Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smonoord Structured version   Visualization version   GIF version

Theorem smonoord 41341
Description: Ordering relation for a strictly monotonic sequence, increasing case. Analogous to monoord 12831 (except that the case 𝑀 = 𝑁 must be excluded). Duplicate of monoords 39511? (Contributed by AV, 12-Jul-2020.)
Hypotheses
Ref Expression
smonoord.0 (𝜑𝑀 ∈ ℤ)
smonoord.1 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
smonoord.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
smonoord.3 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
Assertion
Ref Expression
smonoord (𝜑 → (𝐹𝑀) < (𝐹𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem smonoord
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smonoord.1 . . 3 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
2 eluzfz2 12349 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → 𝑁 ∈ ((𝑀 + 1)...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ ((𝑀 + 1)...𝑁))
4 eleq1 2689 . . . . . 6 (𝑥 = (𝑀 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...𝑁)))
5 fveq2 6191 . . . . . . 7 (𝑥 = (𝑀 + 1) → (𝐹𝑥) = (𝐹‘(𝑀 + 1)))
65breq2d 4665 . . . . . 6 (𝑥 = (𝑀 + 1) → ((𝐹𝑀) < (𝐹𝑥) ↔ (𝐹𝑀) < (𝐹‘(𝑀 + 1))))
74, 6imbi12d 334 . . . . 5 (𝑥 = (𝑀 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥)) ↔ ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑀 + 1)))))
87imbi2d 330 . . . 4 (𝑥 = (𝑀 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥))) ↔ (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑀 + 1))))))
9 eleq1 2689 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑛 ∈ ((𝑀 + 1)...𝑁)))
10 fveq2 6191 . . . . . . 7 (𝑥 = 𝑛 → (𝐹𝑥) = (𝐹𝑛))
1110breq2d 4665 . . . . . 6 (𝑥 = 𝑛 → ((𝐹𝑀) < (𝐹𝑥) ↔ (𝐹𝑀) < (𝐹𝑛)))
129, 11imbi12d 334 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥)) ↔ (𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛))))
1312imbi2d 330 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥))) ↔ (𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛)))))
14 eleq1 2689 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)))
15 fveq2 6191 . . . . . . 7 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
1615breq2d 4665 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝐹𝑀) < (𝐹𝑥) ↔ (𝐹𝑀) < (𝐹‘(𝑛 + 1))))
1714, 16imbi12d 334 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥)) ↔ ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑛 + 1)))))
1817imbi2d 330 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))))
19 eleq1 2689 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑁 ∈ ((𝑀 + 1)...𝑁)))
20 fveq2 6191 . . . . . . 7 (𝑥 = 𝑁 → (𝐹𝑥) = (𝐹𝑁))
2120breq2d 4665 . . . . . 6 (𝑥 = 𝑁 → ((𝐹𝑀) < (𝐹𝑥) ↔ (𝐹𝑀) < (𝐹𝑁)))
2219, 21imbi12d 334 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥)) ↔ (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑁))))
2322imbi2d 330 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥))) ↔ (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑁)))))
24 smonoord.0 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
25 eluzp1m1 11711 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
2624, 1, 25syl2anc 693 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ (ℤ𝑀))
27 eluzfz1 12348 . . . . . . . 8 ((𝑁 − 1) ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...(𝑁 − 1)))
2826, 27syl 17 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...(𝑁 − 1)))
29 smonoord.3 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
3029ralrimiva 2966 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) < (𝐹‘(𝑘 + 1)))
31 fveq2 6191 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
32 oveq1 6657 . . . . . . . . . 10 (𝑘 = 𝑀 → (𝑘 + 1) = (𝑀 + 1))
3332fveq2d 6195 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑀 + 1)))
3431, 33breq12d 4666 . . . . . . . 8 (𝑘 = 𝑀 → ((𝐹𝑘) < (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑀) < (𝐹‘(𝑀 + 1))))
3534rspcv 3305 . . . . . . 7 (𝑀 ∈ (𝑀...(𝑁 − 1)) → (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) < (𝐹‘(𝑘 + 1)) → (𝐹𝑀) < (𝐹‘(𝑀 + 1))))
3628, 30, 35sylc 65 . . . . . 6 (𝜑 → (𝐹𝑀) < (𝐹‘(𝑀 + 1)))
3736a1d 25 . . . . 5 (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑀 + 1))))
3837a1i 11 . . . 4 ((𝑀 + 1) ∈ ℤ → (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑀 + 1)))))
39 peano2fzr 12354 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ((𝑀 + 1)...𝑁))
4039adantll 750 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ((𝑀 + 1)...𝑁))
4140ex 450 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → 𝑛 ∈ ((𝑀 + 1)...𝑁)))
4241imim1d 82 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → ((𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛)) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛))))
43 peano2uzr 11743 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑀 + 1))) → 𝑛 ∈ (ℤ𝑀))
4443ex 450 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (𝑛 ∈ (ℤ‘(𝑀 + 1)) → 𝑛 ∈ (ℤ𝑀)))
4544, 24syl11 33 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘(𝑀 + 1)) → (𝜑𝑛 ∈ (ℤ𝑀)))
4645adantr 481 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝜑𝑛 ∈ (ℤ𝑀)))
4746impcom 446 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (ℤ𝑀))
48 eluzelz 11697 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘(𝑀 + 1)) → 𝑛 ∈ ℤ)
4948adantr 481 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ℤ)
5049adantl 482 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ ℤ)
51 elfzuz3 12339 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
5251ad2antll 765 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
53 eluzp1m1 11711 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑛 + 1))) → (𝑁 − 1) ∈ (ℤ𝑛))
5450, 52, 53syl2anc 693 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑁 − 1) ∈ (ℤ𝑛))
55 elfzuzb 12336 . . . . . . . . . . . 12 (𝑛 ∈ (𝑀...(𝑁 − 1)) ↔ (𝑛 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑛)))
5647, 54, 55sylanbrc 698 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (𝑀...(𝑁 − 1)))
5730adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) < (𝐹‘(𝑘 + 1)))
58 fveq2 6191 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
59 oveq1 6657 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑘 + 1) = (𝑛 + 1))
6059fveq2d 6195 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
6158, 60breq12d 4666 . . . . . . . . . . . 12 (𝑘 = 𝑛 → ((𝐹𝑘) < (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
6261rspcv 3305 . . . . . . . . . . 11 (𝑛 ∈ (𝑀...(𝑁 − 1)) → (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) < (𝐹‘(𝑘 + 1)) → (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
6356, 57, 62sylc 65 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹𝑛) < (𝐹‘(𝑛 + 1)))
64 zre 11381 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
6564lep1d 10955 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → 𝑀 ≤ (𝑀 + 1))
6624, 65jccir 562 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑀 ≤ (𝑀 + 1)))
67 eluzuzle 11696 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑀 ≤ (𝑀 + 1)) → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → 𝑁 ∈ (ℤ𝑀)))
6866, 1, 67sylc 65 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ𝑀))
69 eluzfz1 12348 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
7068, 69syl 17 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (𝑀...𝑁))
71 smonoord.2 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
7271ralrimiva 2966 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
7331eleq1d 2686 . . . . . . . . . . . . . 14 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑀) ∈ ℝ))
7473rspcv 3305 . . . . . . . . . . . . 13 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (𝐹𝑀) ∈ ℝ))
7570, 72, 74sylc 65 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑀) ∈ ℝ)
7675adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹𝑀) ∈ ℝ)
77 fzp1ss 12392 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
7824, 77syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
7978sseld 3602 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁)))
8079com12 32 . . . . . . . . . . . . . . 15 ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝜑 → (𝑛 + 1) ∈ (𝑀...𝑁)))
8180adantl 482 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝜑 → (𝑛 + 1) ∈ (𝑀...𝑁)))
8281impcom 446 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁))
83 peano2fzr 12354 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
8447, 82, 83syl2anc 693 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (𝑀...𝑁))
8572adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
8658eleq1d 2686 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑛) ∈ ℝ))
8786rspcv 3305 . . . . . . . . . . . 12 (𝑛 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (𝐹𝑛) ∈ ℝ))
8884, 85, 87sylc 65 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹𝑛) ∈ ℝ)
89 fveq2 6191 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
9089eleq1d 2686 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ))
9190rspcv 3305 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (𝐹‘(𝑛 + 1)) ∈ ℝ))
9282, 85, 91sylc 65 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
93 lttr 10114 . . . . . . . . . . 11 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑛) ∈ ℝ ∧ (𝐹‘(𝑛 + 1)) ∈ ℝ) → (((𝐹𝑀) < (𝐹𝑛) ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1))) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))
9476, 88, 92, 93syl3anc 1326 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (((𝐹𝑀) < (𝐹𝑛) ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1))) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))
9563, 94mpan2d 710 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((𝐹𝑀) < (𝐹𝑛) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))
9695expr 643 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → ((𝐹𝑀) < (𝐹𝑛) → (𝐹𝑀) < (𝐹‘(𝑛 + 1)))))
9796a2d 29 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → (((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛)) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑛 + 1)))))
9842, 97syld 47 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → ((𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛)) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑛 + 1)))))
9998expcom 451 . . . . 5 (𝑛 ∈ (ℤ‘(𝑀 + 1)) → (𝜑 → ((𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛)) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))))
10099a2d 29 . . . 4 (𝑛 ∈ (ℤ‘(𝑀 + 1)) → ((𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛))) → (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))))
1018, 13, 18, 23, 38, 100uzind4 11746 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑁))))
1021, 101mpcom 38 . 2 (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑁)))
1033, 102mpd 15 1 (𝜑 → (𝐹𝑀) < (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266  cz 11377  cuz 11687  ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  iccpartiltu  41358  iccpartigtl  41359  iccpartgt  41363
  Copyright terms: Public domain W3C validator