| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symgfixf1 | Structured version Visualization version Unicode version | ||
| Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a 1-1 function. (Contributed by AV, 4-Jan-2019.) |
| Ref | Expression |
|---|---|
| symgfixf.p |
|
| symgfixf.q |
|
| symgfixf.s |
|
| symgfixf.h |
|
| Ref | Expression |
|---|---|
| symgfixf1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgfixf.p |
. . 3
| |
| 2 | symgfixf.q |
. . 3
| |
| 3 | symgfixf.s |
. . 3
| |
| 4 | symgfixf.h |
. . 3
| |
| 5 | 1, 2, 3, 4 | symgfixf 17856 |
. 2
|
| 6 | 4 | fvtresfn 6284 |
. . . . . 6
|
| 7 | 4 | fvtresfn 6284 |
. . . . . 6
|
| 8 | 6, 7 | eqeqan12d 2638 |
. . . . 5
|
| 9 | 8 | adantl 482 |
. . . 4
|
| 10 | vex 3203 |
. . . . . . 7
| |
| 11 | 1, 2 | symgfixelq 17853 |
. . . . . . 7
|
| 12 | 10, 11 | ax-mp 5 |
. . . . . 6
|
| 13 | vex 3203 |
. . . . . . 7
| |
| 14 | 1, 2 | symgfixelq 17853 |
. . . . . . 7
|
| 15 | 13, 14 | ax-mp 5 |
. . . . . 6
|
| 16 | 12, 15 | anbi12i 733 |
. . . . 5
|
| 17 | f1ofn 6138 |
. . . . . . . . . . 11
| |
| 18 | 17 | adantr 481 |
. . . . . . . . . 10
|
| 19 | f1ofn 6138 |
. . . . . . . . . . 11
| |
| 20 | 19 | adantr 481 |
. . . . . . . . . 10
|
| 21 | 18, 20 | anim12i 590 |
. . . . . . . . 9
|
| 22 | difss 3737 |
. . . . . . . . 9
| |
| 23 | 21, 22 | jctir 561 |
. . . . . . . 8
|
| 24 | 23 | adantl 482 |
. . . . . . 7
|
| 25 | fvreseq 6319 |
. . . . . . 7
| |
| 26 | 24, 25 | syl 17 |
. . . . . 6
|
| 27 | f1of 6137 |
. . . . . . . . . . . 12
| |
| 28 | 27 | adantr 481 |
. . . . . . . . . . 11
|
| 29 | f1of 6137 |
. . . . . . . . . . . 12
| |
| 30 | 29 | adantr 481 |
. . . . . . . . . . 11
|
| 31 | fdm 6051 |
. . . . . . . . . . . 12
| |
| 32 | fdm 6051 |
. . . . . . . . . . . 12
| |
| 33 | 31, 32 | anim12i 590 |
. . . . . . . . . . 11
|
| 34 | 28, 30, 33 | syl2an 494 |
. . . . . . . . . 10
|
| 35 | eqtr3 2643 |
. . . . . . . . . 10
| |
| 36 | 34, 35 | syl 17 |
. . . . . . . . 9
|
| 37 | 36 | ad2antlr 763 |
. . . . . . . 8
|
| 38 | simpr 477 |
. . . . . . . . . 10
| |
| 39 | eqtr3 2643 |
. . . . . . . . . . . 12
| |
| 40 | 39 | ad2ant2l 782 |
. . . . . . . . . . 11
|
| 41 | 40 | ad2antlr 763 |
. . . . . . . . . 10
|
| 42 | fveq2 6191 |
. . . . . . . . . . . . . 14
| |
| 43 | fveq2 6191 |
. . . . . . . . . . . . . 14
| |
| 44 | 42, 43 | eqeq12d 2637 |
. . . . . . . . . . . . 13
|
| 45 | 44 | ralunsn 4422 |
. . . . . . . . . . . 12
|
| 46 | 45 | adantr 481 |
. . . . . . . . . . 11
|
| 47 | 46 | adantr 481 |
. . . . . . . . . 10
|
| 48 | 38, 41, 47 | mpbir2and 957 |
. . . . . . . . 9
|
| 49 | f1odm 6141 |
. . . . . . . . . . . . . 14
| |
| 50 | 49 | adantr 481 |
. . . . . . . . . . . . 13
|
| 51 | 50 | adantr 481 |
. . . . . . . . . . . 12
|
| 52 | difsnid 4341 |
. . . . . . . . . . . . 13
| |
| 53 | 52 | eqcomd 2628 |
. . . . . . . . . . . 12
|
| 54 | 51, 53 | sylan9eqr 2678 |
. . . . . . . . . . 11
|
| 55 | 54 | adantr 481 |
. . . . . . . . . 10
|
| 56 | 55 | raleqdv 3144 |
. . . . . . . . 9
|
| 57 | 48, 56 | mpbird 247 |
. . . . . . . 8
|
| 58 | f1ofun 6139 |
. . . . . . . . . . . 12
| |
| 59 | 58 | adantr 481 |
. . . . . . . . . . 11
|
| 60 | f1ofun 6139 |
. . . . . . . . . . . 12
| |
| 61 | 60 | adantr 481 |
. . . . . . . . . . 11
|
| 62 | 59, 61 | anim12i 590 |
. . . . . . . . . 10
|
| 63 | 62 | ad2antlr 763 |
. . . . . . . . 9
|
| 64 | eqfunfv 6316 |
. . . . . . . . 9
| |
| 65 | 63, 64 | syl 17 |
. . . . . . . 8
|
| 66 | 37, 57, 65 | mpbir2and 957 |
. . . . . . 7
|
| 67 | 66 | ex 450 |
. . . . . 6
|
| 68 | 26, 67 | sylbid 230 |
. . . . 5
|
| 69 | 16, 68 | sylan2b 492 |
. . . 4
|
| 70 | 9, 69 | sylbid 230 |
. . 3
|
| 71 | 70 | ralrimivva 2971 |
. 2
|
| 72 | dff13 6512 |
. 2
| |
| 73 | 5, 71, 72 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-plusg 15954 df-tset 15960 df-symg 17798 |
| This theorem is referenced by: symgfixf1o 17860 |
| Copyright terms: Public domain | W3C validator |