| Step | Hyp | Ref
| Expression |
| 1 | | subccat.1 |
. . 3
⊢ 𝐷 = (𝐶 ↾cat 𝐽) |
| 2 | | eqid 2622 |
. . 3
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 3 | | subccat.j |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
| 4 | | subcrcl 16476 |
. . . 4
⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) |
| 5 | 3, 4 | syl 17 |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 6 | | subccatid.1 |
. . 3
⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| 7 | 3, 6, 2 | subcss1 16502 |
. . 3
⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐶)) |
| 8 | 1, 2, 5, 6, 7 | rescbas 16489 |
. 2
⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
| 9 | 1, 2, 5, 6, 7 | reschom 16490 |
. 2
⊢ (𝜑 → 𝐽 = (Hom ‘𝐷)) |
| 10 | | eqid 2622 |
. . 3
⊢
(comp‘𝐶) =
(comp‘𝐶) |
| 11 | 1, 2, 5, 6, 7, 10 | rescco 16492 |
. 2
⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐷)) |
| 12 | | ovex 6678 |
. . . 4
⊢ (𝐶 ↾cat 𝐽) ∈ V |
| 13 | 1, 12 | eqeltri 2697 |
. . 3
⊢ 𝐷 ∈ V |
| 14 | 13 | a1i 11 |
. 2
⊢ (𝜑 → 𝐷 ∈ V) |
| 15 | | biid 251 |
. 2
⊢ (((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧))) ↔ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) |
| 16 | 3 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐽 ∈ (Subcat‘𝐶)) |
| 17 | 6 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐽 Fn (𝑆 × 𝑆)) |
| 18 | | simpr 477 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
| 19 | | subccatid.2 |
. . 3
⊢ 1 =
(Id‘𝐶) |
| 20 | 16, 17, 18, 19 | subcidcl 16504 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) |
| 21 | | eqid 2622 |
. . 3
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 22 | 5 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝐶 ∈ Cat) |
| 23 | 7 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑆 ⊆ (Base‘𝐶)) |
| 24 | | simpr1l 1118 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑤 ∈ 𝑆) |
| 25 | 23, 24 | sseldd 3604 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑤 ∈ (Base‘𝐶)) |
| 26 | | simpr1r 1119 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑥 ∈ 𝑆) |
| 27 | 23, 26 | sseldd 3604 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑥 ∈ (Base‘𝐶)) |
| 28 | 3 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝐽 ∈ (Subcat‘𝐶)) |
| 29 | 6 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝐽 Fn (𝑆 × 𝑆)) |
| 30 | 28, 29, 21, 24, 26 | subcss2 16503 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (𝑤𝐽𝑥) ⊆ (𝑤(Hom ‘𝐶)𝑥)) |
| 31 | | simpr31 1151 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑤𝐽𝑥)) |
| 32 | 30, 31 | sseldd 3604 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥)) |
| 33 | 2, 21, 19, 22, 25, 10, 27, 32 | catlid 16344 |
. 2
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (( 1 ‘𝑥)(〈𝑤, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓) |
| 34 | | simpr2l 1120 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑦 ∈ 𝑆) |
| 35 | 23, 34 | sseldd 3604 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑦 ∈ (Base‘𝐶)) |
| 36 | 28, 29, 21, 26, 34 | subcss2 16503 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦)) |
| 37 | | simpr32 1152 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑥𝐽𝑦)) |
| 38 | 36, 37 | sseldd 3604 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
| 39 | 2, 21, 19, 22, 27, 10, 35, 38 | catrid 16345 |
. 2
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( 1 ‘𝑥)) = 𝑔) |
| 40 | 28, 29, 24, 10, 26, 34, 31, 37 | subccocl 16505 |
. 2
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓) ∈ (𝑤𝐽𝑦)) |
| 41 | | simpr2r 1121 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑧 ∈ 𝑆) |
| 42 | 23, 41 | sseldd 3604 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑧 ∈ (Base‘𝐶)) |
| 43 | 28, 29, 21, 34, 41 | subcss2 16503 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (𝑦𝐽𝑧) ⊆ (𝑦(Hom ‘𝐶)𝑧)) |
| 44 | | simpr33 1153 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → ℎ ∈ (𝑦𝐽𝑧)) |
| 45 | 43, 44 | sseldd 3604 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) |
| 46 | 2, 21, 10, 22, 25, 27, 35, 32, 38, 42, 45 | catass 16347 |
. 2
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → ((ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓))) |
| 47 | 8, 9, 11, 14, 15, 20, 33, 39, 40, 46 | iscatd2 16342 |
1
⊢ (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑥 ∈ 𝑆 ↦ ( 1 ‘𝑥)))) |