MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgpropd Structured version   Visualization version   Unicode version

Theorem subrgpropd 18814
Description: If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
subrgpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
subrgpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
subrgpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
subrgpropd.4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
Assertion
Ref Expression
subrgpropd  |-  ( ph  ->  (SubRing `  K )  =  (SubRing `  L )
)
Distinct variable groups:    x, y, B    x, K, y    ph, x, y    x, L, y

Proof of Theorem subrgpropd
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 subrgpropd.1 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  K ) )
2 subrgpropd.2 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  L ) )
3 subrgpropd.3 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
4 subrgpropd.4 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
51, 2, 3, 4ringpropd 18582 . . . . 5  |-  ( ph  ->  ( K  e.  Ring  <->  L  e.  Ring ) )
61ineq2d 3814 . . . . . . 7  |-  ( ph  ->  ( s  i^i  B
)  =  ( s  i^i  ( Base `  K
) ) )
7 vex 3203 . . . . . . . 8  |-  s  e. 
_V
8 eqid 2622 . . . . . . . . 9  |-  ( Ks  s )  =  ( Ks  s )
9 eqid 2622 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
108, 9ressbas 15930 . . . . . . . 8  |-  ( s  e.  _V  ->  (
s  i^i  ( Base `  K ) )  =  ( Base `  ( Ks  s ) ) )
117, 10ax-mp 5 . . . . . . 7  |-  ( s  i^i  ( Base `  K
) )  =  (
Base `  ( Ks  s
) )
126, 11syl6eq 2672 . . . . . 6  |-  ( ph  ->  ( s  i^i  B
)  =  ( Base `  ( Ks  s ) ) )
132ineq2d 3814 . . . . . . 7  |-  ( ph  ->  ( s  i^i  B
)  =  ( s  i^i  ( Base `  L
) ) )
14 eqid 2622 . . . . . . . . 9  |-  ( Ls  s )  =  ( Ls  s )
15 eqid 2622 . . . . . . . . 9  |-  ( Base `  L )  =  (
Base `  L )
1614, 15ressbas 15930 . . . . . . . 8  |-  ( s  e.  _V  ->  (
s  i^i  ( Base `  L ) )  =  ( Base `  ( Ls  s ) ) )
177, 16ax-mp 5 . . . . . . 7  |-  ( s  i^i  ( Base `  L
) )  =  (
Base `  ( Ls  s
) )
1813, 17syl6eq 2672 . . . . . 6  |-  ( ph  ->  ( s  i^i  B
)  =  ( Base `  ( Ls  s ) ) )
19 inss2 3834 . . . . . . . . 9  |-  ( s  i^i  B )  C_  B
2019sseli 3599 . . . . . . . 8  |-  ( x  e.  ( s  i^i 
B )  ->  x  e.  B )
2119sseli 3599 . . . . . . . 8  |-  ( y  e.  ( s  i^i 
B )  ->  y  e.  B )
2220, 21anim12i 590 . . . . . . 7  |-  ( ( x  e.  ( s  i^i  B )  /\  y  e.  ( s  i^i  B ) )  -> 
( x  e.  B  /\  y  e.  B
) )
23 eqid 2622 . . . . . . . . . . 11  |-  ( +g  `  K )  =  ( +g  `  K )
248, 23ressplusg 15993 . . . . . . . . . 10  |-  ( s  e.  _V  ->  ( +g  `  K )  =  ( +g  `  ( Ks  s ) ) )
257, 24ax-mp 5 . . . . . . . . 9  |-  ( +g  `  K )  =  ( +g  `  ( Ks  s ) )
2625oveqi 6663 . . . . . . . 8  |-  ( x ( +g  `  K
) y )  =  ( x ( +g  `  ( Ks  s ) ) y )
27 eqid 2622 . . . . . . . . . . 11  |-  ( +g  `  L )  =  ( +g  `  L )
2814, 27ressplusg 15993 . . . . . . . . . 10  |-  ( s  e.  _V  ->  ( +g  `  L )  =  ( +g  `  ( Ls  s ) ) )
297, 28ax-mp 5 . . . . . . . . 9  |-  ( +g  `  L )  =  ( +g  `  ( Ls  s ) )
3029oveqi 6663 . . . . . . . 8  |-  ( x ( +g  `  L
) y )  =  ( x ( +g  `  ( Ls  s ) ) y )
313, 26, 303eqtr3g 2679 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  ( Ks  s ) ) y )  =  ( x ( +g  `  ( Ls  s ) ) y ) )
3222, 31sylan2 491 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( s  i^i  B
)  /\  y  e.  ( s  i^i  B
) ) )  -> 
( x ( +g  `  ( Ks  s ) ) y )  =  ( x ( +g  `  ( Ls  s ) ) y ) )
33 eqid 2622 . . . . . . . . . . 11  |-  ( .r
`  K )  =  ( .r `  K
)
348, 33ressmulr 16006 . . . . . . . . . 10  |-  ( s  e.  _V  ->  ( .r `  K )  =  ( .r `  ( Ks  s ) ) )
357, 34ax-mp 5 . . . . . . . . 9  |-  ( .r
`  K )  =  ( .r `  ( Ks  s ) )
3635oveqi 6663 . . . . . . . 8  |-  ( x ( .r `  K
) y )  =  ( x ( .r
`  ( Ks  s ) ) y )
37 eqid 2622 . . . . . . . . . . 11  |-  ( .r
`  L )  =  ( .r `  L
)
3814, 37ressmulr 16006 . . . . . . . . . 10  |-  ( s  e.  _V  ->  ( .r `  L )  =  ( .r `  ( Ls  s ) ) )
397, 38ax-mp 5 . . . . . . . . 9  |-  ( .r
`  L )  =  ( .r `  ( Ls  s ) )
4039oveqi 6663 . . . . . . . 8  |-  ( x ( .r `  L
) y )  =  ( x ( .r
`  ( Ls  s ) ) y )
414, 36, 403eqtr3g 2679 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  ( Ks  s ) ) y )  =  ( x ( .r
`  ( Ls  s ) ) y ) )
4222, 41sylan2 491 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( s  i^i  B
)  /\  y  e.  ( s  i^i  B
) ) )  -> 
( x ( .r
`  ( Ks  s ) ) y )  =  ( x ( .r
`  ( Ls  s ) ) y ) )
4312, 18, 32, 42ringpropd 18582 . . . . 5  |-  ( ph  ->  ( ( Ks  s )  e.  Ring  <->  ( Ls  s )  e.  Ring ) )
445, 43anbi12d 747 . . . 4  |-  ( ph  ->  ( ( K  e. 
Ring  /\  ( Ks  s )  e.  Ring )  <->  ( L  e.  Ring  /\  ( Ls  s
)  e.  Ring )
) )
451, 2eqtr3d 2658 . . . . . 6  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
4645sseq2d 3633 . . . . 5  |-  ( ph  ->  ( s  C_  ( Base `  K )  <->  s  C_  ( Base `  L )
) )
471, 2, 4rngidpropd 18695 . . . . . 6  |-  ( ph  ->  ( 1r `  K
)  =  ( 1r
`  L ) )
4847eleq1d 2686 . . . . 5  |-  ( ph  ->  ( ( 1r `  K )  e.  s  <-> 
( 1r `  L
)  e.  s ) )
4946, 48anbi12d 747 . . . 4  |-  ( ph  ->  ( ( s  C_  ( Base `  K )  /\  ( 1r `  K
)  e.  s )  <-> 
( s  C_  ( Base `  L )  /\  ( 1r `  L )  e.  s ) ) )
5044, 49anbi12d 747 . . 3  |-  ( ph  ->  ( ( ( K  e.  Ring  /\  ( Ks  s )  e.  Ring )  /\  ( s  C_  ( Base `  K )  /\  ( 1r `  K
)  e.  s ) )  <->  ( ( L  e.  Ring  /\  ( Ls  s )  e.  Ring )  /\  ( s  C_  ( Base `  L )  /\  ( 1r `  L
)  e.  s ) ) ) )
51 eqid 2622 . . . 4  |-  ( 1r
`  K )  =  ( 1r `  K
)
529, 51issubrg 18780 . . 3  |-  ( s  e.  (SubRing `  K
)  <->  ( ( K  e.  Ring  /\  ( Ks  s )  e.  Ring )  /\  ( s  C_  ( Base `  K )  /\  ( 1r `  K
)  e.  s ) ) )
53 eqid 2622 . . . 4  |-  ( 1r
`  L )  =  ( 1r `  L
)
5415, 53issubrg 18780 . . 3  |-  ( s  e.  (SubRing `  L
)  <->  ( ( L  e.  Ring  /\  ( Ls  s )  e.  Ring )  /\  ( s  C_  ( Base `  L )  /\  ( 1r `  L
)  e.  s ) ) )
5550, 52, 543bitr4g 303 . 2  |-  ( ph  ->  ( s  e.  (SubRing `  K )  <->  s  e.  (SubRing `  L ) ) )
5655eqrdv 2620 1  |-  ( ph  ->  (SubRing `  K )  =  (SubRing `  L )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   .rcmulr 15942   1rcur 18501   Ringcrg 18547  SubRingcsubrg 18776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778
This theorem is referenced by:  ply1subrg  19567  subrgply1  19603
  Copyright terms: Public domain W3C validator