MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngnegr Structured version   Visualization version   GIF version

Theorem rngnegr 18595
Description: Negation in a ring is the same as right multiplication by -1. (rngonegmn1r 33741 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringnegl.b 𝐵 = (Base‘𝑅)
ringnegl.t · = (.r𝑅)
ringnegl.u 1 = (1r𝑅)
ringnegl.n 𝑁 = (invg𝑅)
ringnegl.r (𝜑𝑅 ∈ Ring)
ringnegl.x (𝜑𝑋𝐵)
Assertion
Ref Expression
rngnegr (𝜑 → (𝑋 · (𝑁1 )) = (𝑁𝑋))

Proof of Theorem rngnegr
StepHypRef Expression
1 ringnegl.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 ringnegl.x . . . . 5 (𝜑𝑋𝐵)
3 ringgrp 18552 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
41, 3syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
5 ringnegl.b . . . . . . . 8 𝐵 = (Base‘𝑅)
6 ringnegl.u . . . . . . . 8 1 = (1r𝑅)
75, 6ringidcl 18568 . . . . . . 7 (𝑅 ∈ Ring → 1𝐵)
81, 7syl 17 . . . . . 6 (𝜑1𝐵)
9 ringnegl.n . . . . . . 7 𝑁 = (invg𝑅)
105, 9grpinvcl 17467 . . . . . 6 ((𝑅 ∈ Grp ∧ 1𝐵) → (𝑁1 ) ∈ 𝐵)
114, 8, 10syl2anc 693 . . . . 5 (𝜑 → (𝑁1 ) ∈ 𝐵)
12 eqid 2622 . . . . . 6 (+g𝑅) = (+g𝑅)
13 ringnegl.t . . . . . 6 · = (.r𝑅)
145, 12, 13ringdi 18566 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ (𝑁1 ) ∈ 𝐵1𝐵)) → (𝑋 · ((𝑁1 )(+g𝑅) 1 )) = ((𝑋 · (𝑁1 ))(+g𝑅)(𝑋 · 1 )))
151, 2, 11, 8, 14syl13anc 1328 . . . 4 (𝜑 → (𝑋 · ((𝑁1 )(+g𝑅) 1 )) = ((𝑋 · (𝑁1 ))(+g𝑅)(𝑋 · 1 )))
16 eqid 2622 . . . . . . . 8 (0g𝑅) = (0g𝑅)
175, 12, 16, 9grplinv 17468 . . . . . . 7 ((𝑅 ∈ Grp ∧ 1𝐵) → ((𝑁1 )(+g𝑅) 1 ) = (0g𝑅))
184, 8, 17syl2anc 693 . . . . . 6 (𝜑 → ((𝑁1 )(+g𝑅) 1 ) = (0g𝑅))
1918oveq2d 6666 . . . . 5 (𝜑 → (𝑋 · ((𝑁1 )(+g𝑅) 1 )) = (𝑋 · (0g𝑅)))
205, 13, 16ringrz 18588 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · (0g𝑅)) = (0g𝑅))
211, 2, 20syl2anc 693 . . . . 5 (𝜑 → (𝑋 · (0g𝑅)) = (0g𝑅))
2219, 21eqtrd 2656 . . . 4 (𝜑 → (𝑋 · ((𝑁1 )(+g𝑅) 1 )) = (0g𝑅))
235, 13, 6ringridm 18572 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 1 ) = 𝑋)
241, 2, 23syl2anc 693 . . . . 5 (𝜑 → (𝑋 · 1 ) = 𝑋)
2524oveq2d 6666 . . . 4 (𝜑 → ((𝑋 · (𝑁1 ))(+g𝑅)(𝑋 · 1 )) = ((𝑋 · (𝑁1 ))(+g𝑅)𝑋))
2615, 22, 253eqtr3rd 2665 . . 3 (𝜑 → ((𝑋 · (𝑁1 ))(+g𝑅)𝑋) = (0g𝑅))
275, 13ringcl 18561 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝑁1 ) ∈ 𝐵) → (𝑋 · (𝑁1 )) ∈ 𝐵)
281, 2, 11, 27syl3anc 1326 . . . 4 (𝜑 → (𝑋 · (𝑁1 )) ∈ 𝐵)
295, 12, 16, 9grpinvid2 17471 . . . 4 ((𝑅 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑋 · (𝑁1 )) ∈ 𝐵) → ((𝑁𝑋) = (𝑋 · (𝑁1 )) ↔ ((𝑋 · (𝑁1 ))(+g𝑅)𝑋) = (0g𝑅)))
304, 2, 28, 29syl3anc 1326 . . 3 (𝜑 → ((𝑁𝑋) = (𝑋 · (𝑁1 )) ↔ ((𝑋 · (𝑁1 ))(+g𝑅)𝑋) = (0g𝑅)))
3126, 30mpbird 247 . 2 (𝜑 → (𝑁𝑋) = (𝑋 · (𝑁1 )))
3231eqcomd 2628 1 (𝜑 → (𝑋 · (𝑁1 )) = (𝑁𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  0gc0g 16100  Grpcgrp 17422  invgcminusg 17423  1rcur 18501  Ringcrg 18547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549
This theorem is referenced by:  ringmneg2  18597  irredneg  18710  lmodsubdi  18920  mdetunilem7  20424  ldualvsubval  34444  lcdvsubval  36907  mapdpglem30  36991
  Copyright terms: Public domain W3C validator