Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unbdqndv2lem2 Structured version   Visualization version   GIF version

Theorem unbdqndv2lem2 32501
Description: Lemma for unbdqndv2 32502. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unbdqndv2lem2.g 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))
unbdqndv2lem2.w 𝑊 = if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉)
unbdqndv2lem2.x (𝜑𝑋 ⊆ ℝ)
unbdqndv2lem2.f (𝜑𝐹:𝑋⟶ℂ)
unbdqndv2lem2.a (𝜑𝐴𝑋)
unbdqndv2lem2.b (𝜑𝐵 ∈ ℝ+)
unbdqndv2lem2.d (𝜑𝐷 ∈ ℝ+)
unbdqndv2lem2.u (𝜑𝑈𝑋)
unbdqndv2lem2.v (𝜑𝑉𝑋)
unbdqndv2lem2.1 (𝜑𝑈𝑉)
unbdqndv2lem2.2 (𝜑𝑈𝐴)
unbdqndv2lem2.3 (𝜑𝐴𝑉)
unbdqndv2lem2.4 (𝜑 → (𝑉𝑈) < 𝐷)
unbdqndv2lem2.5 (𝜑 → (2 · 𝐵) ≤ ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (𝑉𝑈)))
Assertion
Ref Expression
unbdqndv2lem2 (𝜑 → (𝑊 ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(𝑊𝐴)) < 𝐷𝐵 ≤ (abs‘(𝐺𝑊)))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝜑,𝑧
Allowed substitution hints:   𝐷(𝑧)   𝐺(𝑧)   𝑊(𝑧)

Proof of Theorem unbdqndv2lem2
StepHypRef Expression
1 unbdqndv2lem2.w . . . . . 6 𝑊 = if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉)
21a1i 11 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑊 = if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉))
3 iftrue 4092 . . . . . 6 ((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))) → if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉) = 𝑈)
43adantl 482 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉) = 𝑈)
52, 4eqtrd 2656 . . . 4 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑊 = 𝑈)
6 unbdqndv2lem2.u . . . . . . 7 (𝜑𝑈𝑋)
76adantr 481 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑈𝑋)
8 simplr 792 . . . . . . . . 9 (((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑈 = 𝐴) → (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))))
9 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑈 = 𝐴 → (𝐹𝑈) = (𝐹𝐴))
109eqcomd 2628 . . . . . . . . . . . . . 14 (𝑈 = 𝐴 → (𝐹𝐴) = (𝐹𝑈))
1110oveq2d 6666 . . . . . . . . . . . . 13 (𝑈 = 𝐴 → ((𝐹𝑈) − (𝐹𝐴)) = ((𝐹𝑈) − (𝐹𝑈)))
1211fveq2d 6195 . . . . . . . . . . . 12 (𝑈 = 𝐴 → (abs‘((𝐹𝑈) − (𝐹𝐴))) = (abs‘((𝐹𝑈) − (𝐹𝑈))))
1312adantl 482 . . . . . . . . . . 11 ((𝜑𝑈 = 𝐴) → (abs‘((𝐹𝑈) − (𝐹𝐴))) = (abs‘((𝐹𝑈) − (𝐹𝑈))))
14 unbdqndv2lem2.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑋⟶ℂ)
1514, 6ffvelrnd 6360 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑈) ∈ ℂ)
1615subidd 10380 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝑈) − (𝐹𝑈)) = 0)
1716fveq2d 6195 . . . . . . . . . . . . 13 (𝜑 → (abs‘((𝐹𝑈) − (𝐹𝑈))) = (abs‘0))
1817adantr 481 . . . . . . . . . . . 12 ((𝜑𝑈 = 𝐴) → (abs‘((𝐹𝑈) − (𝐹𝑈))) = (abs‘0))
19 abs0 14025 . . . . . . . . . . . . 13 (abs‘0) = 0
2019a1i 11 . . . . . . . . . . . 12 ((𝜑𝑈 = 𝐴) → (abs‘0) = 0)
2118, 20eqtrd 2656 . . . . . . . . . . 11 ((𝜑𝑈 = 𝐴) → (abs‘((𝐹𝑈) − (𝐹𝑈))) = 0)
2213, 21eqtrd 2656 . . . . . . . . . 10 ((𝜑𝑈 = 𝐴) → (abs‘((𝐹𝑈) − (𝐹𝐴))) = 0)
2322adantlr 751 . . . . . . . . 9 (((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑈 = 𝐴) → (abs‘((𝐹𝑈) − (𝐹𝐴))) = 0)
248, 23breqtrd 4679 . . . . . . . 8 (((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑈 = 𝐴) → (𝐵 · (𝑉𝑈)) ≤ 0)
25 unbdqndv2lem2.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ+)
2625rpred 11872 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
27 unbdqndv2lem2.x . . . . . . . . . . . . . 14 (𝜑𝑋 ⊆ ℝ)
28 unbdqndv2lem2.v . . . . . . . . . . . . . 14 (𝜑𝑉𝑋)
2927, 28sseldd 3604 . . . . . . . . . . . . 13 (𝜑𝑉 ∈ ℝ)
3027, 6sseldd 3604 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℝ)
3129, 30resubcld 10458 . . . . . . . . . . . 12 (𝜑 → (𝑉𝑈) ∈ ℝ)
3225rpgt0d 11875 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐵)
33 unbdqndv2lem2.a . . . . . . . . . . . . . . . 16 (𝜑𝐴𝑋)
3427, 33sseldd 3604 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
35 unbdqndv2lem2.2 . . . . . . . . . . . . . . 15 (𝜑𝑈𝐴)
36 unbdqndv2lem2.3 . . . . . . . . . . . . . . 15 (𝜑𝐴𝑉)
3730, 34, 29, 35, 36letrd 10194 . . . . . . . . . . . . . 14 (𝜑𝑈𝑉)
38 unbdqndv2lem2.1 . . . . . . . . . . . . . . 15 (𝜑𝑈𝑉)
3938necomd 2849 . . . . . . . . . . . . . 14 (𝜑𝑉𝑈)
4030, 29, 37, 39leneltd 10191 . . . . . . . . . . . . 13 (𝜑𝑈 < 𝑉)
4130, 29posdifd 10614 . . . . . . . . . . . . 13 (𝜑 → (𝑈 < 𝑉 ↔ 0 < (𝑉𝑈)))
4240, 41mpbid 222 . . . . . . . . . . . 12 (𝜑 → 0 < (𝑉𝑈))
4326, 31, 32, 42mulgt0d 10192 . . . . . . . . . . 11 (𝜑 → 0 < (𝐵 · (𝑉𝑈)))
44 0red 10041 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
4526, 31remulcld 10070 . . . . . . . . . . . 12 (𝜑 → (𝐵 · (𝑉𝑈)) ∈ ℝ)
4644, 45ltnled 10184 . . . . . . . . . . 11 (𝜑 → (0 < (𝐵 · (𝑉𝑈)) ↔ ¬ (𝐵 · (𝑉𝑈)) ≤ 0))
4743, 46mpbid 222 . . . . . . . . . 10 (𝜑 → ¬ (𝐵 · (𝑉𝑈)) ≤ 0)
4847adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ¬ (𝐵 · (𝑉𝑈)) ≤ 0)
4948adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑈 = 𝐴) → ¬ (𝐵 · (𝑉𝑈)) ≤ 0)
5024, 49pm2.65da 600 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ¬ 𝑈 = 𝐴)
5150neqned 2801 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑈𝐴)
527, 51jca 554 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑈𝑋𝑈𝐴))
53 eldifsn 4317 . . . . 5 (𝑈 ∈ (𝑋 ∖ {𝐴}) ↔ (𝑈𝑋𝑈𝐴))
5452, 53sylibr 224 . . . 4 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑈 ∈ (𝑋 ∖ {𝐴}))
555, 54eqeltrd 2701 . . 3 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑊 ∈ (𝑋 ∖ {𝐴}))
565oveq1d 6665 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑊𝐴) = (𝑈𝐴))
5756fveq2d 6195 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑊𝐴)) = (abs‘(𝑈𝐴)))
5830, 34, 35abssuble0d 14171 . . . . . . 7 (𝜑 → (abs‘(𝑈𝐴)) = (𝐴𝑈))
5958adantr 481 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑈𝐴)) = (𝐴𝑈))
6057, 59eqtrd 2656 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑊𝐴)) = (𝐴𝑈))
6134, 30resubcld 10458 . . . . . . 7 (𝜑 → (𝐴𝑈) ∈ ℝ)
62 unbdqndv2lem2.d . . . . . . . 8 (𝜑𝐷 ∈ ℝ+)
6362rpred 11872 . . . . . . 7 (𝜑𝐷 ∈ ℝ)
6434, 29, 30, 36lesub1dd 10643 . . . . . . 7 (𝜑 → (𝐴𝑈) ≤ (𝑉𝑈))
65 unbdqndv2lem2.4 . . . . . . 7 (𝜑 → (𝑉𝑈) < 𝐷)
6661, 31, 63, 64, 65lelttrd 10195 . . . . . 6 (𝜑 → (𝐴𝑈) < 𝐷)
6766adantr 481 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐴𝑈) < 𝐷)
6860, 67eqbrtrd 4675 . . . 4 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑊𝐴)) < 𝐷)
6926, 61remulcld 10070 . . . . . . . 8 (𝜑 → (𝐵 · (𝐴𝑈)) ∈ ℝ)
7069adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (𝐴𝑈)) ∈ ℝ)
7145adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (𝑉𝑈)) ∈ ℝ)
7214, 33ffvelrnd 6360 . . . . . . . . . 10 (𝜑 → (𝐹𝐴) ∈ ℂ)
7315, 72subcld 10392 . . . . . . . . 9 (𝜑 → ((𝐹𝑈) − (𝐹𝐴)) ∈ ℂ)
7473abscld 14175 . . . . . . . 8 (𝜑 → (abs‘((𝐹𝑈) − (𝐹𝐴))) ∈ ℝ)
7574adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘((𝐹𝑈) − (𝐹𝐴))) ∈ ℝ)
7644, 26, 32ltled 10185 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐵)
7761, 31, 26, 76, 64lemul2ad 10964 . . . . . . . 8 (𝜑 → (𝐵 · (𝐴𝑈)) ≤ (𝐵 · (𝑉𝑈)))
7877adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (𝐴𝑈)) ≤ (𝐵 · (𝑉𝑈)))
79 simpr 477 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))))
8070, 71, 75, 78, 79letrd 10194 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (𝐴𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))))
8126adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐵 ∈ ℝ)
8261adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐴𝑈) ∈ ℝ)
8335adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑈𝐴)
8451necomd 2849 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐴𝑈)
8583, 84jca 554 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑈𝐴𝐴𝑈))
8630, 34ltlend 10182 . . . . . . . . . . . 12 (𝜑 → (𝑈 < 𝐴 ↔ (𝑈𝐴𝐴𝑈)))
8786adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑈 < 𝐴 ↔ (𝑈𝐴𝐴𝑈)))
8885, 87mpbird 247 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑈 < 𝐴)
8930, 34posdifd 10614 . . . . . . . . . . 11 (𝜑 → (𝑈 < 𝐴 ↔ 0 < (𝐴𝑈)))
9089adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑈 < 𝐴 ↔ 0 < (𝐴𝑈)))
9188, 90mpbid 222 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 0 < (𝐴𝑈))
9282, 91jca 554 . . . . . . . 8 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐴𝑈) ∈ ℝ ∧ 0 < (𝐴𝑈)))
93 elrp 11834 . . . . . . . 8 ((𝐴𝑈) ∈ ℝ+ ↔ ((𝐴𝑈) ∈ ℝ ∧ 0 < (𝐴𝑈)))
9492, 93sylibr 224 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐴𝑈) ∈ ℝ+)
9581, 75, 94lemuldivd 11921 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐵 · (𝐴𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))) ↔ 𝐵 ≤ ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (𝐴𝑈))))
9680, 95mpbid 222 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐵 ≤ ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (𝐴𝑈)))
975fveq2d 6195 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐺𝑊) = (𝐺𝑈))
98 unbdqndv2lem2.g . . . . . . . . . . 11 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))
9998a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴))))
100 fveq2 6191 . . . . . . . . . . . . 13 (𝑧 = 𝑈 → (𝐹𝑧) = (𝐹𝑈))
101100oveq1d 6665 . . . . . . . . . . . 12 (𝑧 = 𝑈 → ((𝐹𝑧) − (𝐹𝐴)) = ((𝐹𝑈) − (𝐹𝐴)))
102 oveq1 6657 . . . . . . . . . . . 12 (𝑧 = 𝑈 → (𝑧𝐴) = (𝑈𝐴))
103101, 102oveq12d 6668 . . . . . . . . . . 11 (𝑧 = 𝑈 → (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)) = (((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴)))
104103adantl 482 . . . . . . . . . 10 (((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑧 = 𝑈) → (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)) = (((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴)))
105 ovexd 6680 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴)) ∈ V)
10699, 104, 54, 105fvmptd 6288 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐺𝑈) = (((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴)))
10797, 106eqtrd 2656 . . . . . . . 8 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐺𝑊) = (((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴)))
108107fveq2d 6195 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝐺𝑊)) = (abs‘(((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴))))
10973adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐹𝑈) − (𝐹𝐴)) ∈ ℂ)
11030recnd 10068 . . . . . . . . . . 11 (𝜑𝑈 ∈ ℂ)
11134recnd 10068 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
112110, 111subcld 10392 . . . . . . . . . 10 (𝜑 → (𝑈𝐴) ∈ ℂ)
113112adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑈𝐴) ∈ ℂ)
114110adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑈 ∈ ℂ)
115111adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐴 ∈ ℂ)
116114, 115, 51subne0d 10401 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑈𝐴) ≠ 0)
117109, 113, 116absdivd 14194 . . . . . . . 8 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴))) = ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (abs‘(𝑈𝐴))))
11859oveq2d 6666 . . . . . . . 8 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (abs‘(𝑈𝐴))) = ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (𝐴𝑈)))
119117, 118eqtrd 2656 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴))) = ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (𝐴𝑈)))
120108, 119eqtrd 2656 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝐺𝑊)) = ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (𝐴𝑈)))
121120eqcomd 2628 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (𝐴𝑈)) = (abs‘(𝐺𝑊)))
12296, 121breqtrd 4679 . . . 4 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐵 ≤ (abs‘(𝐺𝑊)))
12368, 122jca 554 . . 3 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((abs‘(𝑊𝐴)) < 𝐷𝐵 ≤ (abs‘(𝐺𝑊))))
12455, 123jca 554 . 2 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑊 ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(𝑊𝐴)) < 𝐷𝐵 ≤ (abs‘(𝐺𝑊)))))
1251a1i 11 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑊 = if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉))
126 simpr 477 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))))
127126iffalsed 4097 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉) = 𝑉)
128125, 127eqtrd 2656 . . . 4 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑊 = 𝑉)
12928adantr 481 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑉𝑋)
13030, 29, 37abssubge0d 14170 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑉𝑈)) = (𝑉𝑈))
131130oveq2d 6666 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 · (abs‘(𝑉𝑈))) = (𝐵 · (𝑉𝑈)))
132131breq1d 4663 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))) ↔ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))))
133132adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))) ↔ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))))
134126, 133mtbird 315 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ¬ (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))))
13514, 28ffvelrnd 6360 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑉) ∈ ℂ)
13631recnd 10068 . . . . . . . . . . . . 13 (𝜑 → (𝑉𝑈) ∈ ℂ)
13744, 42gtned 10172 . . . . . . . . . . . . 13 (𝜑 → (𝑉𝑈) ≠ 0)
138 unbdqndv2lem2.5 . . . . . . . . . . . . . 14 (𝜑 → (2 · 𝐵) ≤ ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (𝑉𝑈)))
139135, 15subcld 10392 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐹𝑉) − (𝐹𝑈)) ∈ ℂ)
140139, 136, 137absdivd 14194 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘(((𝐹𝑉) − (𝐹𝑈)) / (𝑉𝑈))) = ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (abs‘(𝑉𝑈))))
141130oveq2d 6666 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (abs‘(𝑉𝑈))) = ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (𝑉𝑈)))
142140, 141eqtrd 2656 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(((𝐹𝑉) − (𝐹𝑈)) / (𝑉𝑈))) = ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (𝑉𝑈)))
143142eqcomd 2628 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (𝑉𝑈)) = (abs‘(((𝐹𝑉) − (𝐹𝑈)) / (𝑉𝑈))))
144138, 143breqtrd 4679 . . . . . . . . . . . . 13 (𝜑 → (2 · 𝐵) ≤ (abs‘(((𝐹𝑉) − (𝐹𝑈)) / (𝑉𝑈))))
145135, 15, 72, 136, 25, 137, 144unbdqndv2lem1 32500 . . . . . . . . . . . 12 (𝜑 → ((𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))) ∨ (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))))
146145adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))) ∨ (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))))
147 orel2 398 . . . . . . . . . . 11 (¬ (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))) → (((𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))) ∨ (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴)))))
148134, 146, 147sylc 65 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))))
149148adantr 481 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑉 = 𝐴) → (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))))
150 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑉 = 𝐴 → (𝐹𝑉) = (𝐹𝐴))
151150oveq1d 6665 . . . . . . . . . . . . . 14 (𝑉 = 𝐴 → ((𝐹𝑉) − (𝐹𝐴)) = ((𝐹𝐴) − (𝐹𝐴)))
152151adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑉 = 𝐴) → ((𝐹𝑉) − (𝐹𝐴)) = ((𝐹𝐴) − (𝐹𝐴)))
15372subidd 10380 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝐴) − (𝐹𝐴)) = 0)
154153adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑉 = 𝐴) → ((𝐹𝐴) − (𝐹𝐴)) = 0)
155152, 154eqtrd 2656 . . . . . . . . . . . 12 ((𝜑𝑉 = 𝐴) → ((𝐹𝑉) − (𝐹𝐴)) = 0)
156155fveq2d 6195 . . . . . . . . . . 11 ((𝜑𝑉 = 𝐴) → (abs‘((𝐹𝑉) − (𝐹𝐴))) = (abs‘0))
15719a1i 11 . . . . . . . . . . 11 ((𝜑𝑉 = 𝐴) → (abs‘0) = 0)
158156, 157eqtrd 2656 . . . . . . . . . 10 ((𝜑𝑉 = 𝐴) → (abs‘((𝐹𝑉) − (𝐹𝐴))) = 0)
159158adantlr 751 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑉 = 𝐴) → (abs‘((𝐹𝑉) − (𝐹𝐴))) = 0)
160149, 159breqtrd 4679 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑉 = 𝐴) → (𝐵 · (abs‘(𝑉𝑈))) ≤ 0)
161131breq1d 4663 . . . . . . . . . . 11 (𝜑 → ((𝐵 · (abs‘(𝑉𝑈))) ≤ 0 ↔ (𝐵 · (𝑉𝑈)) ≤ 0))
16247, 161mtbird 315 . . . . . . . . . 10 (𝜑 → ¬ (𝐵 · (abs‘(𝑉𝑈))) ≤ 0)
163162adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ¬ (𝐵 · (abs‘(𝑉𝑈))) ≤ 0)
164163adantr 481 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑉 = 𝐴) → ¬ (𝐵 · (abs‘(𝑉𝑈))) ≤ 0)
165160, 164pm2.65da 600 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ¬ 𝑉 = 𝐴)
166165neqned 2801 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑉𝐴)
167129, 166jca 554 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑉𝑋𝑉𝐴))
168 eldifsn 4317 . . . . 5 (𝑉 ∈ (𝑋 ∖ {𝐴}) ↔ (𝑉𝑋𝑉𝐴))
169167, 168sylibr 224 . . . 4 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑉 ∈ (𝑋 ∖ {𝐴}))
170128, 169eqeltrd 2701 . . 3 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑊 ∈ (𝑋 ∖ {𝐴}))
171128oveq1d 6665 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑊𝐴) = (𝑉𝐴))
172171fveq2d 6195 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑊𝐴)) = (abs‘(𝑉𝐴)))
17334, 29, 36abssubge0d 14170 . . . . . . 7 (𝜑 → (abs‘(𝑉𝐴)) = (𝑉𝐴))
174173adantr 481 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑉𝐴)) = (𝑉𝐴))
175172, 174eqtrd 2656 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑊𝐴)) = (𝑉𝐴))
17629, 34resubcld 10458 . . . . . . 7 (𝜑 → (𝑉𝐴) ∈ ℝ)
17730, 34, 29, 35lesub2dd 10644 . . . . . . 7 (𝜑 → (𝑉𝐴) ≤ (𝑉𝑈))
178176, 31, 63, 177, 65lelttrd 10195 . . . . . 6 (𝜑 → (𝑉𝐴) < 𝐷)
179178adantr 481 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑉𝐴) < 𝐷)
180175, 179eqbrtrd 4675 . . . 4 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑊𝐴)) < 𝐷)
181173, 176eqeltrd 2701 . . . . . . . . 9 (𝜑 → (abs‘(𝑉𝐴)) ∈ ℝ)
18226, 181remulcld 10070 . . . . . . . 8 (𝜑 → (𝐵 · (abs‘(𝑉𝐴))) ∈ ℝ)
183182adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (abs‘(𝑉𝐴))) ∈ ℝ)
184131, 45eqeltrd 2701 . . . . . . . 8 (𝜑 → (𝐵 · (abs‘(𝑉𝑈))) ∈ ℝ)
185184adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (abs‘(𝑉𝑈))) ∈ ℝ)
186135, 72subcld 10392 . . . . . . . . 9 (𝜑 → ((𝐹𝑉) − (𝐹𝐴)) ∈ ℂ)
187186abscld 14175 . . . . . . . 8 (𝜑 → (abs‘((𝐹𝑉) − (𝐹𝐴))) ∈ ℝ)
188187adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘((𝐹𝑉) − (𝐹𝐴))) ∈ ℝ)
189130, 31eqeltrd 2701 . . . . . . . . 9 (𝜑 → (abs‘(𝑉𝑈)) ∈ ℝ)
190177, 173, 1303brtr4d 4685 . . . . . . . . 9 (𝜑 → (abs‘(𝑉𝐴)) ≤ (abs‘(𝑉𝑈)))
191181, 189, 26, 76, 190lemul2ad 10964 . . . . . . . 8 (𝜑 → (𝐵 · (abs‘(𝑉𝐴))) ≤ (𝐵 · (abs‘(𝑉𝑈))))
192191adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (abs‘(𝑉𝐴))) ≤ (𝐵 · (abs‘(𝑉𝑈))))
193183, 185, 188, 192, 148letrd 10194 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (abs‘(𝑉𝐴))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))))
19426adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐵 ∈ ℝ)
195176recnd 10068 . . . . . . . . 9 (𝜑 → (𝑉𝐴) ∈ ℂ)
196195adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑉𝐴) ∈ ℂ)
19729recnd 10068 . . . . . . . . . 10 (𝜑𝑉 ∈ ℂ)
198197adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑉 ∈ ℂ)
199111adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐴 ∈ ℂ)
200198, 199, 166subne0d 10401 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑉𝐴) ≠ 0)
201196, 200absrpcld 14187 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑉𝐴)) ∈ ℝ+)
202194, 188, 201lemuldivd 11921 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐵 · (abs‘(𝑉𝐴))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))) ↔ 𝐵 ≤ ((abs‘((𝐹𝑉) − (𝐹𝐴))) / (abs‘(𝑉𝐴)))))
203193, 202mpbid 222 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐵 ≤ ((abs‘((𝐹𝑉) − (𝐹𝐴))) / (abs‘(𝑉𝐴))))
204128fveq2d 6195 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐺𝑊) = (𝐺𝑉))
20598a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴))))
206 fveq2 6191 . . . . . . . . . . . . 13 (𝑧 = 𝑉 → (𝐹𝑧) = (𝐹𝑉))
207206oveq1d 6665 . . . . . . . . . . . 12 (𝑧 = 𝑉 → ((𝐹𝑧) − (𝐹𝐴)) = ((𝐹𝑉) − (𝐹𝐴)))
208 oveq1 6657 . . . . . . . . . . . 12 (𝑧 = 𝑉 → (𝑧𝐴) = (𝑉𝐴))
209207, 208oveq12d 6668 . . . . . . . . . . 11 (𝑧 = 𝑉 → (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)) = (((𝐹𝑉) − (𝐹𝐴)) / (𝑉𝐴)))
210209adantl 482 . . . . . . . . . 10 (((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑧 = 𝑉) → (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)) = (((𝐹𝑉) − (𝐹𝐴)) / (𝑉𝐴)))
211 ovexd 6680 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (((𝐹𝑉) − (𝐹𝐴)) / (𝑉𝐴)) ∈ V)
212205, 210, 169, 211fvmptd 6288 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐺𝑉) = (((𝐹𝑉) − (𝐹𝐴)) / (𝑉𝐴)))
213204, 212eqtrd 2656 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐺𝑊) = (((𝐹𝑉) − (𝐹𝐴)) / (𝑉𝐴)))
214213fveq2d 6195 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝐺𝑊)) = (abs‘(((𝐹𝑉) − (𝐹𝐴)) / (𝑉𝐴))))
215186adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐹𝑉) − (𝐹𝐴)) ∈ ℂ)
216215, 196, 200absdivd 14194 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(((𝐹𝑉) − (𝐹𝐴)) / (𝑉𝐴))) = ((abs‘((𝐹𝑉) − (𝐹𝐴))) / (abs‘(𝑉𝐴))))
217214, 216eqtrd 2656 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝐺𝑊)) = ((abs‘((𝐹𝑉) − (𝐹𝐴))) / (abs‘(𝑉𝐴))))
218217eqcomd 2628 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((abs‘((𝐹𝑉) − (𝐹𝐴))) / (abs‘(𝑉𝐴))) = (abs‘(𝐺𝑊)))
219203, 218breqtrd 4679 . . . 4 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐵 ≤ (abs‘(𝐺𝑊)))
220180, 219jca 554 . . 3 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((abs‘(𝑊𝐴)) < 𝐷𝐵 ≤ (abs‘(𝐺𝑊))))
221170, 220jca 554 . 2 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑊 ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(𝑊𝐴)) < 𝐷𝐵 ≤ (abs‘(𝐺𝑊)))))
222124, 221pm2.61dan 832 1 (𝜑 → (𝑊 ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(𝑊𝐴)) < 𝐷𝐵 ≤ (abs‘(𝐺𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  cdif 3571  wss 3574  ifcif 4086  {csn 4177   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  2c2 11070  +crp 11832  abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  unbdqndv2  32502
  Copyright terms: Public domain W3C validator