MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgpropd Structured version   Visualization version   GIF version

Theorem subrgpropd 18814
Description: If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
subrgpropd.1 (𝜑𝐵 = (Base‘𝐾))
subrgpropd.2 (𝜑𝐵 = (Base‘𝐿))
subrgpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
subrgpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
subrgpropd (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem subrgpropd
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 subrgpropd.1 . . . . . 6 (𝜑𝐵 = (Base‘𝐾))
2 subrgpropd.2 . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
3 subrgpropd.3 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
4 subrgpropd.4 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4ringpropd 18582 . . . . 5 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
61ineq2d 3814 . . . . . . 7 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
7 vex 3203 . . . . . . . 8 𝑠 ∈ V
8 eqid 2622 . . . . . . . . 9 (𝐾s 𝑠) = (𝐾s 𝑠)
9 eqid 2622 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
108, 9ressbas 15930 . . . . . . . 8 (𝑠 ∈ V → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠)))
117, 10ax-mp 5 . . . . . . 7 (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠))
126, 11syl6eq 2672 . . . . . 6 (𝜑 → (𝑠𝐵) = (Base‘(𝐾s 𝑠)))
132ineq2d 3814 . . . . . . 7 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
14 eqid 2622 . . . . . . . . 9 (𝐿s 𝑠) = (𝐿s 𝑠)
15 eqid 2622 . . . . . . . . 9 (Base‘𝐿) = (Base‘𝐿)
1614, 15ressbas 15930 . . . . . . . 8 (𝑠 ∈ V → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠)))
177, 16ax-mp 5 . . . . . . 7 (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠))
1813, 17syl6eq 2672 . . . . . 6 (𝜑 → (𝑠𝐵) = (Base‘(𝐿s 𝑠)))
19 inss2 3834 . . . . . . . . 9 (𝑠𝐵) ⊆ 𝐵
2019sseli 3599 . . . . . . . 8 (𝑥 ∈ (𝑠𝐵) → 𝑥𝐵)
2119sseli 3599 . . . . . . . 8 (𝑦 ∈ (𝑠𝐵) → 𝑦𝐵)
2220, 21anim12i 590 . . . . . . 7 ((𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵)) → (𝑥𝐵𝑦𝐵))
23 eqid 2622 . . . . . . . . . . 11 (+g𝐾) = (+g𝐾)
248, 23ressplusg 15993 . . . . . . . . . 10 (𝑠 ∈ V → (+g𝐾) = (+g‘(𝐾s 𝑠)))
257, 24ax-mp 5 . . . . . . . . 9 (+g𝐾) = (+g‘(𝐾s 𝑠))
2625oveqi 6663 . . . . . . . 8 (𝑥(+g𝐾)𝑦) = (𝑥(+g‘(𝐾s 𝑠))𝑦)
27 eqid 2622 . . . . . . . . . . 11 (+g𝐿) = (+g𝐿)
2814, 27ressplusg 15993 . . . . . . . . . 10 (𝑠 ∈ V → (+g𝐿) = (+g‘(𝐿s 𝑠)))
297, 28ax-mp 5 . . . . . . . . 9 (+g𝐿) = (+g‘(𝐿s 𝑠))
3029oveqi 6663 . . . . . . . 8 (𝑥(+g𝐿)𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦)
313, 26, 303eqtr3g 2679 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
3222, 31sylan2 491 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
33 eqid 2622 . . . . . . . . . . 11 (.r𝐾) = (.r𝐾)
348, 33ressmulr 16006 . . . . . . . . . 10 (𝑠 ∈ V → (.r𝐾) = (.r‘(𝐾s 𝑠)))
357, 34ax-mp 5 . . . . . . . . 9 (.r𝐾) = (.r‘(𝐾s 𝑠))
3635oveqi 6663 . . . . . . . 8 (𝑥(.r𝐾)𝑦) = (𝑥(.r‘(𝐾s 𝑠))𝑦)
37 eqid 2622 . . . . . . . . . . 11 (.r𝐿) = (.r𝐿)
3814, 37ressmulr 16006 . . . . . . . . . 10 (𝑠 ∈ V → (.r𝐿) = (.r‘(𝐿s 𝑠)))
397, 38ax-mp 5 . . . . . . . . 9 (.r𝐿) = (.r‘(𝐿s 𝑠))
4039oveqi 6663 . . . . . . . 8 (𝑥(.r𝐿)𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦)
414, 36, 403eqtr3g 2679 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
4222, 41sylan2 491 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
4312, 18, 32, 42ringpropd 18582 . . . . 5 (𝜑 → ((𝐾s 𝑠) ∈ Ring ↔ (𝐿s 𝑠) ∈ Ring))
445, 43anbi12d 747 . . . 4 (𝜑 → ((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ↔ (𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring)))
451, 2eqtr3d 2658 . . . . . 6 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
4645sseq2d 3633 . . . . 5 (𝜑 → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
471, 2, 4rngidpropd 18695 . . . . . 6 (𝜑 → (1r𝐾) = (1r𝐿))
4847eleq1d 2686 . . . . 5 (𝜑 → ((1r𝐾) ∈ 𝑠 ↔ (1r𝐿) ∈ 𝑠))
4946, 48anbi12d 747 . . . 4 (𝜑 → ((𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠) ↔ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠)))
5044, 49anbi12d 747 . . 3 (𝜑 → (((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠)) ↔ ((𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠))))
51 eqid 2622 . . . 4 (1r𝐾) = (1r𝐾)
529, 51issubrg 18780 . . 3 (𝑠 ∈ (SubRing‘𝐾) ↔ ((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠)))
53 eqid 2622 . . . 4 (1r𝐿) = (1r𝐿)
5415, 53issubrg 18780 . . 3 (𝑠 ∈ (SubRing‘𝐿) ↔ ((𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠)))
5550, 52, 543bitr4g 303 . 2 (𝜑 → (𝑠 ∈ (SubRing‘𝐾) ↔ 𝑠 ∈ (SubRing‘𝐿)))
5655eqrdv 2620 1 (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cin 3573  wss 3574  cfv 5888  (class class class)co 6650  Basecbs 15857  s cress 15858  +gcplusg 15941  .rcmulr 15942  1rcur 18501  Ringcrg 18547  SubRingcsubrg 18776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778
This theorem is referenced by:  ply1subrg  19567  subrgply1  19603
  Copyright terms: Public domain W3C validator