MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem8 Structured version   Visualization version   GIF version

Theorem ruclem8 14966
Description: Lemma for ruc 14972. The intervals of the 𝐺 sequence are all nonempty. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
Assertion
Ref Expression
ruclem8 ((𝜑𝑁 ∈ ℕ0) → (1st ‘(𝐺𝑁)) < (2nd ‘(𝐺𝑁)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem8
Dummy variables 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . 6 (𝑘 = 0 → (𝐺𝑘) = (𝐺‘0))
21fveq2d 6195 . . . . 5 (𝑘 = 0 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺‘0)))
31fveq2d 6195 . . . . 5 (𝑘 = 0 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺‘0)))
42, 3breq12d 4666 . . . 4 (𝑘 = 0 → ((1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘)) ↔ (1st ‘(𝐺‘0)) < (2nd ‘(𝐺‘0))))
54imbi2d 330 . . 3 (𝑘 = 0 → ((𝜑 → (1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘))) ↔ (𝜑 → (1st ‘(𝐺‘0)) < (2nd ‘(𝐺‘0)))))
6 fveq2 6191 . . . . . 6 (𝑘 = 𝑛 → (𝐺𝑘) = (𝐺𝑛))
76fveq2d 6195 . . . . 5 (𝑘 = 𝑛 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺𝑛)))
86fveq2d 6195 . . . . 5 (𝑘 = 𝑛 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺𝑛)))
97, 8breq12d 4666 . . . 4 (𝑘 = 𝑛 → ((1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘)) ↔ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛))))
109imbi2d 330 . . 3 (𝑘 = 𝑛 → ((𝜑 → (1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘))) ↔ (𝜑 → (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))))
11 fveq2 6191 . . . . . 6 (𝑘 = (𝑛 + 1) → (𝐺𝑘) = (𝐺‘(𝑛 + 1)))
1211fveq2d 6195 . . . . 5 (𝑘 = (𝑛 + 1) → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺‘(𝑛 + 1))))
1311fveq2d 6195 . . . . 5 (𝑘 = (𝑛 + 1) → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺‘(𝑛 + 1))))
1412, 13breq12d 4666 . . . 4 (𝑘 = (𝑛 + 1) → ((1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘)) ↔ (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1)))))
1514imbi2d 330 . . 3 (𝑘 = (𝑛 + 1) → ((𝜑 → (1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘))) ↔ (𝜑 → (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1))))))
16 fveq2 6191 . . . . . 6 (𝑘 = 𝑁 → (𝐺𝑘) = (𝐺𝑁))
1716fveq2d 6195 . . . . 5 (𝑘 = 𝑁 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺𝑁)))
1816fveq2d 6195 . . . . 5 (𝑘 = 𝑁 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺𝑁)))
1917, 18breq12d 4666 . . . 4 (𝑘 = 𝑁 → ((1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘)) ↔ (1st ‘(𝐺𝑁)) < (2nd ‘(𝐺𝑁))))
2019imbi2d 330 . . 3 (𝑘 = 𝑁 → ((𝜑 → (1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘))) ↔ (𝜑 → (1st ‘(𝐺𝑁)) < (2nd ‘(𝐺𝑁)))))
21 0lt1 10550 . . . . 5 0 < 1
2221a1i 11 . . . 4 (𝜑 → 0 < 1)
23 ruc.1 . . . . . . 7 (𝜑𝐹:ℕ⟶ℝ)
24 ruc.2 . . . . . . 7 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
25 ruc.4 . . . . . . 7 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
26 ruc.5 . . . . . . 7 𝐺 = seq0(𝐷, 𝐶)
2723, 24, 25, 26ruclem4 14963 . . . . . 6 (𝜑 → (𝐺‘0) = ⟨0, 1⟩)
2827fveq2d 6195 . . . . 5 (𝜑 → (1st ‘(𝐺‘0)) = (1st ‘⟨0, 1⟩))
29 c0ex 10034 . . . . . 6 0 ∈ V
30 1ex 10035 . . . . . 6 1 ∈ V
3129, 30op1st 7176 . . . . 5 (1st ‘⟨0, 1⟩) = 0
3228, 31syl6eq 2672 . . . 4 (𝜑 → (1st ‘(𝐺‘0)) = 0)
3327fveq2d 6195 . . . . 5 (𝜑 → (2nd ‘(𝐺‘0)) = (2nd ‘⟨0, 1⟩))
3429, 30op2nd 7177 . . . . 5 (2nd ‘⟨0, 1⟩) = 1
3533, 34syl6eq 2672 . . . 4 (𝜑 → (2nd ‘(𝐺‘0)) = 1)
3622, 32, 353brtr4d 4685 . . 3 (𝜑 → (1st ‘(𝐺‘0)) < (2nd ‘(𝐺‘0)))
3723adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → 𝐹:ℕ⟶ℝ)
3824adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
3923, 24, 25, 26ruclem6 14964 . . . . . . . . . . . 12 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
4039ffvelrnda 6359 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ (ℝ × ℝ))
4140adantrr 753 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (𝐺𝑛) ∈ (ℝ × ℝ))
42 xp1st 7198 . . . . . . . . . 10 ((𝐺𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑛)) ∈ ℝ)
4341, 42syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (1st ‘(𝐺𝑛)) ∈ ℝ)
44 xp2nd 7199 . . . . . . . . . 10 ((𝐺𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
4541, 44syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
46 nn0p1nn 11332 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
47 ffvelrn 6357 . . . . . . . . . . 11 ((𝐹:ℕ⟶ℝ ∧ (𝑛 + 1) ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
4823, 46, 47syl2an 494 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
4948adantrr 753 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
50 eqid 2622 . . . . . . . . 9 (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) = (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
51 eqid 2622 . . . . . . . . 9 (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) = (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
52 simprr 796 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))
5337, 38, 43, 45, 49, 50, 51, 52ruclem2 14961 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → ((1st ‘(𝐺𝑛)) ≤ (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ∧ (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) < (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ∧ (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ≤ (2nd ‘(𝐺𝑛))))
5453simp2d 1074 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) < (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
5523, 24, 25, 26ruclem7 14965 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐺‘(𝑛 + 1)) = ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))))
5655adantrr 753 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (𝐺‘(𝑛 + 1)) = ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))))
57 1st2nd2 7205 . . . . . . . . . . 11 ((𝐺𝑛) ∈ (ℝ × ℝ) → (𝐺𝑛) = ⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩)
5841, 57syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (𝐺𝑛) = ⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩)
5958oveq1d 6665 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))) = (⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
6056, 59eqtrd 2656 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (𝐺‘(𝑛 + 1)) = (⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
6160fveq2d 6195 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (1st ‘(𝐺‘(𝑛 + 1))) = (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
6260fveq2d 6195 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (2nd ‘(𝐺‘(𝑛 + 1))) = (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
6354, 61, 623brtr4d 4685 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1))))
6463expr 643 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → ((1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)) → (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1)))))
6564expcom 451 . . . 4 (𝑛 ∈ ℕ0 → (𝜑 → ((1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)) → (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1))))))
6665a2d 29 . . 3 (𝑛 ∈ ℕ0 → ((𝜑 → (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛))) → (𝜑 → (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1))))))
675, 10, 15, 20, 36, 66nn0ind 11472 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (1st ‘(𝐺𝑁)) < (2nd ‘(𝐺𝑁))))
6867impcom 446 1 ((𝜑𝑁 ∈ ℕ0) → (1st ‘(𝐺𝑁)) < (2nd ‘(𝐺𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  csb 3533  cun 3572  ifcif 4086  {csn 4177  cop 4183   class class class wbr 4653   × cxp 5112  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  ruclem9  14967  ruclem10  14968  ruclem12  14970
  Copyright terms: Public domain W3C validator