MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2evd2 Structured version   Visualization version   GIF version

Theorem umgr2v2evd2 26423
Description: In a multigraph with two edges connecting the same two vertices, each of the vertices has degree 2. (Contributed by AV, 18-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2evd2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((VtxDeg‘𝐺)‘𝐴) = 2)

Proof of Theorem umgr2v2evd2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 umgr2v2evtx.g . . . 4 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
21umgr2v2e 26421 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐺 ∈ UMGraph )
31umgr2v2evtxel 26418 . . . . 5 ((𝑉𝑊𝐴𝑉) → 𝐴 ∈ (Vtx‘𝐺))
433adant3 1081 . . . 4 ((𝑉𝑊𝐴𝑉𝐵𝑉) → 𝐴 ∈ (Vtx‘𝐺))
54adantr 481 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐴 ∈ (Vtx‘𝐺))
6 eqid 2622 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
7 eqid 2622 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
8 eqid 2622 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
9 eqid 2622 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
106, 7, 8, 9vtxdumgrval 26382 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝐴) = (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}))
112, 5, 10syl2anc 693 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((VtxDeg‘𝐺)‘𝐴) = (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}))
121umgr2v2eiedg 26419 . . . . . . . 8 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (iEdg‘𝐺) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
1312dmeqd 5326 . . . . . . 7 ((𝑉𝑊𝐴𝑉𝐵𝑉) → dom (iEdg‘𝐺) = dom {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
14 prex 4909 . . . . . . . 8 {𝐴, 𝐵} ∈ V
1514, 14dmprop 5610 . . . . . . 7 dom {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩} = {0, 1}
1613, 15syl6eq 2672 . . . . . 6 ((𝑉𝑊𝐴𝑉𝐵𝑉) → dom (iEdg‘𝐺) = {0, 1})
1712fveq1d 6193 . . . . . . 7 ((𝑉𝑊𝐴𝑉𝐵𝑉) → ((iEdg‘𝐺)‘𝑥) = ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥))
1817eleq2d 2687 . . . . . 6 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (𝐴 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)))
1916, 18rabeqbidv 3195 . . . . 5 ((𝑉𝑊𝐴𝑉𝐵𝑉) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)})
2019fveq2d 6195 . . . 4 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}) = (#‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)}))
21 prid1g 4295 . . . . . . . . . . 11 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
22 0ne1 11088 . . . . . . . . . . . 12 0 ≠ 1
23 c0ex 10034 . . . . . . . . . . . . 13 0 ∈ V
2423, 14fvpr1 6456 . . . . . . . . . . . 12 (0 ≠ 1 → ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0) = {𝐴, 𝐵})
2522, 24ax-mp 5 . . . . . . . . . . 11 ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0) = {𝐴, 𝐵}
2621, 25syl6eleqr 2712 . . . . . . . . . 10 (𝐴𝑉𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0))
27 1ex 10035 . . . . . . . . . . . . 13 1 ∈ V
2827, 14fvpr2 6457 . . . . . . . . . . . 12 (0 ≠ 1 → ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1) = {𝐴, 𝐵})
2922, 28ax-mp 5 . . . . . . . . . . 11 ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1) = {𝐴, 𝐵}
3021, 29syl6eleqr 2712 . . . . . . . . . 10 (𝐴𝑉𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1))
31 fveq2 6191 . . . . . . . . . . . 12 (𝑥 = 0 → ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥) = ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0))
3231eleq2d 2687 . . . . . . . . . . 11 (𝑥 = 0 → (𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥) ↔ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0)))
33 fveq2 6191 . . . . . . . . . . . 12 (𝑥 = 1 → ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥) = ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1))
3433eleq2d 2687 . . . . . . . . . . 11 (𝑥 = 1 → (𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥) ↔ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1)))
3523, 27, 32, 34ralpr 4238 . . . . . . . . . 10 (∀𝑥 ∈ {0, 1}𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥) ↔ (𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0) ∧ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1)))
3626, 30, 35sylanbrc 698 . . . . . . . . 9 (𝐴𝑉 → ∀𝑥 ∈ {0, 1}𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥))
37 rabid2 3118 . . . . . . . . 9 ({0, 1} = {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)} ↔ ∀𝑥 ∈ {0, 1}𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥))
3836, 37sylibr 224 . . . . . . . 8 (𝐴𝑉 → {0, 1} = {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)})
3938eqcomd 2628 . . . . . . 7 (𝐴𝑉 → {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)} = {0, 1})
4039fveq2d 6195 . . . . . 6 (𝐴𝑉 → (#‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)}) = (#‘{0, 1}))
41 prhash2ex 13187 . . . . . 6 (#‘{0, 1}) = 2
4240, 41syl6eq 2672 . . . . 5 (𝐴𝑉 → (#‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)}) = 2)
43423ad2ant2 1083 . . . 4 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (#‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)}) = 2)
4420, 43eqtrd 2656 . . 3 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}) = 2)
4544adantr 481 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}) = 2)
4611, 45eqtrd 2656 1 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((VtxDeg‘𝐺)‘𝐴) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  {cpr 4179  cop 4183  dom cdm 5114  cfv 5888  0cc0 9936  1c1 9937  2c2 11070  #chash 13117  Vtxcvtx 25874  iEdgciedg 25875   UMGraph cumgr 25976  VtxDegcvtxdg 26361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-xadd 11947  df-fz 12327  df-hash 13118  df-vtx 25876  df-iedg 25877  df-upgr 25977  df-umgr 25978  df-vtxdg 26362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator