MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfzo12bi Structured version   Visualization version   GIF version

Theorem ssfzo12bi 12563
Description: Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 5-Nov-2018.)
Assertion
Ref Expression
ssfzo12bi (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ↔ (𝑀𝐾𝐿𝑁)))

Proof of Theorem ssfzo12bi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-3an 1039 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) ↔ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐾 < 𝐿))
21biimpri 218 . . . 4 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐾 < 𝐿) → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿))
323adant2 1080 . . 3 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿))
4 ssfzo12 12561 . . 3 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))
53, 4syl 17 . 2 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))
6 elfzo2 12473 . . . . . 6 (𝑥 ∈ (𝐾..^𝐿) ↔ (𝑥 ∈ (ℤ𝐾) ∧ 𝐿 ∈ ℤ ∧ 𝑥 < 𝐿))
7 eluz2 11693 . . . . . . . . 9 (𝑥 ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝐾𝑥))
8 simprrl 804 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℤ)
98adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) ∧ (𝑀𝐾𝐾𝑥)) → 𝑀 ∈ ℤ)
10 simpll 790 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) ∧ (𝑀𝐾𝐾𝑥)) → 𝑥 ∈ ℤ)
11 zre 11381 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1211adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
1312adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℝ)
1413adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℝ)
15 zre 11381 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1615adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐾 ∈ ℝ)
1716adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐾 ∈ ℝ)
1817adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝐾 ∈ ℝ)
19 zre 11381 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
2019adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑥 ∈ ℝ)
21 letr 10131 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑀𝐾𝐾𝑥) → 𝑀𝑥))
2214, 18, 20, 21syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑀𝐾𝐾𝑥) → 𝑀𝑥))
2322imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) ∧ (𝑀𝐾𝐾𝑥)) → 𝑀𝑥)
249, 10, 233jca 1242 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) ∧ (𝑀𝐾𝐾𝑥)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))
2524exp31 630 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℤ → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀𝐾𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2625com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℤ → ((𝑀𝐾𝐾𝑥) → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2726expdimp 453 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑀𝐾) → (𝐾𝑥 → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2827impancom 456 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀𝐾 → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2928com13 88 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝐾 → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
30293adant3 1081 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → (𝑀𝐾 → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
3130com12 32 . . . . . . . . . . . . . . . . . 18 (𝑀𝐾 → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
3231adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑀𝐾𝐿𝑁) → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
3332impcom 446 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥)))
3433com12 32 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥)))
3534adantr 481 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥)))
3635imp 445 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))
37 eluz2 11693 . . . . . . . . . . . . 13 (𝑥 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))
3836, 37sylibr 224 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → 𝑥 ∈ (ℤ𝑀))
39 simpl2r 1115 . . . . . . . . . . . . 13 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑁 ∈ ℤ)
4039adantl 482 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → 𝑁 ∈ ℤ)
4119adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℝ)
42 zre 11381 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
4342ad3antlr 767 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → 𝐿 ∈ ℝ)
44 zre 11381 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4544adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
4645adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℝ)
4746adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℝ)
48 ltletr 10129 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑥 < 𝐿𝐿𝑁) → 𝑥 < 𝑁))
4941, 43, 47, 48syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → ((𝑥 < 𝐿𝐿𝑁) → 𝑥 < 𝑁))
5049ex 450 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑥 ∈ ℤ → ((𝑥 < 𝐿𝐿𝑁) → 𝑥 < 𝑁)))
5150com23 86 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑥 < 𝐿𝐿𝑁) → (𝑥 ∈ ℤ → 𝑥 < 𝑁)))
52513adant3 1081 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑥 < 𝐿𝐿𝑁) → (𝑥 ∈ ℤ → 𝑥 < 𝑁)))
5352expcomd 454 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → (𝐿𝑁 → (𝑥 < 𝐿 → (𝑥 ∈ ℤ → 𝑥 < 𝑁))))
5453adantld 483 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑀𝐾𝐿𝑁) → (𝑥 < 𝐿 → (𝑥 ∈ ℤ → 𝑥 < 𝑁))))
5554imp 445 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝑥 < 𝐿 → (𝑥 ∈ ℤ → 𝑥 < 𝑁)))
5655com13 88 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 < 𝑁)))
5756adantr 481 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 < 𝑁)))
5857imp 445 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 < 𝑁))
5958imp 445 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → 𝑥 < 𝑁)
60 elfzo2 12473 . . . . . . . . . . . 12 (𝑥 ∈ (𝑀..^𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑥 < 𝑁))
6138, 40, 59, 60syl3anbrc 1246 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → 𝑥 ∈ (𝑀..^𝑁))
6261exp31 630 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁))))
63623adant1 1079 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁))))
647, 63sylbi 207 . . . . . . . 8 (𝑥 ∈ (ℤ𝐾) → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁))))
6564imp 445 . . . . . . 7 ((𝑥 ∈ (ℤ𝐾) ∧ 𝑥 < 𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁)))
66653adant2 1080 . . . . . 6 ((𝑥 ∈ (ℤ𝐾) ∧ 𝐿 ∈ ℤ ∧ 𝑥 < 𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁)))
676, 66sylbi 207 . . . . 5 (𝑥 ∈ (𝐾..^𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁)))
6867com12 32 . . . 4 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝑥 ∈ (𝐾..^𝐿) → 𝑥 ∈ (𝑀..^𝑁)))
6968ssrdv 3609 . . 3 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝐾..^𝐿) ⊆ (𝑀..^𝑁))
7069ex 450 . 2 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑀𝐾𝐿𝑁) → (𝐾..^𝐿) ⊆ (𝑀..^𝑁)))
715, 70impbid 202 1 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ↔ (𝑀𝐾𝐿𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wcel 1990  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935   < clt 10074  cle 10075  cz 11377  cuz 11687  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  swrdnd  13432  repswswrd  13531  iccpartgt  41363
  Copyright terms: Public domain W3C validator