MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sacgr Structured version   Visualization version   GIF version

Theorem sacgr 25722
Description: Supplementary angles of congruent angles are themselves congruent. Theorem 11.13 of [Schwabhauser] p. 98. (Contributed by Thierry Arnoux, 30-Sep-2020.)
Hypotheses
Ref Expression
dfcgra2.p 𝑃 = (Base‘𝐺)
dfcgra2.i 𝐼 = (Itv‘𝐺)
dfcgra2.m = (dist‘𝐺)
dfcgra2.g (𝜑𝐺 ∈ TarskiG)
dfcgra2.a (𝜑𝐴𝑃)
dfcgra2.b (𝜑𝐵𝑃)
dfcgra2.c (𝜑𝐶𝑃)
dfcgra2.d (𝜑𝐷𝑃)
dfcgra2.e (𝜑𝐸𝑃)
dfcgra2.f (𝜑𝐹𝑃)
sacgr.x (𝜑𝑋𝑃)
sacgr.y (𝜑𝑌𝑃)
sacgr.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
sacgr.2 (𝜑𝐵 ∈ (𝐴𝐼𝑋))
sacgr.3 (𝜑𝐸 ∈ (𝐷𝐼𝑌))
sacgr.4 (𝜑𝐵𝑋)
sacgr.5 (𝜑𝐸𝑌)
Assertion
Ref Expression
sacgr (𝜑 → ⟨“𝑋𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑌𝐸𝐹”⟩)

Proof of Theorem sacgr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcgra2.p . . 3 𝑃 = (Base‘𝐺)
2 dfcgra2.i . . 3 𝐼 = (Itv‘𝐺)
3 eqid 2622 . . 3 (hlG‘𝐺) = (hlG‘𝐺)
4 dfcgra2.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐺 ∈ TarskiG)
6 sacgr.x . . . 4 (𝜑𝑋𝑃)
76ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑋𝑃)
8 dfcgra2.b . . . 4 (𝜑𝐵𝑃)
98ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐵𝑃)
10 dfcgra2.c . . . 4 (𝜑𝐶𝑃)
1110ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐶𝑃)
12 sacgr.y . . . 4 (𝜑𝑌𝑃)
1312ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑌𝑃)
14 dfcgra2.e . . . 4 (𝜑𝐸𝑃)
1514ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸𝑃)
16 dfcgra2.f . . . 4 (𝜑𝐹𝑃)
1716ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐹𝑃)
18 dfcgra2.m . . . 4 = (dist‘𝐺)
19 eqid 2622 . . . 4 (LineG‘𝐺) = (LineG‘𝐺)
20 eqid 2622 . . . 4 (pInvG‘𝐺) = (pInvG‘𝐺)
21 eqid 2622 . . . 4 ((pInvG‘𝐺)‘𝐸) = ((pInvG‘𝐺)‘𝐸)
22 simpllr 799 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑥𝑃)
231, 18, 2, 19, 20, 5, 15, 21, 22mircl 25556 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐸)‘𝑥) ∈ 𝑃)
24 simplr 792 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑦𝑃)
25 eqid 2622 . . . 4 (cgrG‘𝐺) = (cgrG‘𝐺)
261, 18, 2, 19, 20, 5, 15, 21, 22mircgr 25552 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (𝐸 (((pInvG‘𝐺)‘𝐸)‘𝑥)) = (𝐸 𝑥))
271, 18, 2, 5, 15, 23, 15, 22, 26tgcgrcomlr 25375 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → ((((pInvG‘𝐺)‘𝐸)‘𝑥) 𝐸) = (𝑥 𝐸))
28 eqid 2622 . . . . . . . 8 ((pInvG‘𝐺)‘𝐵) = ((pInvG‘𝐺)‘𝐵)
291, 18, 2, 19, 20, 4, 8, 28, 6mircl 25556 . . . . . . 7 (𝜑 → (((pInvG‘𝐺)‘𝐵)‘𝑋) ∈ 𝑃)
3029ad3antrrr 766 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐵)‘𝑋) ∈ 𝑃)
31 simpr1 1067 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → ⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩)
321, 18, 2, 25, 5, 30, 9, 11, 22, 15, 24, 31cgr3simp1 25415 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → ((((pInvG‘𝐺)‘𝐵)‘𝑋) 𝐵) = (𝑥 𝐸))
331, 18, 2, 19, 20, 4, 8, 28, 6mircgr 25552 . . . . . . 7 (𝜑 → (𝐵 (((pInvG‘𝐺)‘𝐵)‘𝑋)) = (𝐵 𝑋))
341, 18, 2, 4, 8, 29, 8, 6, 33tgcgrcomlr 25375 . . . . . 6 (𝜑 → ((((pInvG‘𝐺)‘𝐵)‘𝑋) 𝐵) = (𝑋 𝐵))
3534ad3antrrr 766 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → ((((pInvG‘𝐺)‘𝐵)‘𝑋) 𝐵) = (𝑋 𝐵))
3627, 32, 353eqtr2rd 2663 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (𝑋 𝐵) = ((((pInvG‘𝐺)‘𝐸)‘𝑥) 𝐸))
371, 18, 2, 25, 5, 30, 9, 11, 22, 15, 24, 31cgr3simp2 25416 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (𝐵 𝐶) = (𝐸 𝑦))
381, 18, 2, 19, 20, 4, 8, 28, 6mirmir 25557 . . . . . . . . . 10 (𝜑 → (((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋)) = 𝑋)
39 eqidd 2623 . . . . . . . . . 10 (𝜑𝐵 = 𝐵)
40 eqidd 2623 . . . . . . . . . 10 (𝜑𝐶 = 𝐶)
4138, 39, 40s3eqd 13609 . . . . . . . . 9 (𝜑 → ⟨“(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))𝐵𝐶”⟩ = ⟨“𝑋𝐵𝐶”⟩)
4241ad3antrrr 766 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → ⟨“(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))𝐵𝐶”⟩ = ⟨“𝑋𝐵𝐶”⟩)
43 sacgr.4 . . . . . . . . . . . 12 (𝜑𝐵𝑋)
4443necomd 2849 . . . . . . . . . . 11 (𝜑𝑋𝐵)
451, 18, 2, 19, 20, 4, 8, 28, 6, 44mirne 25562 . . . . . . . . . 10 (𝜑 → (((pInvG‘𝐺)‘𝐵)‘𝑋) ≠ 𝐵)
4645ad3antrrr 766 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐵)‘𝑋) ≠ 𝐵)
471, 18, 2, 19, 20, 5, 25, 28, 21, 30, 9, 22, 15, 11, 24, 46, 31mirtrcgr 25578 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → ⟨“(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))𝐵𝐶”⟩(cgrG‘𝐺)⟨“(((pInvG‘𝐺)‘𝐸)‘𝑥)𝐸𝑦”⟩)
4842, 47eqbrtrrd 4677 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → ⟨“𝑋𝐵𝐶”⟩(cgrG‘𝐺)⟨“(((pInvG‘𝐺)‘𝐸)‘𝑥)𝐸𝑦”⟩)
491, 18, 2, 25, 5, 7, 9, 11, 23, 15, 24, 48cgr3swap13 25420 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → ⟨“𝐶𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝑦𝐸(((pInvG‘𝐺)‘𝐸)‘𝑥)”⟩)
501, 18, 2, 25, 5, 11, 9, 7, 24, 15, 23, 49cgr3simp3 25417 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (𝑋 𝐶) = ((((pInvG‘𝐺)‘𝐸)‘𝑥) 𝑦))
511, 18, 2, 5, 7, 11, 23, 24, 50tgcgrcomlr 25375 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (𝐶 𝑋) = (𝑦 (((pInvG‘𝐺)‘𝐸)‘𝑥)))
521, 18, 25, 5, 7, 9, 11, 23, 15, 24, 36, 37, 51trgcgr 25411 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → ⟨“𝑋𝐵𝐶”⟩(cgrG‘𝐺)⟨“(((pInvG‘𝐺)‘𝐸)‘𝑥)𝐸𝑦”⟩)
53 sacgr.5 . . . . . . 7 (𝜑𝐸𝑌)
5453ad3antrrr 766 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸𝑌)
5554necomd 2849 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑌𝐸)
56 dfcgra2.d . . . . . . . 8 (𝜑𝐷𝑃)
5756ad3antrrr 766 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐷𝑃)
58 simpr2 1068 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑥((hlG‘𝐺)‘𝐸)𝐷)
591, 2, 3, 22, 57, 15, 5, 58hlne1 25500 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑥𝐸)
601, 18, 2, 19, 20, 5, 15, 21, 22, 59mirne 25562 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐸)‘𝑥) ≠ 𝐸)
611, 2, 3, 22, 57, 15, 5, 58hlcomd 25499 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐷((hlG‘𝐺)‘𝐸)𝑥)
62 sacgr.3 . . . . . . . . 9 (𝜑𝐸 ∈ (𝐷𝐼𝑌))
6362ad3antrrr 766 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝐷𝐼𝑌))
641, 2, 3, 57, 22, 13, 5, 15, 61, 63btwnhl 25509 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝑥𝐼𝑌))
651, 18, 2, 5, 22, 15, 13, 64tgbtwncom 25383 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝑌𝐼𝑥))
661, 18, 2, 19, 20, 5, 15, 21, 22mirmir 25557 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐸)‘(((pInvG‘𝐺)‘𝐸)‘𝑥)) = 𝑥)
6766oveq2d 6666 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (𝑌𝐼(((pInvG‘𝐺)‘𝐸)‘(((pInvG‘𝐺)‘𝐸)‘𝑥))) = (𝑌𝐼𝑥))
6865, 67eleqtrrd 2704 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝑌𝐼(((pInvG‘𝐺)‘𝐸)‘(((pInvG‘𝐺)‘𝐸)‘𝑥))))
691, 18, 2, 19, 20, 5, 21, 3, 15, 13, 23, 15, 55, 60, 68mirhl2 25576 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑌((hlG‘𝐺)‘𝐸)(((pInvG‘𝐺)‘𝐸)‘𝑥))
701, 2, 3, 13, 23, 15, 5, 69hlcomd 25499 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐸)‘𝑥)((hlG‘𝐺)‘𝐸)𝑌)
71 simpr3 1069 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑦((hlG‘𝐺)‘𝐸)𝐹)
721, 2, 3, 5, 7, 9, 11, 13, 15, 17, 23, 24, 52, 70, 71iscgrad 25703 . 2 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → ⟨“𝑋𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑌𝐸𝐹”⟩)
73 dfcgra2.a . . . 4 (𝜑𝐴𝑃)
74 sacgr.1 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
751, 2, 3, 4, 73, 8, 10, 56, 14, 16, 74cgrane2 25705 . . . . . 6 (𝜑𝐵𝐶)
761, 2, 4, 3, 29, 8, 10, 45, 75cgraid 25711 . . . . 5 (𝜑 → ⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrA‘𝐺)⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩)
771, 2, 3, 4, 73, 8, 10, 56, 14, 16, 74cgrane1 25704 . . . . . 6 (𝜑𝐴𝐵)
78 sacgr.2 . . . . . . 7 (𝜑𝐵 ∈ (𝐴𝐼𝑋))
7938oveq2d 6666 . . . . . . 7 (𝜑 → (𝐴𝐼(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))) = (𝐴𝐼𝑋))
8078, 79eleqtrrd 2704 . . . . . 6 (𝜑𝐵 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))))
811, 18, 2, 19, 20, 4, 28, 3, 8, 73, 29, 73, 77, 45, 80mirhl2 25576 . . . . 5 (𝜑𝐴((hlG‘𝐺)‘𝐵)(((pInvG‘𝐺)‘𝐵)‘𝑋))
821, 2, 3, 4, 29, 8, 10, 29, 8, 10, 76, 73, 81cgrahl1 25708 . . . 4 (𝜑 → ⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
831, 2, 4, 3, 29, 8, 10, 73, 8, 10, 82, 56, 14, 16, 74cgratr 25715 . . 3 (𝜑 → ⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
841, 2, 3, 4, 29, 8, 10, 56, 14, 16iscgra 25701 . . 3 (𝜑 → (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)))
8583, 84mpbid 222 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹))
8672, 85r19.29vva 3081 1 (𝜑 → ⟨“𝑋𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑌𝐸𝐹”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  ⟨“cs3 13587  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  cgrGccgrg 25405  hlGchlg 25495  pInvGcmir 25547  cgrAccgra 25699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-hlg 25496  df-mir 25548  df-cgra 25700
This theorem is referenced by:  oacgr  25723
  Copyright terms: Public domain W3C validator