MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqreu Structured version   Visualization version   Unicode version

Theorem sqreu 14100
Description: Existence and uniqueness for the square root function in general. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
sqreu  |-  ( A  e.  CC  ->  E! x  e.  CC  (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )
Distinct variable group:    x, A

Proof of Theorem sqreu
StepHypRef Expression
1 abscl 14018 . . . . . . . 8  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
21recnd 10068 . . . . . . 7  |-  ( A  e.  CC  ->  ( abs `  A )  e.  CC )
3 subneg 10330 . . . . . . 7  |-  ( ( ( abs `  A
)  e.  CC  /\  A  e.  CC )  ->  ( ( abs `  A
)  -  -u A
)  =  ( ( abs `  A )  +  A ) )
42, 3mpancom 703 . . . . . 6  |-  ( A  e.  CC  ->  (
( abs `  A
)  -  -u A
)  =  ( ( abs `  A )  +  A ) )
54eqeq1d 2624 . . . . 5  |-  ( A  e.  CC  ->  (
( ( abs `  A
)  -  -u A
)  =  0  <->  (
( abs `  A
)  +  A )  =  0 ) )
6 negcl 10281 . . . . . 6  |-  ( A  e.  CC  ->  -u A  e.  CC )
72, 6subeq0ad 10402 . . . . 5  |-  ( A  e.  CC  ->  (
( ( abs `  A
)  -  -u A
)  =  0  <->  ( abs `  A )  = 
-u A ) )
85, 7bitr3d 270 . . . 4  |-  ( A  e.  CC  ->  (
( ( abs `  A
)  +  A )  =  0  <->  ( abs `  A )  =  -u A ) )
9 ax-icn 9995 . . . . . . 7  |-  _i  e.  CC
10 absge0 14027 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  0  <_  ( abs `  A
) )
111, 10jca 554 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
( abs `  A
)  e.  RR  /\  0  <_  ( abs `  A
) ) )
12 eleq1 2689 . . . . . . . . . . . 12  |-  ( ( abs `  A )  =  -u A  ->  (
( abs `  A
)  e.  RR  <->  -u A  e.  RR ) )
13 breq2 4657 . . . . . . . . . . . 12  |-  ( ( abs `  A )  =  -u A  ->  (
0  <_  ( abs `  A )  <->  0  <_  -u A ) )
1412, 13anbi12d 747 . . . . . . . . . . 11  |-  ( ( abs `  A )  =  -u A  ->  (
( ( abs `  A
)  e.  RR  /\  0  <_  ( abs `  A
) )  <->  ( -u A  e.  RR  /\  0  <_  -u A ) ) )
1511, 14syl5ib 234 . . . . . . . . . 10  |-  ( ( abs `  A )  =  -u A  ->  ( A  e.  CC  ->  (
-u A  e.  RR  /\  0  <_  -u A ) ) )
1615impcom 446 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  -u A )  -> 
( -u A  e.  RR  /\  0  <_  -u A ) )
17 resqrtcl 13994 . . . . . . . . 9  |-  ( (
-u A  e.  RR  /\  0  <_  -u A )  ->  ( sqr `  -u A
)  e.  RR )
1816, 17syl 17 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  -u A )  -> 
( sqr `  -u A
)  e.  RR )
1918recnd 10068 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  -u A )  -> 
( sqr `  -u A
)  e.  CC )
20 mulcl 10020 . . . . . . 7  |-  ( ( _i  e.  CC  /\  ( sqr `  -u A
)  e.  CC )  ->  ( _i  x.  ( sqr `  -u A
) )  e.  CC )
219, 19, 20sylancr 695 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  -u A )  -> 
( _i  x.  ( sqr `  -u A ) )  e.  CC )
22 sqrtneglem 14007 . . . . . . . 8  |-  ( (
-u A  e.  RR  /\  0  <_  -u A )  ->  ( ( ( _i  x.  ( sqr `  -u A ) ) ^ 2 )  = 
-u -u A  /\  0  <_  ( Re `  (
_i  x.  ( sqr `  -u A ) ) )  /\  ( _i  x.  ( _i  x.  ( sqr `  -u A ) ) )  e/  RR+ )
)
2316, 22syl 17 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  -u A )  -> 
( ( ( _i  x.  ( sqr `  -u A
) ) ^ 2 )  =  -u -u A  /\  0  <_  ( Re
`  ( _i  x.  ( sqr `  -u A
) ) )  /\  ( _i  x.  (
_i  x.  ( sqr `  -u A ) ) )  e/  RR+ ) )
24 negneg 10331 . . . . . . . . . 10  |-  ( A  e.  CC  ->  -u -u A  =  A )
2524adantr 481 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  -u A )  ->  -u -u A  =  A
)
2625eqeq2d 2632 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  -u A )  -> 
( ( ( _i  x.  ( sqr `  -u A
) ) ^ 2 )  =  -u -u A  <->  ( ( _i  x.  ( sqr `  -u A ) ) ^ 2 )  =  A ) )
27263anbi1d 1403 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  -u A )  -> 
( ( ( ( _i  x.  ( sqr `  -u A ) ) ^ 2 )  = 
-u -u A  /\  0  <_  ( Re `  (
_i  x.  ( sqr `  -u A ) ) )  /\  ( _i  x.  ( _i  x.  ( sqr `  -u A ) ) )  e/  RR+ )  <->  ( ( ( _i  x.  ( sqr `  -u A
) ) ^ 2 )  =  A  /\  0  <_  ( Re `  ( _i  x.  ( sqr `  -u A ) ) )  /\  ( _i  x.  ( _i  x.  ( sqr `  -u A
) ) )  e/  RR+ ) ) )
2823, 27mpbid 222 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  -u A )  -> 
( ( ( _i  x.  ( sqr `  -u A
) ) ^ 2 )  =  A  /\  0  <_  ( Re `  ( _i  x.  ( sqr `  -u A ) ) )  /\  ( _i  x.  ( _i  x.  ( sqr `  -u A
) ) )  e/  RR+ ) )
29 oveq1 6657 . . . . . . . . 9  |-  ( x  =  ( _i  x.  ( sqr `  -u A
) )  ->  (
x ^ 2 )  =  ( ( _i  x.  ( sqr `  -u A
) ) ^ 2 ) )
3029eqeq1d 2624 . . . . . . . 8  |-  ( x  =  ( _i  x.  ( sqr `  -u A
) )  ->  (
( x ^ 2 )  =  A  <->  ( (
_i  x.  ( sqr `  -u A ) ) ^
2 )  =  A ) )
31 fveq2 6191 . . . . . . . . 9  |-  ( x  =  ( _i  x.  ( sqr `  -u A
) )  ->  (
Re `  x )  =  ( Re `  ( _i  x.  ( sqr `  -u A ) ) ) )
3231breq2d 4665 . . . . . . . 8  |-  ( x  =  ( _i  x.  ( sqr `  -u A
) )  ->  (
0  <_  ( Re `  x )  <->  0  <_  ( Re `  ( _i  x.  ( sqr `  -u A
) ) ) ) )
33 oveq2 6658 . . . . . . . . 9  |-  ( x  =  ( _i  x.  ( sqr `  -u A
) )  ->  (
_i  x.  x )  =  ( _i  x.  ( _i  x.  ( sqr `  -u A ) ) ) )
34 neleq1 2902 . . . . . . . . 9  |-  ( ( _i  x.  x )  =  ( _i  x.  ( _i  x.  ( sqr `  -u A ) ) )  ->  ( (
_i  x.  x )  e/  RR+  <->  ( _i  x.  ( _i  x.  ( sqr `  -u A ) ) )  e/  RR+ )
)
3533, 34syl 17 . . . . . . . 8  |-  ( x  =  ( _i  x.  ( sqr `  -u A
) )  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  ( _i  x.  ( sqr `  -u A ) ) )  e/  RR+ )
)
3630, 32, 353anbi123d 1399 . . . . . . 7  |-  ( x  =  ( _i  x.  ( sqr `  -u A
) )  ->  (
( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ )  <->  ( (
( _i  x.  ( sqr `  -u A ) ) ^ 2 )  =  A  /\  0  <_ 
( Re `  (
_i  x.  ( sqr `  -u A ) ) )  /\  ( _i  x.  ( _i  x.  ( sqr `  -u A ) ) )  e/  RR+ )
) )
3736rspcev 3309 . . . . . 6  |-  ( ( ( _i  x.  ( sqr `  -u A ) )  e.  CC  /\  (
( ( _i  x.  ( sqr `  -u A
) ) ^ 2 )  =  A  /\  0  <_  ( Re `  ( _i  x.  ( sqr `  -u A ) ) )  /\  ( _i  x.  ( _i  x.  ( sqr `  -u A
) ) )  e/  RR+ ) )  ->  E. x  e.  CC  ( ( x ^ 2 )  =  A  /\  0  <_ 
( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )
)
3821, 28, 37syl2anc 693 . . . . 5  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  -u A )  ->  E. x  e.  CC  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )
3938ex 450 . . . 4  |-  ( A  e.  CC  ->  (
( abs `  A
)  =  -u A  ->  E. x  e.  CC  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) ) )
408, 39sylbid 230 . . 3  |-  ( A  e.  CC  ->  (
( ( abs `  A
)  +  A )  =  0  ->  E. x  e.  CC  ( ( x ^ 2 )  =  A  /\  0  <_ 
( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )
) )
41 resqrtcl 13994 . . . . . . . . 9  |-  ( ( ( abs `  A
)  e.  RR  /\  0  <_  ( abs `  A
) )  ->  ( sqr `  ( abs `  A
) )  e.  RR )
421, 10, 41syl2anc 693 . . . . . . . 8  |-  ( A  e.  CC  ->  ( sqr `  ( abs `  A
) )  e.  RR )
4342recnd 10068 . . . . . . 7  |-  ( A  e.  CC  ->  ( sqr `  ( abs `  A
) )  e.  CC )
4443adantr 481 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( abs `  A
)  +  A )  =/=  0 )  -> 
( sqr `  ( abs `  A ) )  e.  CC )
45 addcl 10018 . . . . . . . . 9  |-  ( ( ( abs `  A
)  e.  CC  /\  A  e.  CC )  ->  ( ( abs `  A
)  +  A )  e.  CC )
462, 45mpancom 703 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( abs `  A
)  +  A )  e.  CC )
4746adantr 481 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( abs `  A
)  +  A )  =/=  0 )  -> 
( ( abs `  A
)  +  A )  e.  CC )
48 abscl 14018 . . . . . . . . . 10  |-  ( ( ( abs `  A
)  +  A )  e.  CC  ->  ( abs `  ( ( abs `  A )  +  A
) )  e.  RR )
4946, 48syl 17 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( abs `  ( ( abs `  A )  +  A
) )  e.  RR )
5049recnd 10068 . . . . . . . 8  |-  ( A  e.  CC  ->  ( abs `  ( ( abs `  A )  +  A
) )  e.  CC )
5150adantr 481 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( abs `  A
)  +  A )  =/=  0 )  -> 
( abs `  (
( abs `  A
)  +  A ) )  e.  CC )
5246abs00ad 14030 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( abs `  (
( abs `  A
)  +  A ) )  =  0  <->  (
( abs `  A
)  +  A )  =  0 ) )
5352necon3bid 2838 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( abs `  (
( abs `  A
)  +  A ) )  =/=  0  <->  (
( abs `  A
)  +  A )  =/=  0 ) )
5453biimpar 502 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( abs `  A
)  +  A )  =/=  0 )  -> 
( abs `  (
( abs `  A
)  +  A ) )  =/=  0 )
5547, 51, 54divcld 10801 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( abs `  A
)  +  A )  =/=  0 )  -> 
( ( ( abs `  A )  +  A
)  /  ( abs `  ( ( abs `  A
)  +  A ) ) )  e.  CC )
5644, 55mulcld 10060 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( abs `  A
)  +  A )  =/=  0 )  -> 
( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A )  / 
( abs `  (
( abs `  A
)  +  A ) ) ) )  e.  CC )
57 eqid 2622 . . . . . 6  |-  ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A
)  /  ( abs `  ( ( abs `  A
)  +  A ) ) ) )  =  ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A )  / 
( abs `  (
( abs `  A
)  +  A ) ) ) )
5857sqreulem 14099 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( abs `  A
)  +  A )  =/=  0 )  -> 
( ( ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A
)  /  ( abs `  ( ( abs `  A
)  +  A ) ) ) ) ^
2 )  =  A  /\  0  <_  (
Re `  ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) ) )  /\  ( _i  x.  ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A )  / 
( abs `  (
( abs `  A
)  +  A ) ) ) ) )  e/  RR+ ) )
59 oveq1 6657 . . . . . . . 8  |-  ( x  =  ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) )  -> 
( x ^ 2 )  =  ( ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A )  / 
( abs `  (
( abs `  A
)  +  A ) ) ) ) ^
2 ) )
6059eqeq1d 2624 . . . . . . 7  |-  ( x  =  ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) )  -> 
( ( x ^
2 )  =  A  <-> 
( ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) ) ^
2 )  =  A ) )
61 fveq2 6191 . . . . . . . 8  |-  ( x  =  ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) )  -> 
( Re `  x
)  =  ( Re
`  ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) ) ) )
6261breq2d 4665 . . . . . . 7  |-  ( x  =  ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) )  -> 
( 0  <_  (
Re `  x )  <->  0  <_  ( Re `  ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A )  / 
( abs `  (
( abs `  A
)  +  A ) ) ) ) ) ) )
63 oveq2 6658 . . . . . . . 8  |-  ( x  =  ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) )  -> 
( _i  x.  x
)  =  ( _i  x.  ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) ) ) )
64 neleq1 2902 . . . . . . . 8  |-  ( ( _i  x.  x )  =  ( _i  x.  ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A )  / 
( abs `  (
( abs `  A
)  +  A ) ) ) ) )  ->  ( ( _i  x.  x )  e/  RR+  <->  ( _i  x.  ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A
)  /  ( abs `  ( ( abs `  A
)  +  A ) ) ) ) )  e/  RR+ ) )
6563, 64syl 17 . . . . . . 7  |-  ( x  =  ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) )  -> 
( ( _i  x.  x )  e/  RR+  <->  ( _i  x.  ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A )  / 
( abs `  (
( abs `  A
)  +  A ) ) ) ) )  e/  RR+ ) )
6660, 62, 653anbi123d 1399 . . . . . 6  |-  ( x  =  ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) )  -> 
( ( ( x ^ 2 )  =  A  /\  0  <_ 
( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )  <->  ( ( ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) ) ^
2 )  =  A  /\  0  <_  (
Re `  ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) ) )  /\  ( _i  x.  ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A )  / 
( abs `  (
( abs `  A
)  +  A ) ) ) ) )  e/  RR+ ) ) )
6766rspcev 3309 . . . . 5  |-  ( ( ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A )  / 
( abs `  (
( abs `  A
)  +  A ) ) ) )  e.  CC  /\  ( ( ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A )  / 
( abs `  (
( abs `  A
)  +  A ) ) ) ) ^
2 )  =  A  /\  0  <_  (
Re `  ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) ) )  /\  ( _i  x.  ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A )  / 
( abs `  (
( abs `  A
)  +  A ) ) ) ) )  e/  RR+ ) )  ->  E. x  e.  CC  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )
6856, 58, 67syl2anc 693 . . . 4  |-  ( ( A  e.  CC  /\  ( ( abs `  A
)  +  A )  =/=  0 )  ->  E. x  e.  CC  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )
6968ex 450 . . 3  |-  ( A  e.  CC  ->  (
( ( abs `  A
)  +  A )  =/=  0  ->  E. x  e.  CC  ( ( x ^ 2 )  =  A  /\  0  <_ 
( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )
) )
7040, 69pm2.61dne 2880 . 2  |-  ( A  e.  CC  ->  E. x  e.  CC  ( ( x ^ 2 )  =  A  /\  0  <_ 
( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )
)
71 sqrmo 13992 . 2  |-  ( A  e.  CC  ->  E* x  e.  CC  (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )
72 reu5 3159 . 2  |-  ( E! x  e.  CC  (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  <->  ( E. x  e.  CC  (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  /\  E* x  e.  CC  (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) ) )
7370, 71, 72sylanbrc 698 1  |-  ( A  e.  CC  ->  E! x  e.  CC  (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897   E.wrex 2913   E!wreu 2914   E*wrmo 2915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   _ici 9938    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   2c2 11070   RR+crp 11832   ^cexp 12860   Recre 13837   sqrcsqrt 13973   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  sqrtcl  14101  sqrtthlem  14102  eqsqrtd  14107
  Copyright terms: Public domain W3C validator