MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subccatid Structured version   Visualization version   GIF version

Theorem subccatid 16506
Description: A subcategory is a category. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
subccat.1 𝐷 = (𝐶cat 𝐽)
subccat.j (𝜑𝐽 ∈ (Subcat‘𝐶))
subccatid.1 (𝜑𝐽 Fn (𝑆 × 𝑆))
subccatid.2 1 = (Id‘𝐶)
Assertion
Ref Expression
subccatid (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑥𝑆 ↦ ( 1𝑥))))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥   𝑥, 1   𝑥,𝐽   𝑥,𝑆

Proof of Theorem subccatid
Dummy variables 𝑓 𝑔 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subccat.1 . . 3 𝐷 = (𝐶cat 𝐽)
2 eqid 2622 . . 3 (Base‘𝐶) = (Base‘𝐶)
3 subccat.j . . . 4 (𝜑𝐽 ∈ (Subcat‘𝐶))
4 subcrcl 16476 . . . 4 (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)
53, 4syl 17 . . 3 (𝜑𝐶 ∈ Cat)
6 subccatid.1 . . 3 (𝜑𝐽 Fn (𝑆 × 𝑆))
73, 6, 2subcss1 16502 . . 3 (𝜑𝑆 ⊆ (Base‘𝐶))
81, 2, 5, 6, 7rescbas 16489 . 2 (𝜑𝑆 = (Base‘𝐷))
91, 2, 5, 6, 7reschom 16490 . 2 (𝜑𝐽 = (Hom ‘𝐷))
10 eqid 2622 . . 3 (comp‘𝐶) = (comp‘𝐶)
111, 2, 5, 6, 7, 10rescco 16492 . 2 (𝜑 → (comp‘𝐶) = (comp‘𝐷))
12 ovex 6678 . . . 4 (𝐶cat 𝐽) ∈ V
131, 12eqeltri 2697 . . 3 𝐷 ∈ V
1413a1i 11 . 2 (𝜑𝐷 ∈ V)
15 biid 251 . 2 (((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧))) ↔ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧))))
163adantr 481 . . 3 ((𝜑𝑥𝑆) → 𝐽 ∈ (Subcat‘𝐶))
176adantr 481 . . 3 ((𝜑𝑥𝑆) → 𝐽 Fn (𝑆 × 𝑆))
18 simpr 477 . . 3 ((𝜑𝑥𝑆) → 𝑥𝑆)
19 subccatid.2 . . 3 1 = (Id‘𝐶)
2016, 17, 18, 19subcidcl 16504 . 2 ((𝜑𝑥𝑆) → ( 1𝑥) ∈ (𝑥𝐽𝑥))
21 eqid 2622 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
225adantr 481 . . 3 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝐶 ∈ Cat)
237adantr 481 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑆 ⊆ (Base‘𝐶))
24 simpr1l 1118 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑤𝑆)
2523, 24sseldd 3604 . . 3 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑤 ∈ (Base‘𝐶))
26 simpr1r 1119 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑥𝑆)
2723, 26sseldd 3604 . . 3 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑥 ∈ (Base‘𝐶))
283adantr 481 . . . . 5 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝐽 ∈ (Subcat‘𝐶))
296adantr 481 . . . . 5 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝐽 Fn (𝑆 × 𝑆))
3028, 29, 21, 24, 26subcss2 16503 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → (𝑤𝐽𝑥) ⊆ (𝑤(Hom ‘𝐶)𝑥))
31 simpr31 1151 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑤𝐽𝑥))
3230, 31sseldd 3604 . . 3 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥))
332, 21, 19, 22, 25, 10, 27, 32catlid 16344 . 2 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → (( 1𝑥)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓)
34 simpr2l 1120 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑦𝑆)
3523, 34sseldd 3604 . . 3 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑦 ∈ (Base‘𝐶))
3628, 29, 21, 26, 34subcss2 16503 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → (𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦))
37 simpr32 1152 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑥𝐽𝑦))
3836, 37sseldd 3604 . . 3 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))
392, 21, 19, 22, 27, 10, 35, 38catrid 16345 . 2 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( 1𝑥)) = 𝑔)
4028, 29, 24, 10, 26, 34, 31, 37subccocl 16505 . 2 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → (𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓) ∈ (𝑤𝐽𝑦))
41 simpr2r 1121 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑧𝑆)
4223, 41sseldd 3604 . . 3 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑧 ∈ (Base‘𝐶))
4328, 29, 21, 34, 41subcss2 16503 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → (𝑦𝐽𝑧) ⊆ (𝑦(Hom ‘𝐶)𝑧))
44 simpr33 1153 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → ∈ (𝑦𝐽𝑧))
4543, 44sseldd 3604 . . 3 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → ∈ (𝑦(Hom ‘𝐶)𝑧))
462, 21, 10, 22, 25, 27, 35, 32, 38, 42, 45catass 16347 . 2 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓)))
478, 9, 11, 14, 15, 20, 33, 39, 40, 46iscatd2 16342 1 (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑥𝑆 ↦ ( 1𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  cmpt 4729   × cxp 5112   Fn wfn 5883  cfv 5888  (class class class)co 6650  Basecbs 15857  Hom chom 15952  compcco 15953  Catccat 16325  Idccid 16326  cat cresc 16468  Subcatcsubc 16469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-homf 16331  df-ssc 16470  df-resc 16471  df-subc 16472
This theorem is referenced by:  subcid  16507  subccat  16508
  Copyright terms: Public domain W3C validator