| Step | Hyp | Ref
| Expression |
| 1 | | tgdim01.x |
. 2
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| 2 | | tgdim01.y |
. 2
⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| 3 | | tgdim01.z |
. 2
⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| 4 | | tgdim01.1 |
. . . 4
⊢ (𝜑 → ¬ 𝐺DimTarskiG≥2) |
| 5 | | tgdim01.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| 6 | | tgdim01.p |
. . . . . 6
⊢ 𝑃 = (Base‘𝐺) |
| 7 | | eqid 2622 |
. . . . . 6
⊢
(dist‘𝐺) =
(dist‘𝐺) |
| 8 | | tgdim01.i |
. . . . . 6
⊢ 𝐼 = (Itv‘𝐺) |
| 9 | 6, 7, 8 | istrkg2ld 25359 |
. . . . 5
⊢ (𝐺 ∈ 𝑉 → (𝐺DimTarskiG≥2 ↔
∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) |
| 10 | 5, 9 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐺DimTarskiG≥2 ↔
∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) |
| 11 | 4, 10 | mtbid 314 |
. . 3
⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) |
| 12 | | rexnal2 3043 |
. . . . . 6
⊢
(∃𝑦 ∈
𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ¬ ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) |
| 13 | 12 | rexbii 3041 |
. . . . 5
⊢
(∃𝑥 ∈
𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ∃𝑥 ∈ 𝑃 ¬ ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) |
| 14 | | rexnal 2995 |
. . . . 5
⊢
(∃𝑥 ∈
𝑃 ¬ ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ¬ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) |
| 15 | 13, 14 | bitri 264 |
. . . 4
⊢
(∃𝑥 ∈
𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ¬ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) |
| 16 | 15 | con2bii 347 |
. . 3
⊢
(∀𝑥 ∈
𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ¬ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) |
| 17 | 11, 16 | sylibr 224 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) |
| 18 | | oveq1 6657 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥𝐼𝑦) = (𝑋𝐼𝑦)) |
| 19 | 18 | eleq2d 2687 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑦))) |
| 20 | | eleq1 2689 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑦))) |
| 21 | | oveq1 6657 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧)) |
| 22 | 21 | eleq2d 2687 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧))) |
| 23 | 19, 20, 22 | 3orbi123d 1398 |
. . . 4
⊢ (𝑥 = 𝑋 → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)))) |
| 24 | | oveq2 6658 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (𝑋𝐼𝑦) = (𝑋𝐼𝑌)) |
| 25 | 24 | eleq2d 2687 |
. . . . 5
⊢ (𝑦 = 𝑌 → (𝑧 ∈ (𝑋𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑌))) |
| 26 | | oveq2 6658 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (𝑧𝐼𝑦) = (𝑧𝐼𝑌)) |
| 27 | 26 | eleq2d 2687 |
. . . . 5
⊢ (𝑦 = 𝑌 → (𝑋 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑌))) |
| 28 | | eleq1 2689 |
. . . . 5
⊢ (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧))) |
| 29 | 25, 27, 28 | 3orbi123d 1398 |
. . . 4
⊢ (𝑦 = 𝑌 → ((𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)))) |
| 30 | | eleq1 2689 |
. . . . 5
⊢ (𝑧 = 𝑍 → (𝑧 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑋𝐼𝑌))) |
| 31 | | oveq1 6657 |
. . . . . 6
⊢ (𝑧 = 𝑍 → (𝑧𝐼𝑌) = (𝑍𝐼𝑌)) |
| 32 | 31 | eleq2d 2687 |
. . . . 5
⊢ (𝑧 = 𝑍 → (𝑋 ∈ (𝑧𝐼𝑌) ↔ 𝑋 ∈ (𝑍𝐼𝑌))) |
| 33 | | oveq2 6658 |
. . . . . 6
⊢ (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍)) |
| 34 | 33 | eleq2d 2687 |
. . . . 5
⊢ (𝑧 = 𝑍 → (𝑌 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑍))) |
| 35 | 30, 32, 34 | 3orbi123d 1398 |
. . . 4
⊢ (𝑧 = 𝑍 → ((𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| 36 | 23, 29, 35 | rspc3v 3325 |
. . 3
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) → (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| 37 | 36 | imp 445 |
. 2
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |
| 38 | 1, 2, 3, 17, 37 | syl31anc 1329 |
1
⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |