Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salpreimagtge Structured version   Visualization version   GIF version

Theorem salpreimagtge 40934
Description: If all the preimages of left-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of left-closed, unbounded above intervals, belong to the sigma-algebra. (iii) implies (iv) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
salpreimagtge.x 𝑥𝜑
salpreimagtge.a 𝑎𝜑
salpreimagtge.s (𝜑𝑆 ∈ SAlg)
salpreimagtge.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
salpreimagtge.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < 𝐵} ∈ 𝑆)
salpreimagtge.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
salpreimagtge (𝜑 → {𝑥𝐴𝐶𝐵} ∈ 𝑆)
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎   𝐶,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐴(𝑥)   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem salpreimagtge
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 salpreimagtge.x . . 3 𝑥𝜑
2 salpreimagtge.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
3 salpreimagtge.c . . 3 (𝜑𝐶 ∈ ℝ)
41, 2, 3preimageiingt 40930 . 2 (𝜑 → {𝑥𝐴𝐶𝐵} = 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
5 salpreimagtge.s . . 3 (𝜑𝑆 ∈ SAlg)
6 nnct 12780 . . . 4 ℕ ≼ ω
76a1i 11 . . 3 (𝜑 → ℕ ≼ ω)
8 nnn0 39595 . . . 4 ℕ ≠ ∅
98a1i 11 . . 3 (𝜑 → ℕ ≠ ∅)
103adantr 481 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
11 nnrecre 11057 . . . . . 6 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1211adantl 482 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
1310, 12resubcld 10458 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ)
14 salpreimagtge.a . . . . . . 7 𝑎𝜑
15 nfv 1843 . . . . . . 7 𝑎(𝐶 − (1 / 𝑛)) ∈ ℝ
1614, 15nfan 1828 . . . . . 6 𝑎(𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ)
17 nfv 1843 . . . . . 6 𝑎{𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆
1816, 17nfim 1825 . . . . 5 𝑎((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)
19 ovex 6678 . . . . 5 (𝐶 − (1 / 𝑛)) ∈ V
20 eleq1 2689 . . . . . . 7 (𝑎 = (𝐶 − (1 / 𝑛)) → (𝑎 ∈ ℝ ↔ (𝐶 − (1 / 𝑛)) ∈ ℝ))
2120anbi2d 740 . . . . . 6 (𝑎 = (𝐶 − (1 / 𝑛)) → ((𝜑𝑎 ∈ ℝ) ↔ (𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ)))
22 breq1 4656 . . . . . . . 8 (𝑎 = (𝐶 − (1 / 𝑛)) → (𝑎 < 𝐵 ↔ (𝐶 − (1 / 𝑛)) < 𝐵))
2322rabbidv 3189 . . . . . . 7 (𝑎 = (𝐶 − (1 / 𝑛)) → {𝑥𝐴𝑎 < 𝐵} = {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
2423eleq1d 2686 . . . . . 6 (𝑎 = (𝐶 − (1 / 𝑛)) → ({𝑥𝐴𝑎 < 𝐵} ∈ 𝑆 ↔ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆))
2521, 24imbi12d 334 . . . . 5 (𝑎 = (𝐶 − (1 / 𝑛)) → (((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < 𝐵} ∈ 𝑆) ↔ ((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)))
26 salpreimagtge.p . . . . 5 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < 𝐵} ∈ 𝑆)
2718, 19, 25, 26vtoclf 3258 . . . 4 ((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)
2813, 27syldan 487 . . 3 ((𝜑𝑛 ∈ ℕ) → {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)
295, 7, 9, 28saliincl 40545 . 2 (𝜑 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)
304, 29eqeltrd 2701 1 (𝜑 → {𝑥𝐴𝐶𝐵} ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wnf 1708  wcel 1990  wne 2794  {crab 2916  c0 3915   ciin 4521   class class class wbr 4653  (class class class)co 6650  ωcom 7065  cdom 7953  cr 9935  1c1 9937  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  SAlgcsalg 40528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-card 8765  df-acn 8768  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fl 12593  df-salg 40529
This theorem is referenced by:  salpreimalelt  40938  salpreimagtlt  40939  issmfge  40978
  Copyright terms: Public domain W3C validator