| Step | Hyp | Ref
| Expression |
| 1 | | ruc.6 |
. . 3
⊢ 𝑆 = sup(ran (1st
∘ 𝐺), ℝ, <
) |
| 2 | | ruc.1 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
| 3 | | ruc.2 |
. . . . . 6
⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦
⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
| 4 | | ruc.4 |
. . . . . 6
⊢ 𝐶 = ({〈0, 〈0,
1〉〉} ∪ 𝐹) |
| 5 | | ruc.5 |
. . . . . 6
⊢ 𝐺 = seq0(𝐷, 𝐶) |
| 6 | 2, 3, 4, 5 | ruclem11 14969 |
. . . . 5
⊢ (𝜑 → (ran (1st
∘ 𝐺) ⊆ ℝ
∧ ran (1st ∘ 𝐺) ≠ ∅ ∧ ∀𝑧 ∈ ran (1st
∘ 𝐺)𝑧 ≤ 1)) |
| 7 | 6 | simp1d 1073 |
. . . 4
⊢ (𝜑 → ran (1st
∘ 𝐺) ⊆
ℝ) |
| 8 | 6 | simp2d 1074 |
. . . 4
⊢ (𝜑 → ran (1st
∘ 𝐺) ≠
∅) |
| 9 | | 1re 10039 |
. . . . 5
⊢ 1 ∈
ℝ |
| 10 | 6 | simp3d 1075 |
. . . . 5
⊢ (𝜑 → ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 1) |
| 11 | | breq2 4657 |
. . . . . . 7
⊢ (𝑛 = 1 → (𝑧 ≤ 𝑛 ↔ 𝑧 ≤ 1)) |
| 12 | 11 | ralbidv 2986 |
. . . . . 6
⊢ (𝑛 = 1 → (∀𝑧 ∈ ran (1st
∘ 𝐺)𝑧 ≤ 𝑛 ↔ ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 1)) |
| 13 | 12 | rspcev 3309 |
. . . . 5
⊢ ((1
∈ ℝ ∧ ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 1) → ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 𝑛) |
| 14 | 9, 10, 13 | sylancr 695 |
. . . 4
⊢ (𝜑 → ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 𝑛) |
| 15 | | suprcl 10983 |
. . . 4
⊢ ((ran
(1st ∘ 𝐺)
⊆ ℝ ∧ ran (1st ∘ 𝐺) ≠ ∅ ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st
∘ 𝐺)𝑧 ≤ 𝑛) → sup(ran (1st ∘
𝐺), ℝ, < ) ∈
ℝ) |
| 16 | 7, 8, 14, 15 | syl3anc 1326 |
. . 3
⊢ (𝜑 → sup(ran (1st
∘ 𝐺), ℝ, < )
∈ ℝ) |
| 17 | 1, 16 | syl5eqel 2705 |
. 2
⊢ (𝜑 → 𝑆 ∈ ℝ) |
| 18 | 2 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐹:ℕ⟶ℝ) |
| 19 | 3 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦
⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
| 20 | 2, 3, 4, 5 | ruclem6 14964 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:ℕ0⟶(ℝ ×
ℝ)) |
| 21 | | nnm1nn0 11334 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → (𝑛 − 1) ∈
ℕ0) |
| 22 | | ffvelrn 6357 |
. . . . . . . . . . 11
⊢ ((𝐺:ℕ0⟶(ℝ ×
ℝ) ∧ (𝑛 −
1) ∈ ℕ0) → (𝐺‘(𝑛 − 1)) ∈ (ℝ ×
ℝ)) |
| 23 | 20, 21, 22 | syl2an 494 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘(𝑛 − 1)) ∈ (ℝ ×
ℝ)) |
| 24 | | xp1st 7198 |
. . . . . . . . . 10
⊢ ((𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ)
→ (1st ‘(𝐺‘(𝑛 − 1))) ∈
ℝ) |
| 25 | 23, 24 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘(𝑛 − 1))) ∈
ℝ) |
| 26 | | xp2nd 7199 |
. . . . . . . . . 10
⊢ ((𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ)
→ (2nd ‘(𝐺‘(𝑛 − 1))) ∈
ℝ) |
| 27 | 23, 26 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐺‘(𝑛 − 1))) ∈
ℝ) |
| 28 | 2 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ ℝ) |
| 29 | | eqid 2622 |
. . . . . . . . 9
⊢
(1st ‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) = (1st
‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) |
| 30 | | eqid 2622 |
. . . . . . . . 9
⊢
(2nd ‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) = (2nd
‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) |
| 31 | 2, 3, 4, 5 | ruclem8 14966 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 − 1) ∈ ℕ0)
→ (1st ‘(𝐺‘(𝑛 − 1))) < (2nd
‘(𝐺‘(𝑛 − 1)))) |
| 32 | 21, 31 | sylan2 491 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘(𝑛 − 1))) <
(2nd ‘(𝐺‘(𝑛 − 1)))) |
| 33 | 18, 19, 25, 27, 28, 29, 30, 32 | ruclem3 14962 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) < (1st
‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) ∨ (2nd
‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) < (𝐹‘𝑛))) |
| 34 | 2, 3, 4, 5 | ruclem7 14965 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 − 1) ∈ ℕ0)
→ (𝐺‘((𝑛 − 1) + 1)) = ((𝐺‘(𝑛 − 1))𝐷(𝐹‘((𝑛 − 1) + 1)))) |
| 35 | 21, 34 | sylan2 491 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘((𝑛 − 1) + 1)) = ((𝐺‘(𝑛 − 1))𝐷(𝐹‘((𝑛 − 1) + 1)))) |
| 36 | | nncn 11028 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
| 37 | 36 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ) |
| 38 | | ax-1cn 9994 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℂ |
| 39 | | npcan 10290 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑛 −
1) + 1) = 𝑛) |
| 40 | 37, 38, 39 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑛 − 1) + 1) = 𝑛) |
| 41 | 40 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘((𝑛 − 1) + 1)) = (𝐺‘𝑛)) |
| 42 | | 1st2nd2 7205 |
. . . . . . . . . . . . . 14
⊢ ((𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ)
→ (𝐺‘(𝑛 − 1)) =
〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉) |
| 43 | 23, 42 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘(𝑛 − 1)) = 〈(1st
‘(𝐺‘(𝑛 − 1))), (2nd
‘(𝐺‘(𝑛 −
1)))〉) |
| 44 | 40 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘((𝑛 − 1) + 1)) = (𝐹‘𝑛)) |
| 45 | 43, 44 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐺‘(𝑛 − 1))𝐷(𝐹‘((𝑛 − 1) + 1))) = (〈(1st
‘(𝐺‘(𝑛 − 1))), (2nd
‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) |
| 46 | 35, 41, 45 | 3eqtr3d 2664 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) = (〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) |
| 47 | 46 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘𝑛)) = (1st
‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛)))) |
| 48 | 47 | breq2d 4665 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) < (1st ‘(𝐺‘𝑛)) ↔ (𝐹‘𝑛) < (1st
‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))))) |
| 49 | 46 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐺‘𝑛)) = (2nd
‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛)))) |
| 50 | 49 | breq1d 4663 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((2nd
‘(𝐺‘𝑛)) < (𝐹‘𝑛) ↔ (2nd
‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) < (𝐹‘𝑛))) |
| 51 | 48, 50 | orbi12d 746 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((𝐹‘𝑛) < (1st ‘(𝐺‘𝑛)) ∨ (2nd ‘(𝐺‘𝑛)) < (𝐹‘𝑛)) ↔ ((𝐹‘𝑛) < (1st
‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) ∨ (2nd
‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) < (𝐹‘𝑛)))) |
| 52 | 33, 51 | mpbird 247 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) < (1st ‘(𝐺‘𝑛)) ∨ (2nd ‘(𝐺‘𝑛)) < (𝐹‘𝑛))) |
| 53 | 7 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (1st
∘ 𝐺) ⊆
ℝ) |
| 54 | 8 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (1st
∘ 𝐺) ≠
∅) |
| 55 | 14 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st
∘ 𝐺)𝑧 ≤ 𝑛) |
| 56 | | nnnn0 11299 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
| 57 | | fvco3 6275 |
. . . . . . . . . . . . 13
⊢ ((𝐺:ℕ0⟶(ℝ ×
ℝ) ∧ 𝑛 ∈
ℕ0) → ((1st ∘ 𝐺)‘𝑛) = (1st ‘(𝐺‘𝑛))) |
| 58 | 20, 56, 57 | syl2an 494 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
∘ 𝐺)‘𝑛) = (1st
‘(𝐺‘𝑛))) |
| 59 | 20 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐺:ℕ0⟶(ℝ ×
ℝ)) |
| 60 | | 1stcof 7196 |
. . . . . . . . . . . . . 14
⊢ (𝐺:ℕ0⟶(ℝ ×
ℝ) → (1st ∘ 𝐺):ℕ0⟶ℝ) |
| 61 | | ffn 6045 |
. . . . . . . . . . . . . 14
⊢
((1st ∘ 𝐺):ℕ0⟶ℝ →
(1st ∘ 𝐺)
Fn ℕ0) |
| 62 | 59, 60, 61 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
∘ 𝐺) Fn
ℕ0) |
| 63 | 56 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
| 64 | | fnfvelrn 6356 |
. . . . . . . . . . . . 13
⊢
(((1st ∘ 𝐺) Fn ℕ0 ∧ 𝑛 ∈ ℕ0)
→ ((1st ∘ 𝐺)‘𝑛) ∈ ran (1st ∘ 𝐺)) |
| 65 | 62, 63, 64 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
∘ 𝐺)‘𝑛) ∈ ran (1st
∘ 𝐺)) |
| 66 | 58, 65 | eqeltrrd 2702 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘𝑛)) ∈ ran (1st
∘ 𝐺)) |
| 67 | | suprub 10984 |
. . . . . . . . . . 11
⊢ (((ran
(1st ∘ 𝐺)
⊆ ℝ ∧ ran (1st ∘ 𝐺) ≠ ∅ ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st
∘ 𝐺)𝑧 ≤ 𝑛) ∧ (1st ‘(𝐺‘𝑛)) ∈ ran (1st ∘ 𝐺)) → (1st
‘(𝐺‘𝑛)) ≤ sup(ran (1st
∘ 𝐺), ℝ, <
)) |
| 68 | 53, 54, 55, 66, 67 | syl31anc 1329 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘𝑛)) ≤ sup(ran (1st
∘ 𝐺), ℝ, <
)) |
| 69 | 68, 1 | syl6breqr 4695 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘𝑛)) ≤ 𝑆) |
| 70 | | ffvelrn 6357 |
. . . . . . . . . . . 12
⊢ ((𝐺:ℕ0⟶(ℝ ×
ℝ) ∧ 𝑛 ∈
ℕ0) → (𝐺‘𝑛) ∈ (ℝ ×
ℝ)) |
| 71 | 20, 56, 70 | syl2an 494 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ (ℝ ×
ℝ)) |
| 72 | | xp1st 7198 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑛) ∈ (ℝ × ℝ) →
(1st ‘(𝐺‘𝑛)) ∈ ℝ) |
| 73 | 71, 72 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘𝑛)) ∈
ℝ) |
| 74 | 17 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑆 ∈ ℝ) |
| 75 | | ltletr 10129 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑛) ∈ ℝ ∧ (1st
‘(𝐺‘𝑛)) ∈ ℝ ∧ 𝑆 ∈ ℝ) → (((𝐹‘𝑛) < (1st ‘(𝐺‘𝑛)) ∧ (1st ‘(𝐺‘𝑛)) ≤ 𝑆) → (𝐹‘𝑛) < 𝑆)) |
| 76 | 28, 73, 74, 75 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((𝐹‘𝑛) < (1st ‘(𝐺‘𝑛)) ∧ (1st ‘(𝐺‘𝑛)) ≤ 𝑆) → (𝐹‘𝑛) < 𝑆)) |
| 77 | 69, 76 | mpan2d 710 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) < (1st ‘(𝐺‘𝑛)) → (𝐹‘𝑛) < 𝑆)) |
| 78 | | fvco3 6275 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺:ℕ0⟶(ℝ ×
ℝ) ∧ 𝑘 ∈
ℕ0) → ((1st ∘ 𝐺)‘𝑘) = (1st ‘(𝐺‘𝑘))) |
| 79 | 59, 78 | sylan 488 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) →
((1st ∘ 𝐺)‘𝑘) = (1st ‘(𝐺‘𝑘))) |
| 80 | 59 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ (ℝ ×
ℝ)) |
| 81 | | xp1st 7198 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘𝑘) ∈ (ℝ × ℝ) →
(1st ‘(𝐺‘𝑘)) ∈ ℝ) |
| 82 | 80, 81 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) →
(1st ‘(𝐺‘𝑘)) ∈ ℝ) |
| 83 | | xp2nd 7199 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘𝑛) ∈ (ℝ × ℝ) →
(2nd ‘(𝐺‘𝑛)) ∈ ℝ) |
| 84 | 71, 83 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐺‘𝑛)) ∈
ℝ) |
| 85 | 84 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) →
(2nd ‘(𝐺‘𝑛)) ∈ ℝ) |
| 86 | 18 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝐹:ℕ⟶ℝ) |
| 87 | 19 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦
⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
| 88 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
| 89 | 63 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
| 90 | 86, 87, 4, 5, 88, 89 | ruclem10 14968 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) →
(1st ‘(𝐺‘𝑘)) < (2nd ‘(𝐺‘𝑛))) |
| 91 | 82, 85, 90 | ltled 10185 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) →
(1st ‘(𝐺‘𝑘)) ≤ (2nd ‘(𝐺‘𝑛))) |
| 92 | 79, 91 | eqbrtrd 4675 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) →
((1st ∘ 𝐺)‘𝑘) ≤ (2nd ‘(𝐺‘𝑛))) |
| 93 | 92 | ralrimiva 2966 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ ℕ0
((1st ∘ 𝐺)‘𝑘) ≤ (2nd ‘(𝐺‘𝑛))) |
| 94 | | breq1 4656 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = ((1st ∘
𝐺)‘𝑘) → (𝑧 ≤ (2nd ‘(𝐺‘𝑛)) ↔ ((1st ∘ 𝐺)‘𝑘) ≤ (2nd ‘(𝐺‘𝑛)))) |
| 95 | 94 | ralrn 6362 |
. . . . . . . . . . . . 13
⊢
((1st ∘ 𝐺) Fn ℕ0 →
(∀𝑧 ∈ ran
(1st ∘ 𝐺)𝑧 ≤ (2nd ‘(𝐺‘𝑛)) ↔ ∀𝑘 ∈ ℕ0 ((1st
∘ 𝐺)‘𝑘) ≤ (2nd
‘(𝐺‘𝑛)))) |
| 96 | 62, 95 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∀𝑧 ∈ ran (1st
∘ 𝐺)𝑧 ≤ (2nd
‘(𝐺‘𝑛)) ↔ ∀𝑘 ∈ ℕ0
((1st ∘ 𝐺)‘𝑘) ≤ (2nd ‘(𝐺‘𝑛)))) |
| 97 | 93, 96 | mpbird 247 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑧 ∈ ran (1st
∘ 𝐺)𝑧 ≤ (2nd
‘(𝐺‘𝑛))) |
| 98 | | suprleub 10989 |
. . . . . . . . . . . 12
⊢ (((ran
(1st ∘ 𝐺)
⊆ ℝ ∧ ran (1st ∘ 𝐺) ≠ ∅ ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st
∘ 𝐺)𝑧 ≤ 𝑛) ∧ (2nd ‘(𝐺‘𝑛)) ∈ ℝ) → (sup(ran
(1st ∘ 𝐺),
ℝ, < ) ≤ (2nd ‘(𝐺‘𝑛)) ↔ ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ (2nd ‘(𝐺‘𝑛)))) |
| 99 | 53, 54, 55, 84, 98 | syl31anc 1329 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (sup(ran
(1st ∘ 𝐺),
ℝ, < ) ≤ (2nd ‘(𝐺‘𝑛)) ↔ ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ (2nd ‘(𝐺‘𝑛)))) |
| 100 | 97, 99 | mpbird 247 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → sup(ran
(1st ∘ 𝐺),
ℝ, < ) ≤ (2nd ‘(𝐺‘𝑛))) |
| 101 | 1, 100 | syl5eqbr 4688 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑆 ≤ (2nd ‘(𝐺‘𝑛))) |
| 102 | | lelttr 10128 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ ℝ ∧
(2nd ‘(𝐺‘𝑛)) ∈ ℝ ∧ (𝐹‘𝑛) ∈ ℝ) → ((𝑆 ≤ (2nd ‘(𝐺‘𝑛)) ∧ (2nd ‘(𝐺‘𝑛)) < (𝐹‘𝑛)) → 𝑆 < (𝐹‘𝑛))) |
| 103 | 74, 84, 28, 102 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑆 ≤ (2nd ‘(𝐺‘𝑛)) ∧ (2nd ‘(𝐺‘𝑛)) < (𝐹‘𝑛)) → 𝑆 < (𝐹‘𝑛))) |
| 104 | 101, 103 | mpand 711 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((2nd
‘(𝐺‘𝑛)) < (𝐹‘𝑛) → 𝑆 < (𝐹‘𝑛))) |
| 105 | 77, 104 | orim12d 883 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((𝐹‘𝑛) < (1st ‘(𝐺‘𝑛)) ∨ (2nd ‘(𝐺‘𝑛)) < (𝐹‘𝑛)) → ((𝐹‘𝑛) < 𝑆 ∨ 𝑆 < (𝐹‘𝑛)))) |
| 106 | 52, 105 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) < 𝑆 ∨ 𝑆 < (𝐹‘𝑛))) |
| 107 | 28, 74 | lttri2d 10176 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ≠ 𝑆 ↔ ((𝐹‘𝑛) < 𝑆 ∨ 𝑆 < (𝐹‘𝑛)))) |
| 108 | 106, 107 | mpbird 247 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ≠ 𝑆) |
| 109 | 108 | neneqd 2799 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ¬ (𝐹‘𝑛) = 𝑆) |
| 110 | 109 | nrexdv 3001 |
. . 3
⊢ (𝜑 → ¬ ∃𝑛 ∈ ℕ (𝐹‘𝑛) = 𝑆) |
| 111 | | risset 3062 |
. . . 4
⊢ (𝑆 ∈ ran 𝐹 ↔ ∃𝑧 ∈ ran 𝐹 𝑧 = 𝑆) |
| 112 | | ffn 6045 |
. . . . 5
⊢ (𝐹:ℕ⟶ℝ →
𝐹 Fn
ℕ) |
| 113 | | eqeq1 2626 |
. . . . . 6
⊢ (𝑧 = (𝐹‘𝑛) → (𝑧 = 𝑆 ↔ (𝐹‘𝑛) = 𝑆)) |
| 114 | 113 | rexrn 6361 |
. . . . 5
⊢ (𝐹 Fn ℕ → (∃𝑧 ∈ ran 𝐹 𝑧 = 𝑆 ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) = 𝑆)) |
| 115 | 2, 112, 114 | 3syl 18 |
. . . 4
⊢ (𝜑 → (∃𝑧 ∈ ran 𝐹 𝑧 = 𝑆 ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) = 𝑆)) |
| 116 | 111, 115 | syl5bb 272 |
. . 3
⊢ (𝜑 → (𝑆 ∈ ran 𝐹 ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) = 𝑆)) |
| 117 | 110, 116 | mtbird 315 |
. 2
⊢ (𝜑 → ¬ 𝑆 ∈ ran 𝐹) |
| 118 | 17, 117 | eldifd 3585 |
1
⊢ (𝜑 → 𝑆 ∈ (ℝ ∖ ran 𝐹)) |