Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rge0scvg Structured version   Visualization version   GIF version

Theorem rge0scvg 29995
Description: Implication of convergence for a nonnegative series. This could be used to shorten prmreclem6 15625. (Contributed by Thierry Arnoux, 28-Jul-2017.)
Assertion
Ref Expression
rge0scvg ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)

Proof of Theorem rge0scvg
Dummy variables 𝑗 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11723 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 11408 . . . . 5 (𝐹:ℕ⟶(0[,)+∞) → 1 ∈ ℤ)
3 rge0ssre 12280 . . . . . . 7 (0[,)+∞) ⊆ ℝ
4 fss 6056 . . . . . . 7 ((𝐹:ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℕ⟶ℝ)
53, 4mpan2 707 . . . . . 6 (𝐹:ℕ⟶(0[,)+∞) → 𝐹:ℕ⟶ℝ)
65ffvelrnda 6359 . . . . 5 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
71, 2, 6serfre 12830 . . . 4 (𝐹:ℕ⟶(0[,)+∞) → seq1( + , 𝐹):ℕ⟶ℝ)
8 frn 6053 . . . 4 (seq1( + , 𝐹):ℕ⟶ℝ → ran seq1( + , 𝐹) ⊆ ℝ)
97, 8syl 17 . . 3 (𝐹:ℕ⟶(0[,)+∞) → ran seq1( + , 𝐹) ⊆ ℝ)
109adantr 481 . 2 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ran seq1( + , 𝐹) ⊆ ℝ)
11 1nn 11031 . . . . 5 1 ∈ ℕ
12 fdm 6051 . . . . 5 (seq1( + , 𝐹):ℕ⟶ℝ → dom seq1( + , 𝐹) = ℕ)
1311, 12syl5eleqr 2708 . . . 4 (seq1( + , 𝐹):ℕ⟶ℝ → 1 ∈ dom seq1( + , 𝐹))
14 ne0i 3921 . . . . 5 (1 ∈ dom seq1( + , 𝐹) → dom seq1( + , 𝐹) ≠ ∅)
15 dm0rn0 5342 . . . . . 6 (dom seq1( + , 𝐹) = ∅ ↔ ran seq1( + , 𝐹) = ∅)
1615necon3bii 2846 . . . . 5 (dom seq1( + , 𝐹) ≠ ∅ ↔ ran seq1( + , 𝐹) ≠ ∅)
1714, 16sylib 208 . . . 4 (1 ∈ dom seq1( + , 𝐹) → ran seq1( + , 𝐹) ≠ ∅)
187, 13, 173syl 18 . . 3 (𝐹:ℕ⟶(0[,)+∞) → ran seq1( + , 𝐹) ≠ ∅)
1918adantr 481 . 2 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ran seq1( + , 𝐹) ≠ ∅)
20 1zzd 11408 . . . . 5 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → 1 ∈ ℤ)
21 climdm 14285 . . . . . . 7 (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
2221biimpi 206 . . . . . 6 (seq1( + , 𝐹) ∈ dom ⇝ → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
2322adantl 482 . . . . 5 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
247adantr 481 . . . . . 6 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐹):ℕ⟶ℝ)
2524ffvelrnda 6359 . . . . 5 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ∈ ℝ)
261, 20, 23, 25climrecl 14314 . . . 4 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ( ⇝ ‘seq1( + , 𝐹)) ∈ ℝ)
27 simpr 477 . . . . . 6 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
2823adantr 481 . . . . . 6 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
29 simplll 798 . . . . . . 7 ((((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 𝐹:ℕ⟶(0[,)+∞))
30 ffvelrn 6357 . . . . . . . 8 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ (0[,)+∞))
313, 30sseldi 3601 . . . . . . 7 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
3229, 31sylancom 701 . . . . . 6 ((((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
33 elrege0 12278 . . . . . . . . . 10 ((𝐹𝑗) ∈ (0[,)+∞) ↔ ((𝐹𝑗) ∈ ℝ ∧ 0 ≤ (𝐹𝑗)))
3433simprbi 480 . . . . . . . . 9 ((𝐹𝑗) ∈ (0[,)+∞) → 0 ≤ (𝐹𝑗))
3530, 34syl 17 . . . . . . . 8 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
3635adantlr 751 . . . . . . 7 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
3736adantlr 751 . . . . . 6 ((((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
381, 27, 28, 32, 37climserle 14393 . . . . 5 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹)))
3938ralrimiva 2966 . . . 4 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹)))
40 breq2 4657 . . . . . 6 (𝑥 = ( ⇝ ‘seq1( + , 𝐹)) → ((seq1( + , 𝐹)‘𝑘) ≤ 𝑥 ↔ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹))))
4140ralbidv 2986 . . . . 5 (𝑥 = ( ⇝ ‘seq1( + , 𝐹)) → (∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹))))
4241rspcev 3309 . . . 4 ((( ⇝ ‘seq1( + , 𝐹)) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹))) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
4326, 39, 42syl2anc 693 . . 3 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
44 ffn 6045 . . . . . 6 (seq1( + , 𝐹):ℕ⟶ℝ → seq1( + , 𝐹) Fn ℕ)
45 breq1 4656 . . . . . . 7 (𝑧 = (seq1( + , 𝐹)‘𝑘) → (𝑧𝑥 ↔ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
4645ralrn 6362 . . . . . 6 (seq1( + , 𝐹) Fn ℕ → (∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
477, 44, 463syl 18 . . . . 5 (𝐹:ℕ⟶(0[,)+∞) → (∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
4847rexbidv 3052 . . . 4 (𝐹:ℕ⟶(0[,)+∞) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
4948adantr 481 . . 3 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
5043, 49mpbird 247 . 2 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥)
51 suprcl 10983 . 2 ((ran seq1( + , 𝐹) ⊆ ℝ ∧ ran seq1( + , 𝐹) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥) → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)
5210, 19, 50, 51syl3anc 1326 1 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  wss 3574  c0 3915   class class class wbr 4653  dom cdm 5114  ran crn 5115   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  supcsup 8346  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  +∞cpnf 10071   < clt 10074  cle 10075  cn 11020  [,)cico 12177  seqcseq 12801  cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator