Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unbdqndv2lem1 Structured version   Visualization version   GIF version

Theorem unbdqndv2lem1 32500
Description: Lemma for unbdqndv2 32502. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unbdqndv2lem1.a (𝜑𝐴 ∈ ℂ)
unbdqndv2lem1.b (𝜑𝐵 ∈ ℂ)
unbdqndv2lem1.c (𝜑𝐶 ∈ ℂ)
unbdqndv2lem1.d (𝜑𝐷 ∈ ℂ)
unbdqndv2lem1.e (𝜑𝐸 ∈ ℝ+)
unbdqndv2lem1.1 (𝜑𝐷 ≠ 0)
unbdqndv2lem1.2 (𝜑 → (2 · 𝐸) ≤ (abs‘((𝐴𝐵) / 𝐷)))
Assertion
Ref Expression
unbdqndv2lem1 (𝜑 → ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))

Proof of Theorem unbdqndv2lem1
StepHypRef Expression
1 unbdqndv2lem1.a . . . . . 6 (𝜑𝐴 ∈ ℂ)
2 unbdqndv2lem1.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
31, 2subcld 10392 . . . . 5 (𝜑 → (𝐴𝐵) ∈ ℂ)
4 unbdqndv2lem1.d . . . . 5 (𝜑𝐷 ∈ ℂ)
5 unbdqndv2lem1.1 . . . . 5 (𝜑𝐷 ≠ 0)
63, 4, 5absdivd 14194 . . . 4 (𝜑 → (abs‘((𝐴𝐵) / 𝐷)) = ((abs‘(𝐴𝐵)) / (abs‘𝐷)))
76adantr 481 . . 3 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘((𝐴𝐵) / 𝐷)) = ((abs‘(𝐴𝐵)) / (abs‘𝐷)))
83abscld 14175 . . . . . 6 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℝ)
98adantr 481 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐵)) ∈ ℝ)
10 unbdqndv2lem1.c . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
111, 10subcld 10392 . . . . . . . 8 (𝜑 → (𝐴𝐶) ∈ ℂ)
1211abscld 14175 . . . . . . 7 (𝜑 → (abs‘(𝐴𝐶)) ∈ ℝ)
132, 10subcld 10392 . . . . . . . 8 (𝜑 → (𝐵𝐶) ∈ ℂ)
1413abscld 14175 . . . . . . 7 (𝜑 → (abs‘(𝐵𝐶)) ∈ ℝ)
1512, 14readdcld 10069 . . . . . 6 (𝜑 → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ∈ ℝ)
1615adantr 481 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ∈ ℝ)
17 2re 11090 . . . . . . . . 9 2 ∈ ℝ
1817a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
19 unbdqndv2lem1.e . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
2019rpred 11872 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
2118, 20remulcld 10070 . . . . . . 7 (𝜑 → (2 · 𝐸) ∈ ℝ)
224abscld 14175 . . . . . . 7 (𝜑 → (abs‘𝐷) ∈ ℝ)
2321, 22remulcld 10070 . . . . . 6 (𝜑 → ((2 · 𝐸) · (abs‘𝐷)) ∈ ℝ)
2423adantr 481 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((2 · 𝐸) · (abs‘𝐷)) ∈ ℝ)
251, 2, 10abs3difd 14199 . . . . . . 7 (𝜑 → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))))
2610, 2abssubd 14192 . . . . . . . 8 (𝜑 → (abs‘(𝐶𝐵)) = (abs‘(𝐵𝐶)))
2726oveq2d 6666 . . . . . . 7 (𝜑 → ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))) = ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))
2825, 27breqtrd 4679 . . . . . 6 (𝜑 → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))
2928adantr 481 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))
3012adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐶)) ∈ ℝ)
3114adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐵𝐶)) ∈ ℝ)
3220, 22remulcld 10070 . . . . . . . 8 (𝜑 → (𝐸 · (abs‘𝐷)) ∈ ℝ)
3332adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (𝐸 · (abs‘𝐷)) ∈ ℝ)
34 pm2.45 412 . . . . . . . . 9 (¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))) → ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)))
3534adantl 482 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)))
3612, 32ltnled 10184 . . . . . . . . 9 (𝜑 → ((abs‘(𝐴𝐶)) < (𝐸 · (abs‘𝐷)) ↔ ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶))))
3736adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐶)) < (𝐸 · (abs‘𝐷)) ↔ ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶))))
3835, 37mpbird 247 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐶)) < (𝐸 · (abs‘𝐷)))
39 pm2.46 413 . . . . . . . . 9 (¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))) → ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))
4039adantl 482 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))
4114, 32ltnled 10184 . . . . . . . . 9 (𝜑 → ((abs‘(𝐵𝐶)) < (𝐸 · (abs‘𝐷)) ↔ ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))
4241adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐵𝐶)) < (𝐸 · (abs‘𝐷)) ↔ ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))
4340, 42mpbird 247 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐵𝐶)) < (𝐸 · (abs‘𝐷)))
4430, 31, 33, 33, 38, 43lt2addd 10650 . . . . . 6 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) < ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))))
4532recnd 10068 . . . . . . . . . 10 (𝜑 → (𝐸 · (abs‘𝐷)) ∈ ℂ)
46452timesd 11275 . . . . . . . . 9 (𝜑 → (2 · (𝐸 · (abs‘𝐷))) = ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))))
4746eqcomd 2628 . . . . . . . 8 (𝜑 → ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))) = (2 · (𝐸 · (abs‘𝐷))))
4818recnd 10068 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
4920recnd 10068 . . . . . . . . . 10 (𝜑𝐸 ∈ ℂ)
5022recnd 10068 . . . . . . . . . 10 (𝜑 → (abs‘𝐷) ∈ ℂ)
5148, 49, 50mulassd 10063 . . . . . . . . 9 (𝜑 → ((2 · 𝐸) · (abs‘𝐷)) = (2 · (𝐸 · (abs‘𝐷))))
5251eqcomd 2628 . . . . . . . 8 (𝜑 → (2 · (𝐸 · (abs‘𝐷))) = ((2 · 𝐸) · (abs‘𝐷)))
5347, 52eqtrd 2656 . . . . . . 7 (𝜑 → ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))) = ((2 · 𝐸) · (abs‘𝐷)))
5453adantr 481 . . . . . 6 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))) = ((2 · 𝐸) · (abs‘𝐷)))
5544, 54breqtrd 4679 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) < ((2 · 𝐸) · (abs‘𝐷)))
569, 16, 24, 29, 55lelttrd 10195 . . . 4 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐵)) < ((2 · 𝐸) · (abs‘𝐷)))
57 absgt0 14064 . . . . . . . . . 10 (𝐷 ∈ ℂ → (𝐷 ≠ 0 ↔ 0 < (abs‘𝐷)))
584, 57syl 17 . . . . . . . . 9 (𝜑 → (𝐷 ≠ 0 ↔ 0 < (abs‘𝐷)))
595, 58mpbid 222 . . . . . . . 8 (𝜑 → 0 < (abs‘𝐷))
6022, 59jca 554 . . . . . . 7 (𝜑 → ((abs‘𝐷) ∈ ℝ ∧ 0 < (abs‘𝐷)))
618, 21, 603jca 1242 . . . . . 6 (𝜑 → ((abs‘(𝐴𝐵)) ∈ ℝ ∧ (2 · 𝐸) ∈ ℝ ∧ ((abs‘𝐷) ∈ ℝ ∧ 0 < (abs‘𝐷))))
62 ltdivmul2 10900 . . . . . 6 (((abs‘(𝐴𝐵)) ∈ ℝ ∧ (2 · 𝐸) ∈ ℝ ∧ ((abs‘𝐷) ∈ ℝ ∧ 0 < (abs‘𝐷))) → (((abs‘(𝐴𝐵)) / (abs‘𝐷)) < (2 · 𝐸) ↔ (abs‘(𝐴𝐵)) < ((2 · 𝐸) · (abs‘𝐷))))
6361, 62syl 17 . . . . 5 (𝜑 → (((abs‘(𝐴𝐵)) / (abs‘𝐷)) < (2 · 𝐸) ↔ (abs‘(𝐴𝐵)) < ((2 · 𝐸) · (abs‘𝐷))))
6463adantr 481 . . . 4 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (((abs‘(𝐴𝐵)) / (abs‘𝐷)) < (2 · 𝐸) ↔ (abs‘(𝐴𝐵)) < ((2 · 𝐸) · (abs‘𝐷))))
6556, 64mpbird 247 . . 3 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐵)) / (abs‘𝐷)) < (2 · 𝐸))
667, 65eqbrtrd 4675 . 2 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘((𝐴𝐵) / 𝐷)) < (2 · 𝐸))
67 unbdqndv2lem1.2 . . . 4 (𝜑 → (2 · 𝐸) ≤ (abs‘((𝐴𝐵) / 𝐷)))
683, 4, 5divcld 10801 . . . . . 6 (𝜑 → ((𝐴𝐵) / 𝐷) ∈ ℂ)
6968abscld 14175 . . . . 5 (𝜑 → (abs‘((𝐴𝐵) / 𝐷)) ∈ ℝ)
7021, 69lenltd 10183 . . . 4 (𝜑 → ((2 · 𝐸) ≤ (abs‘((𝐴𝐵) / 𝐷)) ↔ ¬ (abs‘((𝐴𝐵) / 𝐷)) < (2 · 𝐸)))
7167, 70mpbid 222 . . 3 (𝜑 → ¬ (abs‘((𝐴𝐵) / 𝐷)) < (2 · 𝐸))
7271adantr 481 . 2 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ¬ (abs‘((𝐴𝐵) / 𝐷)) < (2 · 𝐸))
7366, 72condan 835 1 (𝜑 → ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  2c2 11070  +crp 11832  abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  unbdqndv2lem2  32501
  Copyright terms: Public domain W3C validator