| Step | Hyp | Ref
| Expression |
| 1 | | symgfixf.p |
. . 3
⊢ 𝑃 =
(Base‘(SymGrp‘𝑁)) |
| 2 | | symgfixf.q |
. . 3
⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} |
| 3 | | symgfixf.s |
. . 3
⊢ 𝑆 =
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
| 4 | | symgfixf.h |
. . 3
⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) |
| 5 | 1, 2, 3, 4 | symgfixf 17856 |
. 2
⊢ (𝐾 ∈ 𝑁 → 𝐻:𝑄⟶𝑆) |
| 6 | 4 | fvtresfn 6284 |
. . . . . 6
⊢ (𝑔 ∈ 𝑄 → (𝐻‘𝑔) = (𝑔 ↾ (𝑁 ∖ {𝐾}))) |
| 7 | 4 | fvtresfn 6284 |
. . . . . 6
⊢ (𝑝 ∈ 𝑄 → (𝐻‘𝑝) = (𝑝 ↾ (𝑁 ∖ {𝐾}))) |
| 8 | 6, 7 | eqeqan12d 2638 |
. . . . 5
⊢ ((𝑔 ∈ 𝑄 ∧ 𝑝 ∈ 𝑄) → ((𝐻‘𝑔) = (𝐻‘𝑝) ↔ (𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})))) |
| 9 | 8 | adantl 482 |
. . . 4
⊢ ((𝐾 ∈ 𝑁 ∧ (𝑔 ∈ 𝑄 ∧ 𝑝 ∈ 𝑄)) → ((𝐻‘𝑔) = (𝐻‘𝑝) ↔ (𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})))) |
| 10 | | vex 3203 |
. . . . . . 7
⊢ 𝑔 ∈ V |
| 11 | 1, 2 | symgfixelq 17853 |
. . . . . . 7
⊢ (𝑔 ∈ V → (𝑔 ∈ 𝑄 ↔ (𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾))) |
| 12 | 10, 11 | ax-mp 5 |
. . . . . 6
⊢ (𝑔 ∈ 𝑄 ↔ (𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾)) |
| 13 | | vex 3203 |
. . . . . . 7
⊢ 𝑝 ∈ V |
| 14 | 1, 2 | symgfixelq 17853 |
. . . . . . 7
⊢ (𝑝 ∈ V → (𝑝 ∈ 𝑄 ↔ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) |
| 15 | 13, 14 | ax-mp 5 |
. . . . . 6
⊢ (𝑝 ∈ 𝑄 ↔ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) |
| 16 | 12, 15 | anbi12i 733 |
. . . . 5
⊢ ((𝑔 ∈ 𝑄 ∧ 𝑝 ∈ 𝑄) ↔ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) |
| 17 | | f1ofn 6138 |
. . . . . . . . . . 11
⊢ (𝑔:𝑁–1-1-onto→𝑁 → 𝑔 Fn 𝑁) |
| 18 | 17 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) → 𝑔 Fn 𝑁) |
| 19 | | f1ofn 6138 |
. . . . . . . . . . 11
⊢ (𝑝:𝑁–1-1-onto→𝑁 → 𝑝 Fn 𝑁) |
| 20 | 19 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾) → 𝑝 Fn 𝑁) |
| 21 | 18, 20 | anim12i 590 |
. . . . . . . . 9
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → (𝑔 Fn 𝑁 ∧ 𝑝 Fn 𝑁)) |
| 22 | | difss 3737 |
. . . . . . . . 9
⊢ (𝑁 ∖ {𝐾}) ⊆ 𝑁 |
| 23 | 21, 22 | jctir 561 |
. . . . . . . 8
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → ((𝑔 Fn 𝑁 ∧ 𝑝 Fn 𝑁) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁)) |
| 24 | 23 | adantl 482 |
. . . . . . 7
⊢ ((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) → ((𝑔 Fn 𝑁 ∧ 𝑝 Fn 𝑁) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁)) |
| 25 | | fvreseq 6319 |
. . . . . . 7
⊢ (((𝑔 Fn 𝑁 ∧ 𝑝 Fn 𝑁) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖))) |
| 26 | 24, 25 | syl 17 |
. . . . . 6
⊢ ((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖))) |
| 27 | | f1of 6137 |
. . . . . . . . . . . 12
⊢ (𝑔:𝑁–1-1-onto→𝑁 → 𝑔:𝑁⟶𝑁) |
| 28 | 27 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) → 𝑔:𝑁⟶𝑁) |
| 29 | | f1of 6137 |
. . . . . . . . . . . 12
⊢ (𝑝:𝑁–1-1-onto→𝑁 → 𝑝:𝑁⟶𝑁) |
| 30 | 29 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾) → 𝑝:𝑁⟶𝑁) |
| 31 | | fdm 6051 |
. . . . . . . . . . . 12
⊢ (𝑔:𝑁⟶𝑁 → dom 𝑔 = 𝑁) |
| 32 | | fdm 6051 |
. . . . . . . . . . . 12
⊢ (𝑝:𝑁⟶𝑁 → dom 𝑝 = 𝑁) |
| 33 | 31, 32 | anim12i 590 |
. . . . . . . . . . 11
⊢ ((𝑔:𝑁⟶𝑁 ∧ 𝑝:𝑁⟶𝑁) → (dom 𝑔 = 𝑁 ∧ dom 𝑝 = 𝑁)) |
| 34 | 28, 30, 33 | syl2an 494 |
. . . . . . . . . 10
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → (dom 𝑔 = 𝑁 ∧ dom 𝑝 = 𝑁)) |
| 35 | | eqtr3 2643 |
. . . . . . . . . 10
⊢ ((dom
𝑔 = 𝑁 ∧ dom 𝑝 = 𝑁) → dom 𝑔 = dom 𝑝) |
| 36 | 34, 35 | syl 17 |
. . . . . . . . 9
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → dom 𝑔 = dom 𝑝) |
| 37 | 36 | ad2antlr 763 |
. . . . . . . 8
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → dom 𝑔 = dom 𝑝) |
| 38 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) |
| 39 | | eqtr3 2643 |
. . . . . . . . . . . 12
⊢ (((𝑔‘𝐾) = 𝐾 ∧ (𝑝‘𝐾) = 𝐾) → (𝑔‘𝐾) = (𝑝‘𝐾)) |
| 40 | 39 | ad2ant2l 782 |
. . . . . . . . . . 11
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → (𝑔‘𝐾) = (𝑝‘𝐾)) |
| 41 | 40 | ad2antlr 763 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → (𝑔‘𝐾) = (𝑝‘𝐾)) |
| 42 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝐾 → (𝑔‘𝑖) = (𝑔‘𝐾)) |
| 43 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝐾 → (𝑝‘𝑖) = (𝑝‘𝐾)) |
| 44 | 42, 43 | eqeq12d 2637 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝐾 → ((𝑔‘𝑖) = (𝑝‘𝑖) ↔ (𝑔‘𝐾) = (𝑝‘𝐾))) |
| 45 | 44 | ralunsn 4422 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ 𝑁 → (∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) ↔ (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) ∧ (𝑔‘𝐾) = (𝑝‘𝐾)))) |
| 46 | 45 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) → (∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) ↔ (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) ∧ (𝑔‘𝐾) = (𝑝‘𝐾)))) |
| 47 | 46 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → (∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) ↔ (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) ∧ (𝑔‘𝐾) = (𝑝‘𝐾)))) |
| 48 | 38, 41, 47 | mpbir2and 957 |
. . . . . . . . 9
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → ∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) |
| 49 | | f1odm 6141 |
. . . . . . . . . . . . . 14
⊢ (𝑔:𝑁–1-1-onto→𝑁 → dom 𝑔 = 𝑁) |
| 50 | 49 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) → dom 𝑔 = 𝑁) |
| 51 | 50 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → dom 𝑔 = 𝑁) |
| 52 | | difsnid 4341 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ 𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁) |
| 53 | 52 | eqcomd 2628 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ 𝑁 → 𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) |
| 54 | 51, 53 | sylan9eqr 2678 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) → dom 𝑔 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) |
| 55 | 54 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → dom 𝑔 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) |
| 56 | 55 | raleqdv 3144 |
. . . . . . . . 9
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → (∀𝑖 ∈ dom 𝑔(𝑔‘𝑖) = (𝑝‘𝑖) ↔ ∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖))) |
| 57 | 48, 56 | mpbird 247 |
. . . . . . . 8
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → ∀𝑖 ∈ dom 𝑔(𝑔‘𝑖) = (𝑝‘𝑖)) |
| 58 | | f1ofun 6139 |
. . . . . . . . . . . 12
⊢ (𝑔:𝑁–1-1-onto→𝑁 → Fun 𝑔) |
| 59 | 58 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) → Fun 𝑔) |
| 60 | | f1ofun 6139 |
. . . . . . . . . . . 12
⊢ (𝑝:𝑁–1-1-onto→𝑁 → Fun 𝑝) |
| 61 | 60 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾) → Fun 𝑝) |
| 62 | 59, 61 | anim12i 590 |
. . . . . . . . . 10
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → (Fun 𝑔 ∧ Fun 𝑝)) |
| 63 | 62 | ad2antlr 763 |
. . . . . . . . 9
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → (Fun 𝑔 ∧ Fun 𝑝)) |
| 64 | | eqfunfv 6316 |
. . . . . . . . 9
⊢ ((Fun
𝑔 ∧ Fun 𝑝) → (𝑔 = 𝑝 ↔ (dom 𝑔 = dom 𝑝 ∧ ∀𝑖 ∈ dom 𝑔(𝑔‘𝑖) = (𝑝‘𝑖)))) |
| 65 | 63, 64 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → (𝑔 = 𝑝 ↔ (dom 𝑔 = dom 𝑝 ∧ ∀𝑖 ∈ dom 𝑔(𝑔‘𝑖) = (𝑝‘𝑖)))) |
| 66 | 37, 57, 65 | mpbir2and 957 |
. . . . . . 7
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → 𝑔 = 𝑝) |
| 67 | 66 | ex 450 |
. . . . . 6
⊢ ((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) → (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) → 𝑔 = 𝑝)) |
| 68 | 26, 67 | sylbid 230 |
. . . . 5
⊢ ((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) → 𝑔 = 𝑝)) |
| 69 | 16, 68 | sylan2b 492 |
. . . 4
⊢ ((𝐾 ∈ 𝑁 ∧ (𝑔 ∈ 𝑄 ∧ 𝑝 ∈ 𝑄)) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) → 𝑔 = 𝑝)) |
| 70 | 9, 69 | sylbid 230 |
. . 3
⊢ ((𝐾 ∈ 𝑁 ∧ (𝑔 ∈ 𝑄 ∧ 𝑝 ∈ 𝑄)) → ((𝐻‘𝑔) = (𝐻‘𝑝) → 𝑔 = 𝑝)) |
| 71 | 70 | ralrimivva 2971 |
. 2
⊢ (𝐾 ∈ 𝑁 → ∀𝑔 ∈ 𝑄 ∀𝑝 ∈ 𝑄 ((𝐻‘𝑔) = (𝐻‘𝑝) → 𝑔 = 𝑝)) |
| 72 | | dff13 6512 |
. 2
⊢ (𝐻:𝑄–1-1→𝑆 ↔ (𝐻:𝑄⟶𝑆 ∧ ∀𝑔 ∈ 𝑄 ∀𝑝 ∈ 𝑄 ((𝐻‘𝑔) = (𝐻‘𝑝) → 𝑔 = 𝑝))) |
| 73 | 5, 71, 72 | sylanbrc 698 |
1
⊢ (𝐾 ∈ 𝑁 → 𝐻:𝑄–1-1→𝑆) |