MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgtgp Structured version   Visualization version   GIF version

Theorem subgtgp 21909
Description: A subgroup of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
subgtgp.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subgtgp ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ TopGrp)

Proof of Theorem subgtgp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subgtgp.h . . . 4 𝐻 = (𝐺s 𝑆)
21subggrp 17597 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
32adantl 482 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Grp)
4 tgptmd 21883 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
5 subgsubm 17616 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubMnd‘𝐺))
61submtmd 21908 . . 3 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ TopMnd)
74, 5, 6syl2an 494 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ TopMnd)
81subgbas 17598 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
98adantl 482 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘𝐻))
109mpteq1d 4738 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥𝑆 ↦ ((invg𝐻)‘𝑥)) = (𝑥 ∈ (Base‘𝐻) ↦ ((invg𝐻)‘𝑥)))
11 eqid 2622 . . . . . . . 8 (invg𝐺) = (invg𝐺)
12 eqid 2622 . . . . . . . 8 (invg𝐻) = (invg𝐻)
131, 11, 12subginv 17601 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → ((invg𝐺)‘𝑥) = ((invg𝐻)‘𝑥))
1413adantll 750 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆) → ((invg𝐺)‘𝑥) = ((invg𝐻)‘𝑥))
1514mpteq2dva 4744 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥𝑆 ↦ ((invg𝐺)‘𝑥)) = (𝑥𝑆 ↦ ((invg𝐻)‘𝑥)))
16 eqid 2622 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
1716, 12grpinvf 17466 . . . . . . 7 (𝐻 ∈ Grp → (invg𝐻):(Base‘𝐻)⟶(Base‘𝐻))
183, 17syl 17 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐻):(Base‘𝐻)⟶(Base‘𝐻))
1918feqmptd 6249 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐻) = (𝑥 ∈ (Base‘𝐻) ↦ ((invg𝐻)‘𝑥)))
2010, 15, 193eqtr4rd 2667 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐻) = (𝑥𝑆 ↦ ((invg𝐺)‘𝑥)))
21 eqid 2622 . . . . 5 ((TopOpen‘𝐺) ↾t 𝑆) = ((TopOpen‘𝐺) ↾t 𝑆)
22 eqid 2622 . . . . . . 7 (TopOpen‘𝐺) = (TopOpen‘𝐺)
23 eqid 2622 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
2422, 23tgptopon 21886 . . . . . 6 (𝐺 ∈ TopGrp → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
2524adantr 481 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
2623subgss 17595 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
2726adantl 482 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺))
28 tgpgrp 21882 . . . . . . . . 9 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
2928adantr 481 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp)
3023, 11grpinvf 17466 . . . . . . . 8 (𝐺 ∈ Grp → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
3129, 30syl 17 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
3231feqmptd 6249 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)))
3322, 11tgpinv 21889 . . . . . . 7 (𝐺 ∈ TopGrp → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
3433adantr 481 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
3532, 34eqeltrrd 2702 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
3621, 25, 27, 35cnmpt1res 21479 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥𝑆 ↦ ((invg𝐺)‘𝑥)) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn (TopOpen‘𝐺)))
3720, 36eqeltrd 2701 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn (TopOpen‘𝐺)))
38 frn 6053 . . . . . 6 ((invg𝐻):(Base‘𝐻)⟶(Base‘𝐻) → ran (invg𝐻) ⊆ (Base‘𝐻))
3918, 38syl 17 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ran (invg𝐻) ⊆ (Base‘𝐻))
4039, 9sseqtr4d 3642 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ran (invg𝐻) ⊆ 𝑆)
41 cnrest2 21090 . . . 4 (((TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)) ∧ ran (invg𝐻) ⊆ 𝑆𝑆 ⊆ (Base‘𝐺)) → ((invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn (TopOpen‘𝐺)) ↔ (invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
4225, 40, 27, 41syl3anc 1326 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn (TopOpen‘𝐺)) ↔ (invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
4337, 42mpbid 222 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn ((TopOpen‘𝐺) ↾t 𝑆)))
441, 22resstopn 20990 . . 3 ((TopOpen‘𝐺) ↾t 𝑆) = (TopOpen‘𝐻)
4544, 12istgp 21881 . 2 (𝐻 ∈ TopGrp ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ TopMnd ∧ (invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
463, 7, 43, 45syl3anbrc 1246 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wss 3574  cmpt 4729  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  Basecbs 15857  s cress 15858  t crest 16081  TopOpenctopn 16082  SubMndcsubmnd 17334  Grpcgrp 17422  invgcminusg 17423  SubGrpcsubg 17588  TopOnctopon 20715   Cn ccn 21028  TopMndctmd 21874  TopGrpctgp 21875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-tset 15960  df-rest 16083  df-topn 16084  df-0g 16102  df-topgen 16104  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-tx 21365  df-tmd 21876  df-tgp 21877
This theorem is referenced by:  qqhcn  30035
  Copyright terms: Public domain W3C validator