| Step | Hyp | Ref
| Expression |
| 1 | | stoweidlem3.4 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 2 | | elnnuz 11724 |
. . . 4
⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈
(ℤ≥‘1)) |
| 3 | 1, 2 | sylib 208 |
. . 3
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
| 4 | | eluzfz2 12349 |
. . 3
⊢ (𝑀 ∈
(ℤ≥‘1) → 𝑀 ∈ (1...𝑀)) |
| 5 | 3, 4 | syl 17 |
. 2
⊢ (𝜑 → 𝑀 ∈ (1...𝑀)) |
| 6 | | oveq2 6658 |
. . . . 5
⊢ (𝑛 = 1 → (𝐴↑𝑛) = (𝐴↑1)) |
| 7 | | fveq2 6191 |
. . . . 5
⊢ (𝑛 = 1 → (𝑋‘𝑛) = (𝑋‘1)) |
| 8 | 6, 7 | breq12d 4666 |
. . . 4
⊢ (𝑛 = 1 → ((𝐴↑𝑛) < (𝑋‘𝑛) ↔ (𝐴↑1) < (𝑋‘1))) |
| 9 | 8 | imbi2d 330 |
. . 3
⊢ (𝑛 = 1 → ((𝜑 → (𝐴↑𝑛) < (𝑋‘𝑛)) ↔ (𝜑 → (𝐴↑1) < (𝑋‘1)))) |
| 10 | | oveq2 6658 |
. . . . 5
⊢ (𝑛 = 𝑚 → (𝐴↑𝑛) = (𝐴↑𝑚)) |
| 11 | | fveq2 6191 |
. . . . 5
⊢ (𝑛 = 𝑚 → (𝑋‘𝑛) = (𝑋‘𝑚)) |
| 12 | 10, 11 | breq12d 4666 |
. . . 4
⊢ (𝑛 = 𝑚 → ((𝐴↑𝑛) < (𝑋‘𝑛) ↔ (𝐴↑𝑚) < (𝑋‘𝑚))) |
| 13 | 12 | imbi2d 330 |
. . 3
⊢ (𝑛 = 𝑚 → ((𝜑 → (𝐴↑𝑛) < (𝑋‘𝑛)) ↔ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)))) |
| 14 | | oveq2 6658 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → (𝐴↑𝑛) = (𝐴↑(𝑚 + 1))) |
| 15 | | fveq2 6191 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → (𝑋‘𝑛) = (𝑋‘(𝑚 + 1))) |
| 16 | 14, 15 | breq12d 4666 |
. . . 4
⊢ (𝑛 = (𝑚 + 1) → ((𝐴↑𝑛) < (𝑋‘𝑛) ↔ (𝐴↑(𝑚 + 1)) < (𝑋‘(𝑚 + 1)))) |
| 17 | 16 | imbi2d 330 |
. . 3
⊢ (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐴↑𝑛) < (𝑋‘𝑛)) ↔ (𝜑 → (𝐴↑(𝑚 + 1)) < (𝑋‘(𝑚 + 1))))) |
| 18 | | oveq2 6658 |
. . . . 5
⊢ (𝑛 = 𝑀 → (𝐴↑𝑛) = (𝐴↑𝑀)) |
| 19 | | fveq2 6191 |
. . . . 5
⊢ (𝑛 = 𝑀 → (𝑋‘𝑛) = (𝑋‘𝑀)) |
| 20 | 18, 19 | breq12d 4666 |
. . . 4
⊢ (𝑛 = 𝑀 → ((𝐴↑𝑛) < (𝑋‘𝑛) ↔ (𝐴↑𝑀) < (𝑋‘𝑀))) |
| 21 | 20 | imbi2d 330 |
. . 3
⊢ (𝑛 = 𝑀 → ((𝜑 → (𝐴↑𝑛) < (𝑋‘𝑛)) ↔ (𝜑 → (𝐴↑𝑀) < (𝑋‘𝑀)))) |
| 22 | | 1zzd 11408 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℤ) |
| 23 | 1 | nnzd 11481 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 24 | 22, 23, 22 | 3jca 1242 |
. . . . . . . 8
⊢ (𝜑 → (1 ∈ ℤ ∧
𝑀 ∈ ℤ ∧ 1
∈ ℤ)) |
| 25 | | 1le1 10655 |
. . . . . . . . 9
⊢ 1 ≤
1 |
| 26 | 25 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 1 ≤ 1) |
| 27 | 1 | nnge1d 11063 |
. . . . . . . 8
⊢ (𝜑 → 1 ≤ 𝑀) |
| 28 | 24, 26, 27 | jca32 558 |
. . . . . . 7
⊢ (𝜑 → ((1 ∈ ℤ ∧
𝑀 ∈ ℤ ∧ 1
∈ ℤ) ∧ (1 ≤ 1 ∧ 1 ≤ 𝑀))) |
| 29 | | elfz2 12333 |
. . . . . . 7
⊢ (1 ∈
(1...𝑀) ↔ ((1 ∈
ℤ ∧ 𝑀 ∈
ℤ ∧ 1 ∈ ℤ) ∧ (1 ≤ 1 ∧ 1 ≤ 𝑀))) |
| 30 | 28, 29 | sylibr 224 |
. . . . . 6
⊢ (𝜑 → 1 ∈ (1...𝑀)) |
| 31 | 30 | ancli 574 |
. . . . . 6
⊢ (𝜑 → (𝜑 ∧ 1 ∈ (1...𝑀))) |
| 32 | | stoweidlem3.2 |
. . . . . . . . 9
⊢
Ⅎ𝑖𝜑 |
| 33 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑖1 ∈
(1...𝑀) |
| 34 | 32, 33 | nfan 1828 |
. . . . . . . 8
⊢
Ⅎ𝑖(𝜑 ∧ 1 ∈ (1...𝑀)) |
| 35 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑖𝐴 |
| 36 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑖
< |
| 37 | | stoweidlem3.1 |
. . . . . . . . . 10
⊢
Ⅎ𝑖𝐹 |
| 38 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑖1 |
| 39 | 37, 38 | nffv 6198 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝐹‘1) |
| 40 | 35, 36, 39 | nfbr 4699 |
. . . . . . . 8
⊢
Ⅎ𝑖 𝐴 < (𝐹‘1) |
| 41 | 34, 40 | nfim 1825 |
. . . . . . 7
⊢
Ⅎ𝑖((𝜑 ∧ 1 ∈ (1...𝑀)) → 𝐴 < (𝐹‘1)) |
| 42 | | eleq1 2689 |
. . . . . . . . 9
⊢ (𝑖 = 1 → (𝑖 ∈ (1...𝑀) ↔ 1 ∈ (1...𝑀))) |
| 43 | 42 | anbi2d 740 |
. . . . . . . 8
⊢ (𝑖 = 1 → ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ↔ (𝜑 ∧ 1 ∈ (1...𝑀)))) |
| 44 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑖 = 1 → (𝐹‘𝑖) = (𝐹‘1)) |
| 45 | 44 | breq2d 4665 |
. . . . . . . 8
⊢ (𝑖 = 1 → (𝐴 < (𝐹‘𝑖) ↔ 𝐴 < (𝐹‘1))) |
| 46 | 43, 45 | imbi12d 334 |
. . . . . . 7
⊢ (𝑖 = 1 → (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐴 < (𝐹‘𝑖)) ↔ ((𝜑 ∧ 1 ∈ (1...𝑀)) → 𝐴 < (𝐹‘1)))) |
| 47 | | stoweidlem3.6 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐴 < (𝐹‘𝑖)) |
| 48 | 41, 46, 47 | vtoclg1f 3265 |
. . . . . 6
⊢ (1 ∈
(1...𝑀) → ((𝜑 ∧ 1 ∈ (1...𝑀)) → 𝐴 < (𝐹‘1))) |
| 49 | 30, 31, 48 | sylc 65 |
. . . . 5
⊢ (𝜑 → 𝐴 < (𝐹‘1)) |
| 50 | | stoweidlem3.7 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
| 51 | 50 | rpcnd 11874 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 52 | 51 | exp1d 13003 |
. . . . 5
⊢ (𝜑 → (𝐴↑1) = 𝐴) |
| 53 | | stoweidlem3.3 |
. . . . . . . 8
⊢ 𝑋 = seq1( · , 𝐹) |
| 54 | 53 | fveq1i 6192 |
. . . . . . 7
⊢ (𝑋‘1) = (seq1( · ,
𝐹)‘1) |
| 55 | | 1z 11407 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
| 56 | | seq1 12814 |
. . . . . . . 8
⊢ (1 ∈
ℤ → (seq1( · , 𝐹)‘1) = (𝐹‘1)) |
| 57 | 55, 56 | ax-mp 5 |
. . . . . . 7
⊢ (seq1(
· , 𝐹)‘1) =
(𝐹‘1) |
| 58 | 54, 57 | eqtri 2644 |
. . . . . 6
⊢ (𝑋‘1) = (𝐹‘1) |
| 59 | 58 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑋‘1) = (𝐹‘1)) |
| 60 | 49, 52, 59 | 3brtr4d 4685 |
. . . 4
⊢ (𝜑 → (𝐴↑1) < (𝑋‘1)) |
| 61 | 60 | a1i 11 |
. . 3
⊢ (𝑀 ∈
(ℤ≥‘1) → (𝜑 → (𝐴↑1) < (𝑋‘1))) |
| 62 | 50 | 3ad2ant3 1084 |
. . . . . . . 8
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝐴 ∈
ℝ+) |
| 63 | 62 | rpred 11872 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝐴 ∈ ℝ) |
| 64 | | elfzouz 12474 |
. . . . . . . . 9
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 ∈
(ℤ≥‘1)) |
| 65 | | elnnuz 11724 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ ↔ 𝑚 ∈
(ℤ≥‘1)) |
| 66 | | nnnn0 11299 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) |
| 67 | 65, 66 | sylbir 225 |
. . . . . . . . 9
⊢ (𝑚 ∈
(ℤ≥‘1) → 𝑚 ∈ ℕ0) |
| 68 | 64, 67 | syl 17 |
. . . . . . . 8
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 ∈ ℕ0) |
| 69 | 68 | 3ad2ant1 1082 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝑚 ∈ ℕ0) |
| 70 | 63, 69 | reexpcld 13025 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝐴↑𝑚) ∈ ℝ) |
| 71 | 53 | fveq1i 6192 |
. . . . . . . 8
⊢ (𝑋‘𝑚) = (seq1( · , 𝐹)‘𝑚) |
| 72 | 64 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → 𝑚 ∈
(ℤ≥‘1)) |
| 73 | | nfv 1843 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖 𝑚 ∈ (1..^𝑀) |
| 74 | 73, 32 | nfan 1828 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝑚 ∈ (1..^𝑀) ∧ 𝜑) |
| 75 | | nfv 1843 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖 𝑎 ∈ (1...𝑚) |
| 76 | 74, 75 | nfan 1828 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)) |
| 77 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖𝑎 |
| 78 | 37, 77 | nffv 6198 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝐹‘𝑎) |
| 79 | 78 | nfel1 2779 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖(𝐹‘𝑎) ∈ ℝ |
| 80 | 76, 79 | nfim 1825 |
. . . . . . . . . 10
⊢
Ⅎ𝑖(((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)) → (𝐹‘𝑎) ∈ ℝ) |
| 81 | | eleq1 2689 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑎 → (𝑖 ∈ (1...𝑚) ↔ 𝑎 ∈ (1...𝑚))) |
| 82 | 81 | anbi2d 740 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑎 → (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) ↔ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)))) |
| 83 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑎 → (𝐹‘𝑖) = (𝐹‘𝑎)) |
| 84 | 83 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑎 → ((𝐹‘𝑖) ∈ ℝ ↔ (𝐹‘𝑎) ∈ ℝ)) |
| 85 | 82, 84 | imbi12d 334 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑎 → ((((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → (𝐹‘𝑖) ∈ ℝ) ↔ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)) → (𝐹‘𝑎) ∈ ℝ))) |
| 86 | | stoweidlem3.5 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:(1...𝑀)⟶ℝ) |
| 87 | 86 | ad2antlr 763 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝐹:(1...𝑀)⟶ℝ) |
| 88 | | 1zzd 11408 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 1 ∈ ℤ) |
| 89 | 23 | ad2antlr 763 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑀 ∈ ℤ) |
| 90 | | elfzelz 12342 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℤ) |
| 91 | 90 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℤ) |
| 92 | 88, 89, 91 | 3jca 1242 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑖 ∈
ℤ)) |
| 93 | | elfzle1 12344 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1...𝑚) → 1 ≤ 𝑖) |
| 94 | 93 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 1 ≤ 𝑖) |
| 95 | 90 | zred 11482 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℝ) |
| 96 | 95 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℝ) |
| 97 | | elfzoelz 12470 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 ∈ ℤ) |
| 98 | 97 | zred 11482 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 ∈ ℝ) |
| 99 | 98 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑚 ∈ ℝ) |
| 100 | 1 | nnred 11035 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 101 | 100 | ad2antlr 763 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑀 ∈ ℝ) |
| 102 | | elfzle2 12345 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...𝑚) → 𝑖 ≤ 𝑚) |
| 103 | 102 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ≤ 𝑚) |
| 104 | | elfzoel2 12469 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ (1..^𝑀) → 𝑀 ∈ ℤ) |
| 105 | 104 | zred 11482 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ (1..^𝑀) → 𝑀 ∈ ℝ) |
| 106 | | elfzolt2 12479 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 < 𝑀) |
| 107 | 98, 105, 106 | ltled 10185 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 ≤ 𝑀) |
| 108 | 107 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑚 ≤ 𝑀) |
| 109 | 96, 99, 101, 103, 108 | letrd 10194 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ≤ 𝑀) |
| 110 | 92, 94, 109 | jca32 558 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤
𝑖 ∧ 𝑖 ≤ 𝑀))) |
| 111 | | elfz2 12333 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤
𝑖 ∧ 𝑖 ≤ 𝑀))) |
| 112 | 110, 111 | sylibr 224 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ (1...𝑀)) |
| 113 | 87, 112 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → (𝐹‘𝑖) ∈ ℝ) |
| 114 | 80, 85, 113 | chvar 2262 |
. . . . . . . . 9
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)) → (𝐹‘𝑎) ∈ ℝ) |
| 115 | | remulcl 10021 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑎 · 𝑗) ∈ ℝ) |
| 116 | 115 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ (𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑎 · 𝑗) ∈ ℝ) |
| 117 | 72, 114, 116 | seqcl 12821 |
. . . . . . . 8
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → (seq1( · , 𝐹)‘𝑚) ∈ ℝ) |
| 118 | 71, 117 | syl5eqel 2705 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → (𝑋‘𝑚) ∈ ℝ) |
| 119 | 118 | 3adant2 1080 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝑋‘𝑚) ∈ ℝ) |
| 120 | 86 | 3ad2ant3 1084 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝐹:(1...𝑀)⟶ℝ) |
| 121 | | fzofzp1 12565 |
. . . . . . . 8
⊢ (𝑚 ∈ (1..^𝑀) → (𝑚 + 1) ∈ (1...𝑀)) |
| 122 | 121 | 3ad2ant1 1082 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝑚 + 1) ∈ (1...𝑀)) |
| 123 | 120, 122 | ffvelrnd 6360 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ∈ ℝ) |
| 124 | 50 | rpge0d 11876 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ 𝐴) |
| 125 | 124 | 3ad2ant3 1084 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 0 ≤ 𝐴) |
| 126 | 63, 69, 125 | expge0d 13026 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 0 ≤ (𝐴↑𝑚)) |
| 127 | | simp3 1063 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝜑) |
| 128 | | simp2 1062 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚))) |
| 129 | 127, 128 | mpd 15 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝐴↑𝑚) < (𝑋‘𝑚)) |
| 130 | 121 | adantr 481 |
. . . . . . . 8
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → (𝑚 + 1) ∈ (1...𝑀)) |
| 131 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → 𝜑) |
| 132 | 131, 130 | jca 554 |
. . . . . . . 8
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → (𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀))) |
| 133 | | nfv 1843 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖(𝑚 + 1) ∈ (1...𝑀) |
| 134 | 32, 133 | nfan 1828 |
. . . . . . . . . 10
⊢
Ⅎ𝑖(𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)) |
| 135 | | nfcv 2764 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝑚 + 1) |
| 136 | 37, 135 | nffv 6198 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖(𝐹‘(𝑚 + 1)) |
| 137 | 35, 36, 136 | nfbr 4699 |
. . . . . . . . . 10
⊢
Ⅎ𝑖 𝐴 < (𝐹‘(𝑚 + 1)) |
| 138 | 134, 137 | nfim 1825 |
. . . . . . . . 9
⊢
Ⅎ𝑖((𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)) → 𝐴 < (𝐹‘(𝑚 + 1))) |
| 139 | | eleq1 2689 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑚 + 1) → (𝑖 ∈ (1...𝑀) ↔ (𝑚 + 1) ∈ (1...𝑀))) |
| 140 | 139 | anbi2d 740 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑚 + 1) → ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ↔ (𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)))) |
| 141 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑚 + 1) → (𝐹‘𝑖) = (𝐹‘(𝑚 + 1))) |
| 142 | 141 | breq2d 4665 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑚 + 1) → (𝐴 < (𝐹‘𝑖) ↔ 𝐴 < (𝐹‘(𝑚 + 1)))) |
| 143 | 140, 142 | imbi12d 334 |
. . . . . . . . 9
⊢ (𝑖 = (𝑚 + 1) → (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐴 < (𝐹‘𝑖)) ↔ ((𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)) → 𝐴 < (𝐹‘(𝑚 + 1))))) |
| 144 | 138, 143,
47 | vtoclg1f 3265 |
. . . . . . . 8
⊢ ((𝑚 + 1) ∈ (1...𝑀) → ((𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)) → 𝐴 < (𝐹‘(𝑚 + 1)))) |
| 145 | 130, 132,
144 | sylc 65 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → 𝐴 < (𝐹‘(𝑚 + 1))) |
| 146 | 145 | 3adant2 1080 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝐴 < (𝐹‘(𝑚 + 1))) |
| 147 | 70, 119, 63, 123, 126, 129, 125, 146 | ltmul12ad 10965 |
. . . . 5
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → ((𝐴↑𝑚) · 𝐴) < ((𝑋‘𝑚) · (𝐹‘(𝑚 + 1)))) |
| 148 | 51 | 3ad2ant3 1084 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝐴 ∈ ℂ) |
| 149 | 148, 69 | expp1d 13009 |
. . . . 5
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝐴↑(𝑚 + 1)) = ((𝐴↑𝑚) · 𝐴)) |
| 150 | 53 | fveq1i 6192 |
. . . . . . 7
⊢ (𝑋‘(𝑚 + 1)) = (seq1( · , 𝐹)‘(𝑚 + 1)) |
| 151 | 150 | a1i 11 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝑋‘(𝑚 + 1)) = (seq1( · , 𝐹)‘(𝑚 + 1))) |
| 152 | 64 | 3ad2ant1 1082 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝑚 ∈
(ℤ≥‘1)) |
| 153 | | seqp1 12816 |
. . . . . . 7
⊢ (𝑚 ∈
(ℤ≥‘1) → (seq1( · , 𝐹)‘(𝑚 + 1)) = ((seq1( · , 𝐹)‘𝑚) · (𝐹‘(𝑚 + 1)))) |
| 154 | 152, 153 | syl 17 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (seq1( · , 𝐹)‘(𝑚 + 1)) = ((seq1( · , 𝐹)‘𝑚) · (𝐹‘(𝑚 + 1)))) |
| 155 | 71 | a1i 11 |
. . . . . . . 8
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝑋‘𝑚) = (seq1( · , 𝐹)‘𝑚)) |
| 156 | 155 | eqcomd 2628 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (seq1( · , 𝐹)‘𝑚) = (𝑋‘𝑚)) |
| 157 | 156 | oveq1d 6665 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → ((seq1( · , 𝐹)‘𝑚) · (𝐹‘(𝑚 + 1))) = ((𝑋‘𝑚) · (𝐹‘(𝑚 + 1)))) |
| 158 | 151, 154,
157 | 3eqtrd 2660 |
. . . . 5
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝑋‘(𝑚 + 1)) = ((𝑋‘𝑚) · (𝐹‘(𝑚 + 1)))) |
| 159 | 147, 149,
158 | 3brtr4d 4685 |
. . . 4
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝐴↑(𝑚 + 1)) < (𝑋‘(𝑚 + 1))) |
| 160 | 159 | 3exp 1264 |
. . 3
⊢ (𝑚 ∈ (1..^𝑀) → ((𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) → (𝜑 → (𝐴↑(𝑚 + 1)) < (𝑋‘(𝑚 + 1))))) |
| 161 | 9, 13, 17, 21, 61, 160 | fzind2 12586 |
. 2
⊢ (𝑀 ∈ (1...𝑀) → (𝜑 → (𝐴↑𝑀) < (𝑋‘𝑀))) |
| 162 | 5, 161 | mpcom 38 |
1
⊢ (𝜑 → (𝐴↑𝑀) < (𝑋‘𝑀)) |