![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngnegr | Structured version Visualization version GIF version |
Description: Negation in a ring is the same as right multiplication by -1. (rngonegmn1r 33741 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
Ref | Expression |
---|---|
ringnegl.b | ⊢ 𝐵 = (Base‘𝑅) |
ringnegl.t | ⊢ · = (.r‘𝑅) |
ringnegl.u | ⊢ 1 = (1r‘𝑅) |
ringnegl.n | ⊢ 𝑁 = (invg‘𝑅) |
ringnegl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ringnegl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
rngnegr | ⊢ (𝜑 → (𝑋 · (𝑁‘ 1 )) = (𝑁‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringnegl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | ringnegl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | ringgrp 18552 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
4 | 1, 3 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
5 | ringnegl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
6 | ringnegl.u | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
7 | 5, 6 | ringidcl 18568 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 1 ∈ 𝐵) |
9 | ringnegl.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
10 | 5, 9 | grpinvcl 17467 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → (𝑁‘ 1 ) ∈ 𝐵) |
11 | 4, 8, 10 | syl2anc 693 | . . . . 5 ⊢ (𝜑 → (𝑁‘ 1 ) ∈ 𝐵) |
12 | eqid 2622 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
13 | ringnegl.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
14 | 5, 12, 13 | ringdi 18566 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘ 1 ) ∈ 𝐵 ∧ 1 ∈ 𝐵)) → (𝑋 · ((𝑁‘ 1 )(+g‘𝑅) 1 )) = ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)(𝑋 · 1 ))) |
15 | 1, 2, 11, 8, 14 | syl13anc 1328 | . . . 4 ⊢ (𝜑 → (𝑋 · ((𝑁‘ 1 )(+g‘𝑅) 1 )) = ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)(𝑋 · 1 ))) |
16 | eqid 2622 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
17 | 5, 12, 16, 9 | grplinv 17468 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → ((𝑁‘ 1 )(+g‘𝑅) 1 ) = (0g‘𝑅)) |
18 | 4, 8, 17 | syl2anc 693 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘ 1 )(+g‘𝑅) 1 ) = (0g‘𝑅)) |
19 | 18 | oveq2d 6666 | . . . . 5 ⊢ (𝜑 → (𝑋 · ((𝑁‘ 1 )(+g‘𝑅) 1 )) = (𝑋 · (0g‘𝑅))) |
20 | 5, 13, 16 | ringrz 18588 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · (0g‘𝑅)) = (0g‘𝑅)) |
21 | 1, 2, 20 | syl2anc 693 | . . . . 5 ⊢ (𝜑 → (𝑋 · (0g‘𝑅)) = (0g‘𝑅)) |
22 | 19, 21 | eqtrd 2656 | . . . 4 ⊢ (𝜑 → (𝑋 · ((𝑁‘ 1 )(+g‘𝑅) 1 )) = (0g‘𝑅)) |
23 | 5, 13, 6 | ringridm 18572 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 1 ) = 𝑋) |
24 | 1, 2, 23 | syl2anc 693 | . . . . 5 ⊢ (𝜑 → (𝑋 · 1 ) = 𝑋) |
25 | 24 | oveq2d 6666 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)(𝑋 · 1 )) = ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)𝑋)) |
26 | 15, 22, 25 | 3eqtr3rd 2665 | . . 3 ⊢ (𝜑 → ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)𝑋) = (0g‘𝑅)) |
27 | 5, 13 | ringcl 18561 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘ 1 ) ∈ 𝐵) → (𝑋 · (𝑁‘ 1 )) ∈ 𝐵) |
28 | 1, 2, 11, 27 | syl3anc 1326 | . . . 4 ⊢ (𝜑 → (𝑋 · (𝑁‘ 1 )) ∈ 𝐵) |
29 | 5, 12, 16, 9 | grpinvid2 17471 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝑋 · (𝑁‘ 1 )) ∈ 𝐵) → ((𝑁‘𝑋) = (𝑋 · (𝑁‘ 1 )) ↔ ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)𝑋) = (0g‘𝑅))) |
30 | 4, 2, 28, 29 | syl3anc 1326 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑋 · (𝑁‘ 1 )) ↔ ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)𝑋) = (0g‘𝑅))) |
31 | 26, 30 | mpbird 247 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) = (𝑋 · (𝑁‘ 1 ))) |
32 | 31 | eqcomd 2628 | 1 ⊢ (𝜑 → (𝑋 · (𝑁‘ 1 )) = (𝑁‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 +gcplusg 15941 .rcmulr 15942 0gc0g 16100 Grpcgrp 17422 invgcminusg 17423 1rcur 18501 Ringcrg 18547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-mgp 18490 df-ur 18502 df-ring 18549 |
This theorem is referenced by: ringmneg2 18597 irredneg 18710 lmodsubdi 18920 mdetunilem7 20424 ldualvsubval 34444 lcdvsubval 36907 mapdpglem30 36991 |
Copyright terms: Public domain | W3C validator |