MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem7 Structured version   Visualization version   GIF version

Theorem ruclem7 14965
Description: Lemma for ruc 14972. Successor value for the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
Assertion
Ref Expression
ruclem7 ((𝜑𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺𝑁)𝐷(𝐹‘(𝑁 + 1))))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem7
StepHypRef Expression
1 simpr 477 . . . . 5 ((𝜑𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
2 nn0uz 11722 . . . . 5 0 = (ℤ‘0)
31, 2syl6eleq 2711 . . . 4 ((𝜑𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
4 seqp1 12816 . . . 4 (𝑁 ∈ (ℤ‘0) → (seq0(𝐷, 𝐶)‘(𝑁 + 1)) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1))))
53, 4syl 17 . . 3 ((𝜑𝑁 ∈ ℕ0) → (seq0(𝐷, 𝐶)‘(𝑁 + 1)) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1))))
6 ruc.5 . . . 4 𝐺 = seq0(𝐷, 𝐶)
76fveq1i 6192 . . 3 (𝐺‘(𝑁 + 1)) = (seq0(𝐷, 𝐶)‘(𝑁 + 1))
86fveq1i 6192 . . . 4 (𝐺𝑁) = (seq0(𝐷, 𝐶)‘𝑁)
98oveq1i 6660 . . 3 ((𝐺𝑁)𝐷(𝐶‘(𝑁 + 1))) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1)))
105, 7, 93eqtr4g 2681 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺𝑁)𝐷(𝐶‘(𝑁 + 1))))
11 nn0p1nn 11332 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
1211adantl 482 . . . . . 6 ((𝜑𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ)
1312nnne0d 11065 . . . . 5 ((𝜑𝑁 ∈ ℕ0) → (𝑁 + 1) ≠ 0)
1413necomd 2849 . . . 4 ((𝜑𝑁 ∈ ℕ0) → 0 ≠ (𝑁 + 1))
15 ruc.4 . . . . . . 7 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
1615equncomi 3759 . . . . . 6 𝐶 = (𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})
1716fveq1i 6192 . . . . 5 (𝐶‘(𝑁 + 1)) = ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘(𝑁 + 1))
18 fvunsn 6445 . . . . 5 (0 ≠ (𝑁 + 1) → ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1)))
1917, 18syl5eq 2668 . . . 4 (0 ≠ (𝑁 + 1) → (𝐶‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1)))
2014, 19syl 17 . . 3 ((𝜑𝑁 ∈ ℕ0) → (𝐶‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1)))
2120oveq2d 6666 . 2 ((𝜑𝑁 ∈ ℕ0) → ((𝐺𝑁)𝐷(𝐶‘(𝑁 + 1))) = ((𝐺𝑁)𝐷(𝐹‘(𝑁 + 1))))
2210, 21eqtrd 2656 1 ((𝜑𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺𝑁)𝐷(𝐹‘(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  csb 3533  cun 3572  ifcif 4086  {csn 4177  cop 4183   class class class wbr 4653   × cxp 5112  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cuz 11687  seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802
This theorem is referenced by:  ruclem8  14966  ruclem9  14967  ruclem12  14970
  Copyright terms: Public domain W3C validator