MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodsubdi Structured version   Visualization version   GIF version

Theorem lmodsubdi 18920
Description: Scalar multiplication distributive law for subtraction. (hvsubdistr1 27906 analogue, with longer proof since our scalar multiplication is not commutative.) (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lmodsubdi.v 𝑉 = (Base‘𝑊)
lmodsubdi.t · = ( ·𝑠𝑊)
lmodsubdi.f 𝐹 = (Scalar‘𝑊)
lmodsubdi.k 𝐾 = (Base‘𝐹)
lmodsubdi.m = (-g𝑊)
lmodsubdi.w (𝜑𝑊 ∈ LMod)
lmodsubdi.a (𝜑𝐴𝐾)
lmodsubdi.x (𝜑𝑋𝑉)
lmodsubdi.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lmodsubdi (𝜑 → (𝐴 · (𝑋 𝑌)) = ((𝐴 · 𝑋) (𝐴 · 𝑌)))

Proof of Theorem lmodsubdi
StepHypRef Expression
1 lmodsubdi.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lmodsubdi.x . . . 4 (𝜑𝑋𝑉)
3 lmodsubdi.y . . . 4 (𝜑𝑌𝑉)
4 lmodsubdi.v . . . . 5 𝑉 = (Base‘𝑊)
5 eqid 2622 . . . . 5 (+g𝑊) = (+g𝑊)
6 lmodsubdi.m . . . . 5 = (-g𝑊)
7 lmodsubdi.f . . . . 5 𝐹 = (Scalar‘𝑊)
8 lmodsubdi.t . . . . 5 · = ( ·𝑠𝑊)
9 eqid 2622 . . . . 5 (invg𝐹) = (invg𝐹)
10 eqid 2622 . . . . 5 (1r𝐹) = (1r𝐹)
114, 5, 6, 7, 8, 9, 10lmodvsubval2 18918 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌)))
121, 2, 3, 11syl3anc 1326 . . 3 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌)))
1312oveq2d 6666 . 2 (𝜑 → (𝐴 · (𝑋 𝑌)) = (𝐴 · (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌))))
14 lmodsubdi.k . . . . . . . 8 𝐾 = (Base‘𝐹)
15 eqid 2622 . . . . . . . 8 (.r𝐹) = (.r𝐹)
167lmodring 18871 . . . . . . . . 9 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
171, 16syl 17 . . . . . . . 8 (𝜑𝐹 ∈ Ring)
18 lmodsubdi.a . . . . . . . 8 (𝜑𝐴𝐾)
1914, 15, 10, 9, 17, 18rngnegr 18595 . . . . . . 7 (𝜑 → (𝐴(.r𝐹)((invg𝐹)‘(1r𝐹))) = ((invg𝐹)‘𝐴))
2014, 15, 10, 9, 17, 18ringnegl 18594 . . . . . . 7 (𝜑 → (((invg𝐹)‘(1r𝐹))(.r𝐹)𝐴) = ((invg𝐹)‘𝐴))
2119, 20eqtr4d 2659 . . . . . 6 (𝜑 → (𝐴(.r𝐹)((invg𝐹)‘(1r𝐹))) = (((invg𝐹)‘(1r𝐹))(.r𝐹)𝐴))
2221oveq1d 6665 . . . . 5 (𝜑 → ((𝐴(.r𝐹)((invg𝐹)‘(1r𝐹))) · 𝑌) = ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐴) · 𝑌))
23 ringgrp 18552 . . . . . . . 8 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
2417, 23syl 17 . . . . . . 7 (𝜑𝐹 ∈ Grp)
2514, 10ringidcl 18568 . . . . . . . 8 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
2617, 25syl 17 . . . . . . 7 (𝜑 → (1r𝐹) ∈ 𝐾)
2714, 9grpinvcl 17467 . . . . . . 7 ((𝐹 ∈ Grp ∧ (1r𝐹) ∈ 𝐾) → ((invg𝐹)‘(1r𝐹)) ∈ 𝐾)
2824, 26, 27syl2anc 693 . . . . . 6 (𝜑 → ((invg𝐹)‘(1r𝐹)) ∈ 𝐾)
294, 7, 8, 14, 15lmodvsass 18888 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐴𝐾 ∧ ((invg𝐹)‘(1r𝐹)) ∈ 𝐾𝑌𝑉)) → ((𝐴(.r𝐹)((invg𝐹)‘(1r𝐹))) · 𝑌) = (𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌)))
301, 18, 28, 3, 29syl13anc 1328 . . . . 5 (𝜑 → ((𝐴(.r𝐹)((invg𝐹)‘(1r𝐹))) · 𝑌) = (𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌)))
314, 7, 8, 14, 15lmodvsass 18888 . . . . . 6 ((𝑊 ∈ LMod ∧ (((invg𝐹)‘(1r𝐹)) ∈ 𝐾𝐴𝐾𝑌𝑉)) → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐴) · 𝑌) = (((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌)))
321, 28, 18, 3, 31syl13anc 1328 . . . . 5 (𝜑 → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐴) · 𝑌) = (((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌)))
3322, 30, 323eqtr3d 2664 . . . 4 (𝜑 → (𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌)) = (((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌)))
3433oveq2d 6666 . . 3 (𝜑 → ((𝐴 · 𝑋)(+g𝑊)(𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌))) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌))))
354, 7, 8, 14lmodvscl 18880 . . . . 5 ((𝑊 ∈ LMod ∧ ((invg𝐹)‘(1r𝐹)) ∈ 𝐾𝑌𝑉) → (((invg𝐹)‘(1r𝐹)) · 𝑌) ∈ 𝑉)
361, 28, 3, 35syl3anc 1326 . . . 4 (𝜑 → (((invg𝐹)‘(1r𝐹)) · 𝑌) ∈ 𝑉)
374, 5, 7, 8, 14lmodvsdi 18886 . . . 4 ((𝑊 ∈ LMod ∧ (𝐴𝐾𝑋𝑉 ∧ (((invg𝐹)‘(1r𝐹)) · 𝑌) ∈ 𝑉)) → (𝐴 · (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌))) = ((𝐴 · 𝑋)(+g𝑊)(𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌))))
381, 18, 2, 36, 37syl13anc 1328 . . 3 (𝜑 → (𝐴 · (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌))) = ((𝐴 · 𝑋)(+g𝑊)(𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌))))
394, 7, 8, 14lmodvscl 18880 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
401, 18, 2, 39syl3anc 1326 . . . 4 (𝜑 → (𝐴 · 𝑋) ∈ 𝑉)
414, 7, 8, 14lmodvscl 18880 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑌𝑉) → (𝐴 · 𝑌) ∈ 𝑉)
421, 18, 3, 41syl3anc 1326 . . . 4 (𝜑 → (𝐴 · 𝑌) ∈ 𝑉)
434, 5, 6, 7, 8, 9, 10lmodvsubval2 18918 . . . 4 ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → ((𝐴 · 𝑋) (𝐴 · 𝑌)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌))))
441, 40, 42, 43syl3anc 1326 . . 3 (𝜑 → ((𝐴 · 𝑋) (𝐴 · 𝑌)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌))))
4534, 38, 443eqtr4rd 2667 . 2 (𝜑 → ((𝐴 · 𝑋) (𝐴 · 𝑌)) = (𝐴 · (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌))))
4613, 45eqtr4d 2659 1 (𝜑 → (𝐴 · (𝑋 𝑌)) = ((𝐴 · 𝑋) (𝐴 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  Grpcgrp 17422  invgcminusg 17423  -gcsg 17424  1rcur 18501  Ringcrg 18547  LModclmod 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865
This theorem is referenced by:  lvecvscan  19111  cpmadugsumlemF  20681  nlmdsdi  22485  minveclem2  23197  mapdpglem21  36981  mapdpglem28  36990  baerlem3lem1  36996  baerlem5alem1  36997  baerlem5blem1  36998
  Copyright terms: Public domain W3C validator