻) ↾t (Base‘𝐻))) |
14 | 9, 6 | topnval 16095 | . . . . 5 ⊢ ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾) |
15 | resstopn.2 | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝐾) | |
16 | 14, 15 | eqtr4i 2647 | . . . 4 ⊢ ((TopSet‘𝐾) ↾t (Base‘𝐾)) = 𝐽 |
17 | 16 | oveq1i 6660 | . . 3 ⊢ (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = (𝐽 ↾t 𝐴) |
18 | eqid 2622 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
19 | eqid 2622 | . . . 4 ⊢ (TopSet‘𝐻) = (TopSet‘𝐻) | |
20 | 18, 19 | topnval 16095 | . . 3 ⊢ ((TopSet‘𝐻) ↾t (Base‘𝐻)) = (TopOpen‘𝐻) |
21 | 13, 17, 20 | 3eqtr3g 2679 | . 2 ⊢ (𝐴 ∈ V → (𝐽 ↾t 𝐴) = (TopOpen‘𝐻)) |
22 | simpr 477 | . . . . 5 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → 𝐴 ∈ V) | |
23 | 22 | con3i 150 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
24 | restfn 16085 | . . . . . 6 ⊢ ↾t Fn (V × V) | |
25 | fndm 5990 | . . . . . 6 ⊢ ( ↾t Fn (V × V) → dom ↾t = (V × V)) | |
26 | 24, 25 | ax-mp 5 | . . . . 5 ⊢ dom ↾t = (V × V) |
27 | 26 | ndmov 6818 | . . . 4 ⊢ (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ∅) |
28 | 23, 27 | syl 17 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐽 ↾t 𝐴) = ∅) |
29 | reldmress 15926 | . . . . . . . . 9 ⊢ Rel dom ↾s | |
30 | 29 | ovprc2 6685 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → (𝐾 ↾s 𝐴) = ∅) |
31 | 5, 30 | syl5eq 2668 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → 𝐻 = ∅) |
32 | 31 | fveq2d 6195 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (TopSet‘𝐻) = (TopSet‘∅)) |
33 | df-tset 15960 | . . . . . . 7 ⊢ TopSet = Slot 9 | |
34 | 33 | str0 15911 | . . . . . 6 ⊢ ∅ = (TopSet‘∅) |
35 | 32, 34 | syl6eqr 2674 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (TopSet‘𝐻) = ∅) |
36 | 35 | oveq1d 6665 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ((TopSet‘𝐻) ↾t (Base‘𝐻)) = (∅ ↾t (Base‘𝐻))) |
37 | 0rest 16090 | . . . 4 ⊢ (∅ ↾t (Base‘𝐻)) = ∅ | |
38 | 36, 20, 37 | 3eqtr3g 2679 | . . 3 ⊢ (¬ 𝐴 ∈ V → (TopOpen‘𝐻) = ∅) |
39 | 28, 38 | eqtr4d 2659 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐽 ↾t 𝐴) = (TopOpen‘𝐻)) |
40 | 21, 39 | pm2.61i 176 | 1 ⊢ (𝐽 ↾t 𝐴) = (TopOpen‘𝐻) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∩ cin 3573 ∅c0 3915 × cxp 5112 dom cdm 5114 Fn wfn 5883 ‘cfv 5888 (class class class)co 6650 9c9 11077 Basecbs 15857 ↾s cress 15858 TopSetcts 15947 ↾t crest 16081 TopOpenctopn 16082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-tset 15960 df-rest 16083 df-topn 16084 |
This theorem is referenced by: resstps 20991 submtmd 21908 subgtgp 21909 tsmssubm 21946 invrcn2 21983 ressusp 22069 ressxms 22330 ressms 22331 nrgtdrg 22497 tgioo3 22608 dfii4 22687 retopn 23167 xrge0topn 29989 lmxrge0 29998 qqtopn 30055 |
Copyright terms: Public domain | W3C validator |