Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmfsupp Structured version   Visualization version   GIF version

Theorem rmfsupp 42155
Description: A mapping of a multiplication of a constant with a function into a ring is finitely supported if the function is finitely supported. (Contributed by AV, 9-Jun-2019.)
Hypothesis
Ref Expression
rmsuppfi.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
rmfsupp (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐴 finSupp (0g𝑀)) → (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) finSupp (0g𝑀))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐶   𝑣,𝑀   𝑣,𝑅   𝑣,𝑋   𝑣,𝑉

Proof of Theorem rmfsupp
StepHypRef Expression
1 funmpt 5926 . . 3 Fun (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣)))
21a1i 11 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐴 finSupp (0g𝑀)) → Fun (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))))
3 id 22 . . . 4 (𝐴 finSupp (0g𝑀) → 𝐴 finSupp (0g𝑀))
43fsuppimpd 8282 . . 3 (𝐴 finSupp (0g𝑀) → (𝐴 supp (0g𝑀)) ∈ Fin)
5 rmsuppfi.r . . . 4 𝑅 = (Base‘𝑀)
65rmsuppfi 42154 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ (𝐴 supp (0g𝑀)) ∈ Fin) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ∈ Fin)
74, 6syl3an3 1361 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐴 finSupp (0g𝑀)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ∈ Fin)
8 mptexg 6484 . . . . 5 (𝑉𝑋 → (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) ∈ V)
983ad2ant2 1083 . . . 4 ((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) → (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) ∈ V)
1093ad2ant1 1082 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐴 finSupp (0g𝑀)) → (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) ∈ V)
11 fvex 6201 . . 3 (0g𝑀) ∈ V
12 isfsupp 8279 . . 3 (((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) ∈ V ∧ (0g𝑀) ∈ V) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) finSupp (0g𝑀) ↔ (Fun (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) ∧ ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ∈ Fin)))
1310, 11, 12sylancl 694 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐴 finSupp (0g𝑀)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) finSupp (0g𝑀) ↔ (Fun (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) ∧ ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ∈ Fin)))
142, 7, 13mpbir2and 957 1 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐴 finSupp (0g𝑀)) → (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) finSupp (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200   class class class wbr 4653  cmpt 4729  Fun wfun 5882  cfv 5888  (class class class)co 6650   supp csupp 7295  𝑚 cmap 7857  Fincfn 7955   finSupp cfsupp 8275  Basecbs 15857  .rcmulr 15942  0gc0g 16100  Ringcrg 18547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-mgp 18490  df-ring 18549
This theorem is referenced by:  lincscmcl  42221
  Copyright terms: Public domain W3C validator