| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2623 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) |
| 2 | | 0zd 11389 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 0 ∈ ℤ) |
| 3 | | dvnprodlem1.j |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
| 4 | 3 | nn0zd 11480 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 5 | 4 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝐽 ∈ ℤ) |
| 6 | | fzssz 12343 |
. . . . . . . . . . . . . . . 16
⊢
(0...𝐽) ⊆
ℤ |
| 7 | 6 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (0...𝐽) ⊆ ℤ) |
| 8 | | dvnprodlem1.c |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐶 = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛})) |
| 9 | 8 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐶 = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}))) |
| 10 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → ((0...𝑛) ↑𝑚 𝑠) = ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍}))) |
| 11 | | rabeq 3192 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((0...𝑛)
↑𝑚 𝑠) = ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
| 12 | 10, 11 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
| 13 | | sumeq1 14419 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡)) |
| 14 | 13 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → (Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛)) |
| 15 | 14 | rabbidv 3189 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) |
| 16 | 12, 15 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) |
| 17 | 16 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛})) |
| 18 | 17 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑠 = (𝑅 ∪ {𝑍})) → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛})) |
| 19 | | dvnprodlem1.rzt |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑅 ∪ {𝑍}) ⊆ 𝑇) |
| 20 | | dvnprodlem1.t |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑇 ∈ Fin) |
| 21 | | ssexg 4804 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑅 ∪ {𝑍}) ⊆ 𝑇 ∧ 𝑇 ∈ Fin) → (𝑅 ∪ {𝑍}) ∈ V) |
| 22 | 19, 20, 21 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑅 ∪ {𝑍}) ∈ V) |
| 23 | | elpwg 4166 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑅 ∪ {𝑍}) ∈ V → ((𝑅 ∪ {𝑍}) ∈ 𝒫 𝑇 ↔ (𝑅 ∪ {𝑍}) ⊆ 𝑇)) |
| 24 | 22, 23 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑅 ∪ {𝑍}) ∈ 𝒫 𝑇 ↔ (𝑅 ∪ {𝑍}) ⊆ 𝑇)) |
| 25 | 19, 24 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑅 ∪ {𝑍}) ∈ 𝒫 𝑇) |
| 26 | | nn0ex 11298 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
ℕ0 ∈ V |
| 27 | 26 | mptex 6486 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ ℕ0
↦ {𝑐 ∈
((0...𝑛)
↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) ∈ V |
| 28 | 27 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) ∈ V) |
| 29 | 9, 18, 25, 28 | fvmptd 6288 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐶‘(𝑅 ∪ {𝑍})) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛})) |
| 30 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = 𝐽 → (0...𝑛) = (0...𝐽)) |
| 31 | 30 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝐽 → ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) = ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍}))) |
| 32 | | rabeq 3192 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((0...𝑛)
↑𝑚 (𝑅 ∪ {𝑍})) = ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) → {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) |
| 33 | 31, 32 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝐽 → {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) |
| 34 | | eqeq2 2633 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝐽 → (Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽)) |
| 35 | 34 | rabbidv 3189 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝐽 → {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
| 36 | 33, 35 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝐽 → {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
| 37 | 36 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 = 𝐽) → {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
| 38 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((0...𝐽)
↑𝑚 (𝑅 ∪ {𝑍})) ∈ V |
| 39 | 38 | rabex 4813 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ∈ V |
| 40 | 39 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ∈ V) |
| 41 | 29, 37, 3, 40 | fvmptd 6288 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) = {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
| 42 | | ssrab2 3687 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ⊆ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) |
| 43 | 42 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ⊆ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍}))) |
| 44 | 41, 43 | eqsstrd 3639 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ⊆ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍}))) |
| 45 | 44 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ⊆ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍}))) |
| 46 | | simpr 477 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
| 47 | 45, 46 | sseldd 3604 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍}))) |
| 48 | | elmapi 7879 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
| 49 | 47, 48 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
| 50 | | dvnprodlem1.z |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑍 ∈ 𝑇) |
| 51 | | snidg 4206 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑍 ∈ 𝑇 → 𝑍 ∈ {𝑍}) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑍 ∈ {𝑍}) |
| 53 | | elun2 3781 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝑅 ∪ {𝑍})) |
| 54 | 52, 53 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑍 ∈ (𝑅 ∪ {𝑍})) |
| 55 | 54 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑍 ∈ (𝑅 ∪ {𝑍})) |
| 56 | 49, 55 | ffvelrnd 6360 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ∈ (0...𝐽)) |
| 57 | 7, 56 | sseldd 3604 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ∈ ℤ) |
| 58 | 5, 57 | zsubcld 11487 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝑐‘𝑍)) ∈ ℤ) |
| 59 | 2, 5, 58 | 3jca 1242 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐽 − (𝑐‘𝑍)) ∈ ℤ)) |
| 60 | | elfzle2 12345 |
. . . . . . . . . . . . . 14
⊢ ((𝑐‘𝑍) ∈ (0...𝐽) → (𝑐‘𝑍) ≤ 𝐽) |
| 61 | 56, 60 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ≤ 𝐽) |
| 62 | 5 | zred 11482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝐽 ∈ ℝ) |
| 63 | 57 | zred 11482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ∈ ℝ) |
| 64 | 62, 63 | subge0d 10617 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (0 ≤ (𝐽 − (𝑐‘𝑍)) ↔ (𝑐‘𝑍) ≤ 𝐽)) |
| 65 | 61, 64 | mpbird 247 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 0 ≤ (𝐽 − (𝑐‘𝑍))) |
| 66 | | elfzle1 12344 |
. . . . . . . . . . . . . 14
⊢ ((𝑐‘𝑍) ∈ (0...𝐽) → 0 ≤ (𝑐‘𝑍)) |
| 67 | 56, 66 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 0 ≤ (𝑐‘𝑍)) |
| 68 | 62, 63 | subge02d 10619 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (0 ≤ (𝑐‘𝑍) ↔ (𝐽 − (𝑐‘𝑍)) ≤ 𝐽)) |
| 69 | 67, 68 | mpbid 222 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝑐‘𝑍)) ≤ 𝐽) |
| 70 | 59, 65, 69 | jca32 558 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐽 − (𝑐‘𝑍)) ∈ ℤ) ∧ (0 ≤ (𝐽 − (𝑐‘𝑍)) ∧ (𝐽 − (𝑐‘𝑍)) ≤ 𝐽))) |
| 71 | | elfz2 12333 |
. . . . . . . . . . 11
⊢ ((𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽) ↔ ((0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐽 − (𝑐‘𝑍)) ∈ ℤ) ∧ (0 ≤ (𝐽 − (𝑐‘𝑍)) ∧ (𝐽 − (𝑐‘𝑍)) ≤ 𝐽))) |
| 72 | 70, 71 | sylibr 224 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽)) |
| 73 | | elmapfn 7880 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) → 𝑐 Fn (𝑅 ∪ {𝑍})) |
| 74 | 47, 73 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐 Fn (𝑅 ∪ {𝑍})) |
| 75 | | ssun1 3776 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑅 ⊆ (𝑅 ∪ {𝑍}) |
| 76 | 75 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑅 ⊆ (𝑅 ∪ {𝑍})) |
| 77 | | fnssres 6004 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑐 Fn (𝑅 ∪ {𝑍}) ∧ 𝑅 ⊆ (𝑅 ∪ {𝑍})) → (𝑐 ↾ 𝑅) Fn 𝑅) |
| 78 | 74, 76, 77 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐 ↾ 𝑅) Fn 𝑅) |
| 79 | | nfv 1843 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑡𝜑 |
| 80 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡𝑐 |
| 81 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑡𝒫 𝑇 |
| 82 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑡ℕ0 |
| 83 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
Ⅎ𝑡𝑠 |
| 84 | 83 | nfsum1 14420 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑡Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) |
| 85 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑡𝑛 |
| 86 | 84, 85 | nfeq 2776 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑡Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛 |
| 87 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑡((0...𝑛) ↑𝑚 𝑠) |
| 88 | 86, 87 | nfrab 3123 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑡{𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} |
| 89 | 82, 88 | nfmpt 4746 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑡(𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
| 90 | 81, 89 | nfmpt 4746 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑡(𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛})) |
| 91 | 8, 90 | nfcxfr 2762 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑡𝐶 |
| 92 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑡(𝑅 ∪ {𝑍}) |
| 93 | 91, 92 | nffv 6198 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑡(𝐶‘(𝑅 ∪ {𝑍})) |
| 94 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑡𝐽 |
| 95 | 93, 94 | nffv 6198 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) |
| 96 | 80, 95 | nfel 2777 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑡 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) |
| 97 | 79, 96 | nfan 1828 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡(𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
| 98 | | fvres 6207 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 ∈ 𝑅 → ((𝑐 ↾ 𝑅)‘𝑡) = (𝑐‘𝑡)) |
| 99 | 98 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → ((𝑐 ↾ 𝑅)‘𝑡) = (𝑐‘𝑡)) |
| 100 | 2 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 0 ∈ ℤ) |
| 101 | 58 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝐽 − (𝑐‘𝑍)) ∈ ℤ) |
| 102 | 6 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (0...𝐽) ⊆ ℤ) |
| 103 | 49 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
| 104 | 76 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ (𝑅 ∪ {𝑍})) |
| 105 | 103, 104 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ (0...𝐽)) |
| 106 | 102, 105 | sseldd 3604 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ ℤ) |
| 107 | 100, 101,
106 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (0 ∈ ℤ ∧ (𝐽 − (𝑐‘𝑍)) ∈ ℤ ∧ (𝑐‘𝑡) ∈ ℤ)) |
| 108 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑐‘𝑡) ∈ (0...𝐽) → 0 ≤ (𝑐‘𝑡)) |
| 109 | 105, 108 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 0 ≤ (𝑐‘𝑡)) |
| 110 | 19 | unssad 3790 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑅 ⊆ 𝑇) |
| 111 | | ssfi 8180 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑇 ∈ Fin ∧ 𝑅 ⊆ 𝑇) → 𝑅 ∈ Fin) |
| 112 | 20, 110, 111 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑅 ∈ Fin) |
| 113 | 112 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝑅 ∈ Fin) |
| 114 | | zssre 11384 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ℤ
⊆ ℝ |
| 115 | 6, 114 | sstri 3612 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(0...𝐽) ⊆
ℝ |
| 116 | 115 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑟 ∈ 𝑅) → (0...𝐽) ⊆ ℝ) |
| 117 | 49 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑟 ∈ 𝑅) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
| 118 | 76 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑟 ∈ 𝑅) → 𝑟 ∈ (𝑅 ∪ {𝑍})) |
| 119 | 117, 118 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑟 ∈ 𝑅) → (𝑐‘𝑟) ∈ (0...𝐽)) |
| 120 | 116, 119 | sseldd 3604 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑟 ∈ 𝑅) → (𝑐‘𝑟) ∈ ℝ) |
| 121 | 120 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) ∧ 𝑟 ∈ 𝑅) → (𝑐‘𝑟) ∈ ℝ) |
| 122 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑐‘𝑟) ∈ (0...𝐽) → 0 ≤ (𝑐‘𝑟)) |
| 123 | 119, 122 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑟 ∈ 𝑅) → 0 ≤ (𝑐‘𝑟)) |
| 124 | 123 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) ∧ 𝑟 ∈ 𝑅) → 0 ≤ (𝑐‘𝑟)) |
| 125 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑟 = 𝑡 → (𝑐‘𝑟) = (𝑐‘𝑡)) |
| 126 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ 𝑅) |
| 127 | 113, 121,
124, 125, 126 | fsumge1 14529 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ≤ Σ𝑟 ∈ 𝑅 (𝑐‘𝑟)) |
| 128 | 112 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑅 ∈ Fin) |
| 129 | 120 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑟 ∈ 𝑅) → (𝑐‘𝑟) ∈ ℂ) |
| 130 | 128, 129 | fsumcl 14464 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → Σ𝑟 ∈ 𝑅 (𝑐‘𝑟) ∈ ℂ) |
| 131 | 63 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ∈ ℂ) |
| 132 | 130, 131 | pncand 10393 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((Σ𝑟 ∈ 𝑅 (𝑐‘𝑟) + (𝑐‘𝑍)) − (𝑐‘𝑍)) = Σ𝑟 ∈ 𝑅 (𝑐‘𝑟)) |
| 133 | | nfv 1843 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Ⅎ𝑟(𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
| 134 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Ⅎ𝑟(𝑐‘𝑍) |
| 135 | 50 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑍 ∈ 𝑇) |
| 136 | | dvnprodlem1.zr |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → ¬ 𝑍 ∈ 𝑅) |
| 137 | 136 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ¬ 𝑍 ∈ 𝑅) |
| 138 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑟 = 𝑍 → (𝑐‘𝑟) = (𝑐‘𝑍)) |
| 139 | 133, 134,
128, 135, 137, 129, 138, 131 | fsumsplitsn 14474 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → Σ𝑟 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑟) = (Σ𝑟 ∈ 𝑅 (𝑐‘𝑟) + (𝑐‘𝑍))) |
| 140 | 139 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (Σ𝑟 ∈ 𝑅 (𝑐‘𝑟) + (𝑐‘𝑍)) = Σ𝑟 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑟)) |
| 141 | 125 | cbvsumv 14426 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Σ𝑟 ∈
(𝑅 ∪ {𝑍})(𝑐‘𝑟) = Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) |
| 142 | 141 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → Σ𝑟 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑟) = Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡)) |
| 143 | 41 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) = {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
| 144 | 46, 143 | eleqtrd 2703 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐 ∈ {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
| 145 | | rabid 3116 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 ∈ {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ↔ (𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∧ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽)) |
| 146 | 144, 145 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∧ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽)) |
| 147 | 146 | simprd 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽) |
| 148 | 142, 147 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → Σ𝑟 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑟) = 𝐽) |
| 149 | 140, 148 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (Σ𝑟 ∈ 𝑅 (𝑐‘𝑟) + (𝑐‘𝑍)) = 𝐽) |
| 150 | 149 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((Σ𝑟 ∈ 𝑅 (𝑐‘𝑟) + (𝑐‘𝑍)) − (𝑐‘𝑍)) = (𝐽 − (𝑐‘𝑍))) |
| 151 | 132, 150 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → Σ𝑟 ∈ 𝑅 (𝑐‘𝑟) = (𝐽 − (𝑐‘𝑍))) |
| 152 | 151 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → Σ𝑟 ∈ 𝑅 (𝑐‘𝑟) = (𝐽 − (𝑐‘𝑍))) |
| 153 | 127, 152 | breqtrd 4679 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ≤ (𝐽 − (𝑐‘𝑍))) |
| 154 | 107, 109,
153 | jca32 558 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → ((0 ∈ ℤ ∧ (𝐽 − (𝑐‘𝑍)) ∈ ℤ ∧ (𝑐‘𝑡) ∈ ℤ) ∧ (0 ≤ (𝑐‘𝑡) ∧ (𝑐‘𝑡) ≤ (𝐽 − (𝑐‘𝑍))))) |
| 155 | | elfz2 12333 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑐‘𝑡) ∈ (0...(𝐽 − (𝑐‘𝑍))) ↔ ((0 ∈ ℤ ∧ (𝐽 − (𝑐‘𝑍)) ∈ ℤ ∧ (𝑐‘𝑡) ∈ ℤ) ∧ (0 ≤ (𝑐‘𝑡) ∧ (𝑐‘𝑡) ≤ (𝐽 − (𝑐‘𝑍))))) |
| 156 | 154, 155 | sylibr 224 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ (0...(𝐽 − (𝑐‘𝑍)))) |
| 157 | 99, 156 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → ((𝑐 ↾ 𝑅)‘𝑡) ∈ (0...(𝐽 − (𝑐‘𝑍)))) |
| 158 | 157 | ex 450 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑡 ∈ 𝑅 → ((𝑐 ↾ 𝑅)‘𝑡) ∈ (0...(𝐽 − (𝑐‘𝑍))))) |
| 159 | 97, 158 | ralrimi 2957 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∀𝑡 ∈ 𝑅 ((𝑐 ↾ 𝑅)‘𝑡) ∈ (0...(𝐽 − (𝑐‘𝑍)))) |
| 160 | 78, 159 | jca 554 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝑐 ↾ 𝑅) Fn 𝑅 ∧ ∀𝑡 ∈ 𝑅 ((𝑐 ↾ 𝑅)‘𝑡) ∈ (0...(𝐽 − (𝑐‘𝑍))))) |
| 161 | | ffnfv 6388 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐 ↾ 𝑅):𝑅⟶(0...(𝐽 − (𝑐‘𝑍))) ↔ ((𝑐 ↾ 𝑅) Fn 𝑅 ∧ ∀𝑡 ∈ 𝑅 ((𝑐 ↾ 𝑅)‘𝑡) ∈ (0...(𝐽 − (𝑐‘𝑍))))) |
| 162 | 160, 161 | sylibr 224 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐 ↾ 𝑅):𝑅⟶(0...(𝐽 − (𝑐‘𝑍)))) |
| 163 | | ovexd 6680 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (0...(𝐽 − (𝑐‘𝑍))) ∈ V) |
| 164 | 20, 110 | ssexd 4805 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑅 ∈ V) |
| 165 | 164 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑅 ∈ V) |
| 166 | 163, 165 | elmapd 7871 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝑐 ↾ 𝑅) ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑𝑚 𝑅) ↔ (𝑐 ↾ 𝑅):𝑅⟶(0...(𝐽 − (𝑐‘𝑍))))) |
| 167 | 162, 166 | mpbird 247 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐 ↾ 𝑅) ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑𝑚 𝑅)) |
| 168 | 98 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑡 ∈ 𝑅 → ((𝑐 ↾ 𝑅)‘𝑡) = (𝑐‘𝑡))) |
| 169 | 97, 168 | ralrimi 2957 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∀𝑡 ∈ 𝑅 ((𝑐 ↾ 𝑅)‘𝑡) = (𝑐‘𝑡)) |
| 170 | 169 | sumeq2d 14432 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → Σ𝑡 ∈ 𝑅 ((𝑐 ↾ 𝑅)‘𝑡) = Σ𝑡 ∈ 𝑅 (𝑐‘𝑡)) |
| 171 | 125 | cbvsumv 14426 |
. . . . . . . . . . . . . . . 16
⊢
Σ𝑟 ∈
𝑅 (𝑐‘𝑟) = Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) |
| 172 | 171 | eqcomi 2631 |
. . . . . . . . . . . . . . 15
⊢
Σ𝑡 ∈
𝑅 (𝑐‘𝑡) = Σ𝑟 ∈ 𝑅 (𝑐‘𝑟) |
| 173 | 172 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = Σ𝑟 ∈ 𝑅 (𝑐‘𝑟)) |
| 174 | 151 | idi 2 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → Σ𝑟 ∈ 𝑅 (𝑐‘𝑟) = (𝐽 − (𝑐‘𝑍))) |
| 175 | 170, 173,
174 | 3eqtrd 2660 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → Σ𝑡 ∈ 𝑅 ((𝑐 ↾ 𝑅)‘𝑡) = (𝐽 − (𝑐‘𝑍))) |
| 176 | 167, 175 | jca 554 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝑐 ↾ 𝑅) ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑𝑚 𝑅) ∧ Σ𝑡 ∈ 𝑅 ((𝑐 ↾ 𝑅)‘𝑡) = (𝐽 − (𝑐‘𝑍)))) |
| 177 | | eqidd 2623 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = (𝑐 ↾ 𝑅) → 𝑅 = 𝑅) |
| 178 | | simpl 473 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑒 = (𝑐 ↾ 𝑅) ∧ 𝑡 ∈ 𝑅) → 𝑒 = (𝑐 ↾ 𝑅)) |
| 179 | 178 | fveq1d 6193 |
. . . . . . . . . . . . . . 15
⊢ ((𝑒 = (𝑐 ↾ 𝑅) ∧ 𝑡 ∈ 𝑅) → (𝑒‘𝑡) = ((𝑐 ↾ 𝑅)‘𝑡)) |
| 180 | 177, 179 | sumeq12rdv 14438 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = (𝑐 ↾ 𝑅) → Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = Σ𝑡 ∈ 𝑅 ((𝑐 ↾ 𝑅)‘𝑡)) |
| 181 | 180 | eqeq1d 2624 |
. . . . . . . . . . . . 13
⊢ (𝑒 = (𝑐 ↾ 𝑅) → (Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍)) ↔ Σ𝑡 ∈ 𝑅 ((𝑐 ↾ 𝑅)‘𝑡) = (𝐽 − (𝑐‘𝑍)))) |
| 182 | 181 | elrab 3363 |
. . . . . . . . . . . 12
⊢ ((𝑐 ↾ 𝑅) ∈ {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍))} ↔ ((𝑐 ↾ 𝑅) ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑𝑚 𝑅) ∧ Σ𝑡 ∈ 𝑅 ((𝑐 ↾ 𝑅)‘𝑡) = (𝐽 − (𝑐‘𝑍)))) |
| 183 | 176, 182 | sylibr 224 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐 ↾ 𝑅) ∈ {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍))}) |
| 184 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 = 𝑅 → ((0...𝑛) ↑𝑚 𝑠) = ((0...𝑛) ↑𝑚 𝑅)) |
| 185 | | rabeq 3192 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((0...𝑛)
↑𝑚 𝑠) = ((0...𝑛) ↑𝑚 𝑅) → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
| 186 | 184, 185 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 = 𝑅 → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
| 187 | | sumeq1 14419 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 = 𝑅 → Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = Σ𝑡 ∈ 𝑅 (𝑐‘𝑡)) |
| 188 | 187 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 = 𝑅 → (Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛)) |
| 189 | 188 | rabbidv 3189 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 = 𝑅 → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
| 190 | 186, 189 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 = 𝑅 → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
| 191 | 190 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = 𝑅 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛})) |
| 192 | 191 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 = 𝑅) → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛})) |
| 193 | | elpwg 4166 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ V → (𝑅 ∈ 𝒫 𝑇 ↔ 𝑅 ⊆ 𝑇)) |
| 194 | 164, 193 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑅 ∈ 𝒫 𝑇 ↔ 𝑅 ⊆ 𝑇)) |
| 195 | 110, 194 | mpbird 247 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑅 ∈ 𝒫 𝑇) |
| 196 | 26 | mptex 6486 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ0
↦ {𝑐 ∈
((0...𝑛)
↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) ∈ V |
| 197 | 196 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) ∈ V) |
| 198 | 9, 192, 195, 197 | fvmptd 6288 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐶‘𝑅) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛})) |
| 199 | 198 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐶‘𝑅) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛})) |
| 200 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑚 → (0...𝑛) = (0...𝑚)) |
| 201 | 200 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑚 → ((0...𝑛) ↑𝑚 𝑅) = ((0...𝑚) ↑𝑚 𝑅)) |
| 202 | | rabeq 3192 |
. . . . . . . . . . . . . . . . . 18
⊢
(((0...𝑛)
↑𝑚 𝑅) = ((0...𝑚) ↑𝑚 𝑅) → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑚) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
| 203 | 201, 202 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑚) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
| 204 | | eqeq2 2633 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑚 → (Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚)) |
| 205 | 204 | rabbidv 3189 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑚) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑚) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚}) |
| 206 | 203, 205 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑚) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚}) |
| 207 | 206 | cbvmptv 4750 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ0
↦ {𝑐 ∈
((0...𝑛)
↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑚) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚}) |
| 208 | 207 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑚) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚})) |
| 209 | 199, 208 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐶‘𝑅) = (𝑚 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑚) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚})) |
| 210 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = 𝑒 → (𝑐‘𝑡) = (𝑒‘𝑡)) |
| 211 | 210 | sumeq2ad 14434 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 𝑒 → Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = Σ𝑡 ∈ 𝑅 (𝑒‘𝑡)) |
| 212 | 211 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 𝑒 → (Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚 ↔ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = 𝑚)) |
| 213 | 212 | cbvrabv 3199 |
. . . . . . . . . . . . . . . 16
⊢ {𝑐 ∈ ((0...𝑚) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚} = {𝑒 ∈ ((0...𝑚) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = 𝑚} |
| 214 | 213 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (𝐽 − (𝑐‘𝑍)) → {𝑐 ∈ ((0...𝑚) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚} = {𝑒 ∈ ((0...𝑚) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = 𝑚}) |
| 215 | | oveq2 6658 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = (𝐽 − (𝑐‘𝑍)) → (0...𝑚) = (0...(𝐽 − (𝑐‘𝑍)))) |
| 216 | 215 | oveq1d 6665 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = (𝐽 − (𝑐‘𝑍)) → ((0...𝑚) ↑𝑚 𝑅) = ((0...(𝐽 − (𝑐‘𝑍))) ↑𝑚 𝑅)) |
| 217 | | rabeq 3192 |
. . . . . . . . . . . . . . . 16
⊢
(((0...𝑚)
↑𝑚 𝑅) = ((0...(𝐽 − (𝑐‘𝑍))) ↑𝑚 𝑅) → {𝑒 ∈ ((0...𝑚) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = 𝑚} = {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = 𝑚}) |
| 218 | 216, 217 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (𝐽 − (𝑐‘𝑍)) → {𝑒 ∈ ((0...𝑚) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = 𝑚} = {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = 𝑚}) |
| 219 | | eqeq2 2633 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = (𝐽 − (𝑐‘𝑍)) → (Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = 𝑚 ↔ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍)))) |
| 220 | 219 | rabbidv 3189 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (𝐽 − (𝑐‘𝑍)) → {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = 𝑚} = {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍))}) |
| 221 | 214, 218,
220 | 3eqtrd 2660 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝐽 − (𝑐‘𝑍)) → {𝑐 ∈ ((0...𝑚) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚} = {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍))}) |
| 222 | 221 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑚 = (𝐽 − (𝑐‘𝑍))) → {𝑐 ∈ ((0...𝑚) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑚} = {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍))}) |
| 223 | 58, 65 | jca 554 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝐽 − (𝑐‘𝑍)) ∈ ℤ ∧ 0 ≤ (𝐽 − (𝑐‘𝑍)))) |
| 224 | | elnn0z 11390 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 − (𝑐‘𝑍)) ∈ ℕ0 ↔ ((𝐽 − (𝑐‘𝑍)) ∈ ℤ ∧ 0 ≤ (𝐽 − (𝑐‘𝑍)))) |
| 225 | 223, 224 | sylibr 224 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝑐‘𝑍)) ∈
ℕ0) |
| 226 | | ovex 6678 |
. . . . . . . . . . . . . . 15
⊢
((0...(𝐽 −
(𝑐‘𝑍))) ↑𝑚 𝑅) ∈ V |
| 227 | 226 | rabex 4813 |
. . . . . . . . . . . . . 14
⊢ {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍))} ∈ V |
| 228 | 227 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍))} ∈ V) |
| 229 | 209, 222,
225, 228 | fvmptd 6288 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍))) = {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍))}) |
| 230 | 229 | eqcomd 2628 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → {𝑒 ∈ ((0...(𝐽 − (𝑐‘𝑍))) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑒‘𝑡) = (𝐽 − (𝑐‘𝑍))} = ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍)))) |
| 231 | 183, 230 | eleqtrd 2703 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐 ↾ 𝑅) ∈ ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍)))) |
| 232 | 72, 231 | jca 554 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽) ∧ (𝑐 ↾ 𝑅) ∈ ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍))))) |
| 233 | 1, 232 | jca 554 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∧ ((𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽) ∧ (𝑐 ↾ 𝑅) ∈ ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍)))))) |
| 234 | | ovexd 6680 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝑐‘𝑍)) ∈ V) |
| 235 | | vex 3203 |
. . . . . . . . . . 11
⊢ 𝑐 ∈ V |
| 236 | 235 | resex 5443 |
. . . . . . . . . 10
⊢ (𝑐 ↾ 𝑅) ∈ V |
| 237 | 236 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐 ↾ 𝑅) ∈ V) |
| 238 | | opeq12 4404 |
. . . . . . . . . . . 12
⊢ ((𝑘 = (𝐽 − (𝑐‘𝑍)) ∧ 𝑑 = (𝑐 ↾ 𝑅)) → 〈𝑘, 𝑑〉 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) |
| 239 | 238 | eqeq2d 2632 |
. . . . . . . . . . 11
⊢ ((𝑘 = (𝐽 − (𝑐‘𝑍)) ∧ 𝑑 = (𝑐 ↾ 𝑅)) → (〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈𝑘, 𝑑〉 ↔ 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉)) |
| 240 | | eleq1 2689 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝐽 − (𝑐‘𝑍)) → (𝑘 ∈ (0...𝐽) ↔ (𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽))) |
| 241 | 240 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑘 = (𝐽 − (𝑐‘𝑍)) ∧ 𝑑 = (𝑐 ↾ 𝑅)) → (𝑘 ∈ (0...𝐽) ↔ (𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽))) |
| 242 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((𝑘 = (𝐽 − (𝑐‘𝑍)) ∧ 𝑑 = (𝑐 ↾ 𝑅)) → 𝑑 = (𝑐 ↾ 𝑅)) |
| 243 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝐽 − (𝑐‘𝑍)) → ((𝐶‘𝑅)‘𝑘) = ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍)))) |
| 244 | 243 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑘 = (𝐽 − (𝑐‘𝑍)) ∧ 𝑑 = (𝑐 ↾ 𝑅)) → ((𝐶‘𝑅)‘𝑘) = ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍)))) |
| 245 | 242, 244 | eleq12d 2695 |
. . . . . . . . . . . 12
⊢ ((𝑘 = (𝐽 − (𝑐‘𝑍)) ∧ 𝑑 = (𝑐 ↾ 𝑅)) → (𝑑 ∈ ((𝐶‘𝑅)‘𝑘) ↔ (𝑐 ↾ 𝑅) ∈ ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍))))) |
| 246 | 241, 245 | anbi12d 747 |
. . . . . . . . . . 11
⊢ ((𝑘 = (𝐽 − (𝑐‘𝑍)) ∧ 𝑑 = (𝑐 ↾ 𝑅)) → ((𝑘 ∈ (0...𝐽) ∧ 𝑑 ∈ ((𝐶‘𝑅)‘𝑘)) ↔ ((𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽) ∧ (𝑐 ↾ 𝑅) ∈ ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍)))))) |
| 247 | 239, 246 | anbi12d 747 |
. . . . . . . . . 10
⊢ ((𝑘 = (𝐽 − (𝑐‘𝑍)) ∧ 𝑑 = (𝑐 ↾ 𝑅)) → ((〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈𝑘, 𝑑〉 ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑑 ∈ ((𝐶‘𝑅)‘𝑘))) ↔ (〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∧ ((𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽) ∧ (𝑐 ↾ 𝑅) ∈ ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍))))))) |
| 248 | 247 | spc2egv 3295 |
. . . . . . . . 9
⊢ (((𝐽 − (𝑐‘𝑍)) ∈ V ∧ (𝑐 ↾ 𝑅) ∈ V) → ((〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∧ ((𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽) ∧ (𝑐 ↾ 𝑅) ∈ ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍))))) → ∃𝑘∃𝑑(〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈𝑘, 𝑑〉 ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑑 ∈ ((𝐶‘𝑅)‘𝑘))))) |
| 249 | 234, 237,
248 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∧ ((𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽) ∧ (𝑐 ↾ 𝑅) ∈ ((𝐶‘𝑅)‘(𝐽 − (𝑐‘𝑍))))) → ∃𝑘∃𝑑(〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈𝑘, 𝑑〉 ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑑 ∈ ((𝐶‘𝑅)‘𝑘))))) |
| 250 | 233, 249 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∃𝑘∃𝑑(〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈𝑘, 𝑑〉 ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑑 ∈ ((𝐶‘𝑅)‘𝑘)))) |
| 251 | | eliunxp 5259 |
. . . . . . 7
⊢
(〈(𝐽 −
(𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ↔ ∃𝑘∃𝑑(〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈𝑘, 𝑑〉 ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑑 ∈ ((𝐶‘𝑅)‘𝑘)))) |
| 252 | 250, 251 | sylibr 224 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
| 253 | | dvnprodlem1.d |
. . . . . 6
⊢ 𝐷 = (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ↦ 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) |
| 254 | 252, 253 | fmptd 6385 |
. . . . 5
⊢ (𝜑 → 𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)⟶∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
| 255 | 95 | nfcri 2758 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) |
| 256 | 96, 255 | nfan 1828 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡(𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
| 257 | 79, 256 | nfan 1828 |
. . . . . . . . . 10
⊢
Ⅎ𝑡(𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) |
| 258 | | nfv 1843 |
. . . . . . . . . 10
⊢
Ⅎ𝑡(𝐷‘𝑐) = (𝐷‘𝑒) |
| 259 | 257, 258 | nfan 1828 |
. . . . . . . . 9
⊢
Ⅎ𝑡((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) |
| 260 | 99 | eqcomd 2628 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) = ((𝑐 ↾ 𝑅)‘𝑡)) |
| 261 | 260 | adantlrr 757 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) = ((𝑐 ↾ 𝑅)‘𝑡)) |
| 262 | 261 | adantlr 751 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) = ((𝑐 ↾ 𝑅)‘𝑡)) |
| 263 | 253 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐷 = (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ↦ 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉)) |
| 264 | | opex 4932 |
. . . . . . . . . . . . . . . . . . . 20
⊢
〈(𝐽 −
(𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∈ V |
| 265 | 264 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∈ V) |
| 266 | 263, 265 | fvmpt2d 6293 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐷‘𝑐) = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) |
| 267 | 266 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (2nd ‘(𝐷‘𝑐)) = (2nd ‘〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉)) |
| 268 | 267 | fveq1d 6193 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((2nd ‘(𝐷‘𝑐))‘𝑡) = ((2nd ‘〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉)‘𝑡)) |
| 269 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐽 − (𝑐‘𝑍)) ∈ V |
| 270 | 269, 236 | op2nd 7177 |
. . . . . . . . . . . . . . . . . 18
⊢
(2nd ‘〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) = (𝑐 ↾ 𝑅) |
| 271 | 270 | fveq1i 6192 |
. . . . . . . . . . . . . . . . 17
⊢
((2nd ‘〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉)‘𝑡) = ((𝑐 ↾ 𝑅)‘𝑡) |
| 272 | 271 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((2nd
‘〈(𝐽 −
(𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉)‘𝑡) = ((𝑐 ↾ 𝑅)‘𝑡)) |
| 273 | 268, 272 | eqtr2d 2657 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝑐 ↾ 𝑅)‘𝑡) = ((2nd ‘(𝐷‘𝑐))‘𝑡)) |
| 274 | 273 | adantrr 753 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) → ((𝑐 ↾ 𝑅)‘𝑡) = ((2nd ‘(𝐷‘𝑐))‘𝑡)) |
| 275 | 274 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ 𝑅) → ((𝑐 ↾ 𝑅)‘𝑡) = ((2nd ‘(𝐷‘𝑐))‘𝑡)) |
| 276 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝐷‘𝑐) = (𝐷‘𝑒)) |
| 277 | 253 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝐷 = (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ↦ 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉)) |
| 278 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑐 = 𝑒 → (𝑐‘𝑍) = (𝑒‘𝑍)) |
| 279 | 278 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 = 𝑒 → (𝐽 − (𝑐‘𝑍)) = (𝐽 − (𝑒‘𝑍))) |
| 280 | | reseq1 5390 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 = 𝑒 → (𝑐 ↾ 𝑅) = (𝑒 ↾ 𝑅)) |
| 281 | 279, 280 | opeq12d 4410 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑐 = 𝑒 → 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉) |
| 282 | 281 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑐 = 𝑒) → 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉) |
| 283 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
| 284 | | opex 4932 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
〈(𝐽 −
(𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉 ∈ V |
| 285 | 284 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉 ∈ V) |
| 286 | 277, 282,
283, 285 | fvmptd 6288 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐷‘𝑒) = 〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉) |
| 287 | 286 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝐷‘𝑒) = 〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉) |
| 288 | 276, 287 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝐷‘𝑐) = 〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉) |
| 289 | 288 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (2nd ‘(𝐷‘𝑐)) = (2nd ‘〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉)) |
| 290 | 289 | adantlrl 756 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (2nd ‘(𝐷‘𝑐)) = (2nd ‘〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉)) |
| 291 | 290 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ 𝑅) → (2nd ‘(𝐷‘𝑐)) = (2nd ‘〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉)) |
| 292 | | ovex 6678 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐽 − (𝑒‘𝑍)) ∈ V |
| 293 | | vex 3203 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑒 ∈ V |
| 294 | 293 | resex 5443 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 ↾ 𝑅) ∈ V |
| 295 | 292, 294 | op2nd 7177 |
. . . . . . . . . . . . . . . . 17
⊢
(2nd ‘〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉) = (𝑒 ↾ 𝑅) |
| 296 | 295 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ 𝑅) → (2nd ‘〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉) = (𝑒 ↾ 𝑅)) |
| 297 | 291, 296 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ 𝑅) → (2nd ‘(𝐷‘𝑐)) = (𝑒 ↾ 𝑅)) |
| 298 | 297 | fveq1d 6193 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘(𝐷‘𝑐))‘𝑡) = ((𝑒 ↾ 𝑅)‘𝑡)) |
| 299 | | fvres 6207 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ 𝑅 → ((𝑒 ↾ 𝑅)‘𝑡) = (𝑒‘𝑡)) |
| 300 | 299 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ 𝑅) → ((𝑒 ↾ 𝑅)‘𝑡) = (𝑒‘𝑡)) |
| 301 | 298, 300 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘(𝐷‘𝑐))‘𝑡) = (𝑒‘𝑡)) |
| 302 | 262, 275,
301 | 3eqtrd 2660 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) = (𝑒‘𝑡)) |
| 303 | 302 | adantlr 751 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) = (𝑒‘𝑡)) |
| 304 | | simpl 473 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ ¬ 𝑡 ∈ 𝑅) → (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍}))) |
| 305 | | elunnel1 3754 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ (𝑅 ∪ {𝑍}) ∧ ¬ 𝑡 ∈ 𝑅) → 𝑡 ∈ {𝑍}) |
| 306 | | elsni 4194 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ {𝑍} → 𝑡 = 𝑍) |
| 307 | 305, 306 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ (𝑅 ∪ {𝑍}) ∧ ¬ 𝑡 ∈ 𝑅) → 𝑡 = 𝑍) |
| 308 | 307 | adantll 750 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ ¬ 𝑡 ∈ 𝑅) → 𝑡 = 𝑍) |
| 309 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 = 𝑍) → 𝑡 = 𝑍) |
| 310 | 309 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 = 𝑍) → (𝑐‘𝑡) = (𝑐‘𝑍)) |
| 311 | 3 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 312 | 311 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝐽 ∈ ℂ) |
| 313 | 312, 131 | nncand 10397 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝐽 − (𝑐‘𝑍))) = (𝑐‘𝑍)) |
| 314 | 313 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) = (𝐽 − (𝐽 − (𝑐‘𝑍)))) |
| 315 | 314 | adantrr 753 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) → (𝑐‘𝑍) = (𝐽 − (𝐽 − (𝑐‘𝑍)))) |
| 316 | 315 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝑐‘𝑍) = (𝐽 − (𝐽 − (𝑐‘𝑍)))) |
| 317 | 266 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (1st ‘(𝐷‘𝑐)) = (1st ‘〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉)) |
| 318 | 269, 236 | op1st 7176 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(1st ‘〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) = (𝐽 − (𝑐‘𝑍)) |
| 319 | 318 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (1st
‘〈(𝐽 −
(𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) = (𝐽 − (𝑐‘𝑍))) |
| 320 | 317, 319 | eqtr2d 2657 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝑐‘𝑍)) = (1st ‘(𝐷‘𝑐))) |
| 321 | 320 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝐽 − (𝑐‘𝑍))) = (𝐽 − (1st ‘(𝐷‘𝑐)))) |
| 322 | 321 | adantrr 753 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) → (𝐽 − (𝐽 − (𝑐‘𝑍))) = (𝐽 − (1st ‘(𝐷‘𝑐)))) |
| 323 | 322 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝐽 − (𝐽 − (𝑐‘𝑍))) = (𝐽 − (1st ‘(𝐷‘𝑐)))) |
| 324 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐷‘𝑐) = (𝐷‘𝑒) → (1st ‘(𝐷‘𝑐)) = (1st ‘(𝐷‘𝑒))) |
| 325 | 324 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (1st ‘(𝐷‘𝑐)) = (1st ‘(𝐷‘𝑒))) |
| 326 | 286 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (1st ‘(𝐷‘𝑒)) = (1st ‘〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉)) |
| 327 | 326 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (1st ‘(𝐷‘𝑒)) = (1st ‘〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉)) |
| 328 | 292, 294 | op1st 7176 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(1st ‘〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉) = (𝐽 − (𝑒‘𝑍)) |
| 329 | 328 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (1st ‘〈(𝐽 − (𝑒‘𝑍)), (𝑒 ↾ 𝑅)〉) = (𝐽 − (𝑒‘𝑍))) |
| 330 | 325, 327,
329 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (1st ‘(𝐷‘𝑐)) = (𝐽 − (𝑒‘𝑍))) |
| 331 | 330 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝐽 − (1st ‘(𝐷‘𝑐))) = (𝐽 − (𝐽 − (𝑒‘𝑍)))) |
| 332 | 311 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝐽 ∈ ℂ) |
| 333 | | zsscn 11385 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ℤ
⊆ ℂ |
| 334 | 6, 333 | sstri 3612 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(0...𝐽) ⊆
ℂ |
| 335 | 334 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (0...𝐽) ⊆ ℂ) |
| 336 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑐 = 𝑒 → (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ↔ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) |
| 337 | 336 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 = 𝑒 → ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ↔ (𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)))) |
| 338 | | feq1 6026 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 = 𝑒 → (𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽) ↔ 𝑒:(𝑅 ∪ {𝑍})⟶(0...𝐽))) |
| 339 | 337, 338 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑐 = 𝑒 → (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽)) ↔ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑒:(𝑅 ∪ {𝑍})⟶(0...𝐽)))) |
| 340 | 339, 49 | chvarv 2263 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑒:(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
| 341 | 54 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑍 ∈ (𝑅 ∪ {𝑍})) |
| 342 | 340, 341 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑒‘𝑍) ∈ (0...𝐽)) |
| 343 | 335, 342 | sseldd 3604 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑒‘𝑍) ∈ ℂ) |
| 344 | 332, 343 | nncand 10397 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝐽 − (𝑒‘𝑍))) = (𝑒‘𝑍)) |
| 345 | 344 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝐽 − (𝐽 − (𝑒‘𝑍))) = (𝑒‘𝑍)) |
| 346 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝑒‘𝑍) = (𝑒‘𝑍)) |
| 347 | 331, 345,
346 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝐽 − (1st ‘(𝐷‘𝑐))) = (𝑒‘𝑍)) |
| 348 | 347 | adantlrl 756 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝐽 − (1st ‘(𝐷‘𝑐))) = (𝑒‘𝑍)) |
| 349 | 316, 323,
348 | 3eqtrd 2660 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝑐‘𝑍) = (𝑒‘𝑍)) |
| 350 | 349 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 = 𝑍) → (𝑐‘𝑍) = (𝑒‘𝑍)) |
| 351 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑍 → (𝑒‘𝑡) = (𝑒‘𝑍)) |
| 352 | 351 | eqcomd 2628 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑍 → (𝑒‘𝑍) = (𝑒‘𝑡)) |
| 353 | 352 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 = 𝑍) → (𝑒‘𝑍) = (𝑒‘𝑡)) |
| 354 | 310, 350,
353 | 3eqtrd 2660 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 = 𝑍) → (𝑐‘𝑡) = (𝑒‘𝑡)) |
| 355 | 354 | adantlr 751 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 = 𝑍) → (𝑐‘𝑡) = (𝑒‘𝑡)) |
| 356 | 304, 308,
355 | syl2anc 693 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ ¬ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) = (𝑒‘𝑡)) |
| 357 | 303, 356 | pm2.61dan 832 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (𝑐‘𝑡) = (𝑒‘𝑡)) |
| 358 | 357 | ex 450 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝑡 ∈ (𝑅 ∪ {𝑍}) → (𝑐‘𝑡) = (𝑒‘𝑡))) |
| 359 | 259, 358 | ralrimi 2957 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → ∀𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = (𝑒‘𝑡)) |
| 360 | 74 | adantrr 753 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) → 𝑐 Fn (𝑅 ∪ {𝑍})) |
| 361 | 360 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → 𝑐 Fn (𝑅 ∪ {𝑍})) |
| 362 | | ffn 6045 |
. . . . . . . . . . . 12
⊢ (𝑒:(𝑅 ∪ {𝑍})⟶(0...𝐽) → 𝑒 Fn (𝑅 ∪ {𝑍})) |
| 363 | 340, 362 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑒 Fn (𝑅 ∪ {𝑍})) |
| 364 | 363 | adantrl 752 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) → 𝑒 Fn (𝑅 ∪ {𝑍})) |
| 365 | 364 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → 𝑒 Fn (𝑅 ∪ {𝑍})) |
| 366 | | eqfnfv 6311 |
. . . . . . . . 9
⊢ ((𝑐 Fn (𝑅 ∪ {𝑍}) ∧ 𝑒 Fn (𝑅 ∪ {𝑍})) → (𝑐 = 𝑒 ↔ ∀𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = (𝑒‘𝑡))) |
| 367 | 361, 365,
366 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → (𝑐 = 𝑒 ↔ ∀𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = (𝑒‘𝑡))) |
| 368 | 359, 367 | mpbird 247 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) ∧ (𝐷‘𝑐) = (𝐷‘𝑒)) → 𝑐 = 𝑒) |
| 369 | 368 | ex 450 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽))) → ((𝐷‘𝑐) = (𝐷‘𝑒) → 𝑐 = 𝑒)) |
| 370 | 369 | ralrimivva 2971 |
. . . . 5
⊢ (𝜑 → ∀𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)∀𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)((𝐷‘𝑐) = (𝐷‘𝑒) → 𝑐 = 𝑒)) |
| 371 | 254, 370 | jca 554 |
. . . 4
⊢ (𝜑 → (𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)⟶∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ∧ ∀𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)∀𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)((𝐷‘𝑐) = (𝐷‘𝑒) → 𝑐 = 𝑒))) |
| 372 | | dff13 6512 |
. . . 4
⊢ (𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–1-1→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ↔ (𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)⟶∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ∧ ∀𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)∀𝑒 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)((𝐷‘𝑐) = (𝐷‘𝑒) → 𝑐 = 𝑒))) |
| 373 | 371, 372 | sylibr 224 |
. . 3
⊢ (𝜑 → 𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–1-1→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
| 374 | | eliun 4524 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ↔ ∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
| 375 | 374 | biimpi 206 |
. . . . . . . . . 10
⊢ (𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) → ∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
| 376 | 375 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
| 377 | | nfv 1843 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘𝜑 |
| 378 | | nfcv 2764 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝑝 |
| 379 | | nfiu1 4550 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) |
| 380 | 378, 379 | nfel 2777 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘 𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) |
| 381 | 377, 380 | nfan 1828 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
| 382 | | nfv 1843 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} |
| 383 | | nfv 1843 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡 𝑘 ∈ (0...𝐽) |
| 384 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑡𝑝 |
| 385 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡{𝑘} |
| 386 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑡𝑅 |
| 387 | 91, 386 | nffv 6198 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑡(𝐶‘𝑅) |
| 388 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑡𝑘 |
| 389 | 387, 388 | nffv 6198 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡((𝐶‘𝑅)‘𝑘) |
| 390 | 385, 389 | nfxp 5142 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑡({𝑘} × ((𝐶‘𝑅)‘𝑘)) |
| 391 | 384, 390 | nfel 2777 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) |
| 392 | 79, 383, 391 | nf3an 1831 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑡(𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
| 393 | | 0zd 11389 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 0 ∈
ℤ) |
| 394 | 4 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 𝐽 ∈ ℤ) |
| 395 | 394 | 3ad2antl1 1223 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 𝐽 ∈ ℤ) |
| 396 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 ∈ 𝑅 → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = ((2nd
‘𝑝)‘𝑡)) |
| 397 | 396 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 ∈ 𝑅) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = ((2nd
‘𝑝)‘𝑡)) |
| 398 | | fzssz 12343 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(0...𝑘) ⊆
ℤ |
| 399 | 398 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 ∈ 𝑅) → (0...𝑘) ⊆ ℤ) |
| 400 | | simp1 1061 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝜑) |
| 401 | | simp2 1062 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑘 ∈ (0...𝐽)) |
| 402 | | xp2nd 7199 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (2nd ‘𝑝) ∈ ((𝐶‘𝑅)‘𝑘)) |
| 403 | 402 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝) ∈ ((𝐶‘𝑅)‘𝑘)) |
| 404 | 198 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝐶‘𝑅) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛})) |
| 405 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑛 = 𝑘 → (0...𝑛) = (0...𝑘)) |
| 406 | 405 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑛 = 𝑘 → ((0...𝑛) ↑𝑚 𝑅) = ((0...𝑘) ↑𝑚 𝑅)) |
| 407 | | rabeq 3192 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((0...𝑛)
↑𝑚 𝑅) = ((0...𝑘) ↑𝑚 𝑅) → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
| 408 | 406, 407 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑛 = 𝑘 → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
| 409 | | eqeq2 2633 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑛 = 𝑘 → (Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘)) |
| 410 | 409 | rabbidv 3189 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑛 = 𝑘 → {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
| 411 | 408, 410 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑛 = 𝑘 → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
| 412 | 411 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑛 = 𝑘) → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
| 413 | | elfznn0 12433 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ∈ ℕ0) |
| 414 | 413 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ∈ ℕ0) |
| 415 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((0...𝑘)
↑𝑚 𝑅) ∈ V |
| 416 | 415 | rabex 4813 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ∈ V |
| 417 | 416 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ∈ V) |
| 418 | 404, 412,
414, 417 | fvmptd 6288 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝐶‘𝑅)‘𝑘) = {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
| 419 | 418 | 3adant3 1081 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((𝐶‘𝑅)‘𝑘) = {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
| 420 | 403, 419 | eleqtrd 2703 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝) ∈ {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
| 421 | | elrabi 3359 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((2nd ‘𝑝) ∈ {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} → (2nd ‘𝑝) ∈ ((0...𝑘) ↑𝑚
𝑅)) |
| 422 | 421 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ (2nd ‘𝑝) ∈ {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) → (2nd ‘𝑝) ∈ ((0...𝑘) ↑𝑚
𝑅)) |
| 423 | 400, 401,
420, 422 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝) ∈ ((0...𝑘) ↑𝑚
𝑅)) |
| 424 | | elmapi 7879 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((2nd ‘𝑝) ∈ ((0...𝑘) ↑𝑚 𝑅) → (2nd
‘𝑝):𝑅⟶(0...𝑘)) |
| 425 | 423, 424 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝):𝑅⟶(0...𝑘)) |
| 426 | 425 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (2nd ‘𝑝):𝑅⟶(0...𝑘)) |
| 427 | 426 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘)) |
| 428 | 399, 427 | sseldd 3604 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) ∈ ℤ) |
| 429 | 397, 428 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 ∈ 𝑅) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ∈
ℤ) |
| 430 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ ¬ 𝑡 ∈ 𝑅) → ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍}))) |
| 431 | 307 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ ¬ 𝑡 ∈ 𝑅) → 𝑡 = 𝑍) |
| 432 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑡 = 𝑍) → 𝑡 = 𝑍) |
| 433 | 136 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑡 = 𝑍) → ¬ 𝑍 ∈ 𝑅) |
| 434 | 432, 433 | eqneltrd 2720 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑡 = 𝑍) → ¬ 𝑡 ∈ 𝑅) |
| 435 | 434 | iffalsed 4097 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑡 = 𝑍) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = (𝐽 − (1st ‘𝑝))) |
| 436 | 435 | 3ad2antl1 1223 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = (𝐽 − (1st ‘𝑝))) |
| 437 | 4 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑡 = 𝑍) → 𝐽 ∈ ℤ) |
| 438 | 437 | 3ad2antl1 1223 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → 𝐽 ∈ ℤ) |
| 439 | | xp1st 7198 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ {𝑘}) |
| 440 | | elsni 4194 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((1st ‘𝑝) ∈ {𝑘} → (1st ‘𝑝) = 𝑘) |
| 441 | 439, 440 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) = 𝑘) |
| 442 | 441 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) = 𝑘) |
| 443 | 6 | sseli 3599 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ∈ ℤ) |
| 444 | 443 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑘 ∈ ℤ) |
| 445 | 442, 444 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈
ℤ) |
| 446 | 445 | 3adant1 1079 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈
ℤ) |
| 447 | 446 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → (1st ‘𝑝) ∈
ℤ) |
| 448 | 438, 447 | zsubcld 11487 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → (𝐽 − (1st ‘𝑝)) ∈
ℤ) |
| 449 | 436, 448 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ∈
ℤ) |
| 450 | 449 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 = 𝑍) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ∈
ℤ) |
| 451 | 430, 431,
450 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ ¬ 𝑡 ∈ 𝑅) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ∈
ℤ) |
| 452 | 429, 451 | pm2.61dan 832 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ∈
ℤ) |
| 453 | 393, 395,
452 | 3jca 1242 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ∈
ℤ)) |
| 454 | 425 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘)) |
| 455 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘) → 0 ≤ ((2nd ‘𝑝)‘𝑡)) |
| 456 | 454, 455 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → 0 ≤ ((2nd
‘𝑝)‘𝑡)) |
| 457 | 396 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 ∈ 𝑅 → ((2nd ‘𝑝)‘𝑡) = if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
| 458 | 457 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) = if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
| 459 | 456, 458 | breqtrd 4679 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → 0 ≤ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
| 460 | 459 | adantlr 751 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 ∈ 𝑅) → 0 ≤ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
| 461 | | simpll 790 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ ¬ 𝑡 ∈ 𝑅) → (𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)))) |
| 462 | | elfzle2 12345 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ≤ 𝐽) |
| 463 | | elfzel2 12340 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ (0...𝐽) → 𝐽 ∈ ℤ) |
| 464 | 463 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (0...𝐽) → 𝐽 ∈ ℝ) |
| 465 | 115 | sseli 3599 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ∈ ℝ) |
| 466 | 464, 465 | subge0d 10617 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (0...𝐽) → (0 ≤ (𝐽 − 𝑘) ↔ 𝑘 ≤ 𝐽)) |
| 467 | 462, 466 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (0...𝐽) → 0 ≤ (𝐽 − 𝑘)) |
| 468 | 467 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑡 = 𝑍) → 0 ≤ (𝐽 − 𝑘)) |
| 469 | 468 | 3ad2antl2 1224 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → 0 ≤ (𝐽 − 𝑘)) |
| 470 | 400, 434 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → ¬ 𝑡 ∈ 𝑅) |
| 471 | 470 | iffalsed 4097 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = (𝐽 − (1st ‘𝑝))) |
| 472 | 442 | 3adant1 1079 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) = 𝑘) |
| 473 | 472 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽 − (1st ‘𝑝)) = (𝐽 − 𝑘)) |
| 474 | 473 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → (𝐽 − (1st ‘𝑝)) = (𝐽 − 𝑘)) |
| 475 | 471, 474 | eqtr2d 2657 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → (𝐽 − 𝑘) = if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
| 476 | 469, 475 | breqtrd 4679 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → 0 ≤ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
| 477 | 461, 431,
476 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ ¬ 𝑡 ∈ 𝑅) → 0 ≤ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
| 478 | 460, 477 | pm2.61dan 832 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 0 ≤ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
| 479 | | simpl2 1065 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → 𝑘 ∈ (0...𝐽)) |
| 480 | 398 | sseli 3599 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘) → ((2nd ‘𝑝)‘𝑡) ∈ ℤ) |
| 481 | 480 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘) → ((2nd ‘𝑝)‘𝑡) ∈ ℝ) |
| 482 | 481 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘) ∧ 𝑘 ∈ (0...𝐽)) → ((2nd ‘𝑝)‘𝑡) ∈ ℝ) |
| 483 | 465 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘) ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ∈ ℝ) |
| 484 | 464 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘) ∧ 𝑘 ∈ (0...𝐽)) → 𝐽 ∈ ℝ) |
| 485 | | elfzle2 12345 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘) → ((2nd ‘𝑝)‘𝑡) ≤ 𝑘) |
| 486 | 485 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘) ∧ 𝑘 ∈ (0...𝐽)) → ((2nd ‘𝑝)‘𝑡) ≤ 𝑘) |
| 487 | 462 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘) ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ≤ 𝐽) |
| 488 | 482, 483,
484, 486, 487 | letrd 10194 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((2nd ‘𝑝)‘𝑡) ∈ (0...𝑘) ∧ 𝑘 ∈ (0...𝐽)) → ((2nd ‘𝑝)‘𝑡) ≤ 𝐽) |
| 489 | 454, 479,
488 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) ≤ 𝐽) |
| 490 | 489 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) ≤ 𝐽) |
| 491 | 397, 490 | eqbrtrd 4675 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑡 ∈ 𝑅) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ≤ 𝐽) |
| 492 | 475 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = (𝐽 − 𝑘)) |
| 493 | 414 | nn0ge0d 11354 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 0 ≤ 𝑘) |
| 494 | 464 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝐽 ∈ ℝ) |
| 495 | 465 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ∈ ℝ) |
| 496 | 494, 495 | subge02d 10619 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (0 ≤ 𝑘 ↔ (𝐽 − 𝑘) ≤ 𝐽)) |
| 497 | 493, 496 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝐽 − 𝑘) ≤ 𝐽) |
| 498 | 497 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑡 = 𝑍) → (𝐽 − 𝑘) ≤ 𝐽) |
| 499 | 498 | 3adantl3 1219 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → (𝐽 − 𝑘) ≤ 𝐽) |
| 500 | 492, 499 | eqbrtrd 4675 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 = 𝑍) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ≤ 𝐽) |
| 501 | 461, 431,
500 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ ¬ 𝑡 ∈ 𝑅) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ≤ 𝐽) |
| 502 | 491, 501 | pm2.61dan 832 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ≤ 𝐽) |
| 503 | 453, 478,
502 | jca32 558 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → ((0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ∈ ℤ) ∧ (0
≤ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ∧ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ≤ 𝐽))) |
| 504 | | elfz2 12333 |
. . . . . . . . . . . . . . . . 17
⊢ (if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ∈ (0...𝐽) ↔ ((0 ∈ ℤ
∧ 𝐽 ∈ ℤ
∧ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ∈ ℤ) ∧ (0
≤ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ∧ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ≤ 𝐽))) |
| 505 | 503, 504 | sylibr 224 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ∈ (0...𝐽)) |
| 506 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
| 507 | 392, 505,
506 | fmptdf 6387 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))):(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
| 508 | | ovexd 6680 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (0...𝐽) ∈ V) |
| 509 | 400, 22 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑅 ∪ {𝑍}) ∈ V) |
| 510 | 508, 509 | elmapd 7871 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ ((0...𝐽) ↑𝑚
(𝑅 ∪ {𝑍})) ↔ (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))):(𝑅 ∪ {𝑍})⟶(0...𝐽))) |
| 511 | 507, 510 | mpbird 247 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ ((0...𝐽) ↑𝑚
(𝑅 ∪ {𝑍}))) |
| 512 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝)))) = (𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))) |
| 513 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 = 𝑡 → (𝑟 ∈ 𝑅 ↔ 𝑡 ∈ 𝑅)) |
| 514 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 = 𝑡 → ((2nd ‘𝑝)‘𝑟) = ((2nd ‘𝑝)‘𝑡)) |
| 515 | 513, 514 | ifbieq1d 4109 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑟 = 𝑡 → if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))) = if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
| 516 | 515 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) ∧ 𝑟 = 𝑡) → if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))) = if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
| 517 | | simpr 477 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 𝑡 ∈ (𝑅 ∪ {𝑍})) |
| 518 | 512, 516,
517, 452 | fvmptd 6288 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → ((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡) = if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
| 519 | 518 | ex 450 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑡 ∈ (𝑅 ∪ {𝑍}) → ((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡) = if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) |
| 520 | 392, 519 | ralrimi 2957 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∀𝑡 ∈ (𝑅 ∪ {𝑍})((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡) = if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
| 521 | 520 | sumeq2d 14432 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → Σ𝑡 ∈ (𝑅 ∪ {𝑍})((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡) = Σ𝑡 ∈ (𝑅 ∪ {𝑍})if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) |
| 522 | | nfcv 2764 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑡if(𝑍 ∈ 𝑅, ((2nd ‘𝑝)‘𝑍), (𝐽 − (1st ‘𝑝))) |
| 523 | 400, 112 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑅 ∈ Fin) |
| 524 | 400, 50 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑍 ∈ 𝑇) |
| 525 | 400, 136 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ¬ 𝑍 ∈ 𝑅) |
| 526 | 396 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = ((2nd
‘𝑝)‘𝑡)) |
| 527 | 454, 480 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) ∈ ℤ) |
| 528 | 527 | zcnd 11483 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) ∈ ℂ) |
| 529 | 526, 528 | eqeltrd 2701 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) ∈
ℂ) |
| 530 | | eleq1 2689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑍 → (𝑡 ∈ 𝑅 ↔ 𝑍 ∈ 𝑅)) |
| 531 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑍 → ((2nd ‘𝑝)‘𝑡) = ((2nd ‘𝑝)‘𝑍)) |
| 532 | 530, 531 | ifbieq1d 4109 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑍 → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = if(𝑍 ∈ 𝑅, ((2nd ‘𝑝)‘𝑍), (𝐽 − (1st ‘𝑝)))) |
| 533 | 136 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ¬ 𝑍 ∈ 𝑅) |
| 534 | 533 | iffalsed 4097 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → if(𝑍 ∈ 𝑅, ((2nd ‘𝑝)‘𝑍), (𝐽 − (1st ‘𝑝))) = (𝐽 − (1st ‘𝑝))) |
| 535 | 534 | 3adant2 1080 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → if(𝑍 ∈ 𝑅, ((2nd ‘𝑝)‘𝑍), (𝐽 − (1st ‘𝑝))) = (𝐽 − (1st ‘𝑝))) |
| 536 | 4 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝐽 ∈ ℤ) |
| 537 | 536, 446 | zsubcld 11487 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽 − (1st ‘𝑝)) ∈
ℤ) |
| 538 | 537 | zcnd 11483 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽 − (1st ‘𝑝)) ∈
ℂ) |
| 539 | 535, 538 | eqeltrd 2701 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → if(𝑍 ∈ 𝑅, ((2nd ‘𝑝)‘𝑍), (𝐽 − (1st ‘𝑝))) ∈
ℂ) |
| 540 | 392, 522,
523, 524, 525, 529, 532, 539 | fsumsplitsn 14474 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → Σ𝑡 ∈ (𝑅 ∪ {𝑍})if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = (Σ𝑡 ∈ 𝑅 if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) + if(𝑍 ∈ 𝑅, ((2nd ‘𝑝)‘𝑍), (𝐽 − (1st ‘𝑝))))) |
| 541 | 396 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑡 ∈ 𝑅 → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = ((2nd
‘𝑝)‘𝑡))) |
| 542 | 392, 541 | ralrimi 2957 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∀𝑡 ∈ 𝑅 if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = ((2nd
‘𝑝)‘𝑡)) |
| 543 | 542 | sumeq2d 14432 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → Σ𝑡 ∈ 𝑅 if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = Σ𝑡 ∈ 𝑅 ((2nd ‘𝑝)‘𝑡)) |
| 544 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑐 = (2nd ‘𝑝) → 𝑅 = 𝑅) |
| 545 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑐 = (2nd ‘𝑝) ∧ 𝑡 ∈ 𝑅) → 𝑐 = (2nd ‘𝑝)) |
| 546 | 545 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑐 = (2nd ‘𝑝) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) = ((2nd ‘𝑝)‘𝑡)) |
| 547 | 544, 546 | sumeq12rdv 14438 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐 = (2nd ‘𝑝) → Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = Σ𝑡 ∈ 𝑅 ((2nd ‘𝑝)‘𝑡)) |
| 548 | 547 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = (2nd ‘𝑝) → (Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘 ↔ Σ𝑡 ∈ 𝑅 ((2nd ‘𝑝)‘𝑡) = 𝑘)) |
| 549 | 548 | elrab 3363 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((2nd ‘𝑝) ∈ {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ↔ ((2nd ‘𝑝) ∈ ((0...𝑘) ↑𝑚
𝑅) ∧ Σ𝑡 ∈ 𝑅 ((2nd ‘𝑝)‘𝑡) = 𝑘)) |
| 550 | 420, 549 | sylib 208 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((2nd ‘𝑝) ∈ ((0...𝑘) ↑𝑚
𝑅) ∧ Σ𝑡 ∈ 𝑅 ((2nd ‘𝑝)‘𝑡) = 𝑘)) |
| 551 | 550 | simprd 479 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → Σ𝑡 ∈ 𝑅 ((2nd ‘𝑝)‘𝑡) = 𝑘) |
| 552 | 543, 551 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → Σ𝑡 ∈ 𝑅 if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = 𝑘) |
| 553 | 525 | iffalsed 4097 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → if(𝑍 ∈ 𝑅, ((2nd ‘𝑝)‘𝑍), (𝐽 − (1st ‘𝑝))) = (𝐽 − (1st ‘𝑝))) |
| 554 | 553, 473 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → if(𝑍 ∈ 𝑅, ((2nd ‘𝑝)‘𝑍), (𝐽 − (1st ‘𝑝))) = (𝐽 − 𝑘)) |
| 555 | 552, 554 | oveq12d 6668 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (Σ𝑡 ∈ 𝑅 if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) + if(𝑍 ∈ 𝑅, ((2nd ‘𝑝)‘𝑍), (𝐽 − (1st ‘𝑝)))) = (𝑘 + (𝐽 − 𝑘))) |
| 556 | 334 | sseli 3599 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ∈ ℂ) |
| 557 | 556 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑘 ∈ ℂ) |
| 558 | 400, 311 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝐽 ∈ ℂ) |
| 559 | 557, 558 | pncan3d 10395 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑘 + (𝐽 − 𝑘)) = 𝐽) |
| 560 | 555, 559 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (Σ𝑡 ∈ 𝑅 if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) + if(𝑍 ∈ 𝑅, ((2nd ‘𝑝)‘𝑍), (𝐽 − (1st ‘𝑝)))) = 𝐽) |
| 561 | 521, 540,
560 | 3eqtrd 2660 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → Σ𝑡 ∈ (𝑅 ∪ {𝑍})((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡) = 𝐽) |
| 562 | 511, 561 | jca 554 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ ((0...𝐽) ↑𝑚
(𝑅 ∪ {𝑍})) ∧ Σ𝑡 ∈ (𝑅 ∪ {𝑍})((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡) = 𝐽)) |
| 563 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑟 → (𝑡 ∈ 𝑅 ↔ 𝑟 ∈ 𝑅)) |
| 564 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑟 → ((2nd ‘𝑝)‘𝑡) = ((2nd ‘𝑝)‘𝑟)) |
| 565 | 563, 564 | ifbieq1d 4109 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑟 → if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))) = if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝)))) |
| 566 | 565 | cbvmptv 4750 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝)))) |
| 567 | 566 | eqeq2i 2634 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ↔ 𝑐 = (𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))) |
| 568 | 567 | biimpi 206 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) → 𝑐 = (𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))) |
| 569 | | fveq1 6190 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = (𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝)))) → (𝑐‘𝑡) = ((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡)) |
| 570 | 569 | sumeq2ad 14434 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝)))) → Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = Σ𝑡 ∈ (𝑅 ∪ {𝑍})((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡)) |
| 571 | 568, 570 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) → Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = Σ𝑡 ∈ (𝑅 ∪ {𝑍})((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡)) |
| 572 | 571 | eqeq1d 2624 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) → (Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽 ↔ Σ𝑡 ∈ (𝑅 ∪ {𝑍})((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡) = 𝐽)) |
| 573 | 572 | elrab 3363 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ↔ ((𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ ((0...𝐽) ↑𝑚
(𝑅 ∪ {𝑍})) ∧ Σ𝑡 ∈ (𝑅 ∪ {𝑍})((𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))‘𝑡) = 𝐽)) |
| 574 | 562, 573 | sylibr 224 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
| 575 | 574 | 3exp 1264 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}))) |
| 576 | 575 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}))) |
| 577 | 381, 382,
576 | rexlimd 3026 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽})) |
| 578 | 376, 577 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
| 579 | 41 | eqcomd 2628 |
. . . . . . . . 9
⊢ (𝜑 → {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} = ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
| 580 | 579 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} = ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
| 581 | 578, 580 | eleqtrd 2703 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
| 582 | 253 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝐷 = (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ↦ 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉)) |
| 583 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) |
| 584 | 566 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))) |
| 585 | 583, 584 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → 𝑐 = (𝑟 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))))) |
| 586 | | simpr 477 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑟 = 𝑍) → 𝑟 = 𝑍) |
| 587 | 136 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑟 = 𝑍) → ¬ 𝑍 ∈ 𝑅) |
| 588 | 586, 587 | eqneltrd 2720 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 = 𝑍) → ¬ 𝑟 ∈ 𝑅) |
| 589 | 588 | iffalsed 4097 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 = 𝑍) → if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))) = (𝐽 − (1st ‘𝑝))) |
| 590 | 589 | adantlr 751 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) ∧ 𝑟 = 𝑍) → if(𝑟 ∈ 𝑅, ((2nd ‘𝑝)‘𝑟), (𝐽 − (1st ‘𝑝))) = (𝐽 − (1st ‘𝑝))) |
| 591 | 54 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → 𝑍 ∈ (𝑅 ∪ {𝑍})) |
| 592 | | ovexd 6680 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (𝐽 − (1st ‘𝑝)) ∈ V) |
| 593 | 585, 590,
591, 592 | fvmptd 6288 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (𝑐‘𝑍) = (𝐽 − (1st ‘𝑝))) |
| 594 | 593 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (𝐽 − (𝑐‘𝑍)) = (𝐽 − (𝐽 − (1st ‘𝑝)))) |
| 595 | 594 | adantlr 751 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (𝐽 − (𝑐‘𝑍)) = (𝐽 − (𝐽 − (1st ‘𝑝)))) |
| 596 | 311 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → 𝐽 ∈ ℂ) |
| 597 | | nfv 1843 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(1st ‘𝑝) ∈ (0...𝐽) |
| 598 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑘 ∈ (0...𝐽)) |
| 599 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ (0...𝐽) ∧ (1st ‘𝑝) = 𝑘) → (1st ‘𝑝) = 𝑘) |
| 600 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ (0...𝐽) ∧ (1st ‘𝑝) = 𝑘) → 𝑘 ∈ (0...𝐽)) |
| 601 | 599, 600 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ (0...𝐽) ∧ (1st ‘𝑝) = 𝑘) → (1st ‘𝑝) ∈ (0...𝐽)) |
| 602 | 598, 442,
601 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈ (0...𝐽)) |
| 603 | 602 | ex 450 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ (0...𝐽))) |
| 604 | 603 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ (0...𝐽)))) |
| 605 | 380, 597,
604 | rexlimd 3026 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ (0...𝐽))) |
| 606 | 375, 605 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ (0...𝐽)) |
| 607 | 6 | sseli 3599 |
. . . . . . . . . . . . . . 15
⊢
((1st ‘𝑝) ∈ (0...𝐽) → (1st ‘𝑝) ∈
ℤ) |
| 608 | 606, 607 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈
ℤ) |
| 609 | 608 | zcnd 11483 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈
ℂ) |
| 610 | 609 | ad2antlr 763 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (1st
‘𝑝) ∈
ℂ) |
| 611 | 596, 610 | nncand 10397 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (𝐽 − (𝐽 − (1st ‘𝑝))) = (1st
‘𝑝)) |
| 612 | 595, 611 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (𝐽 − (𝑐‘𝑍)) = (1st ‘𝑝)) |
| 613 | | reseq1 5390 |
. . . . . . . . . . . 12
⊢ (𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) → (𝑐 ↾ 𝑅) = ((𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ↾ 𝑅)) |
| 614 | 613 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (𝑐 ↾ 𝑅) = ((𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ↾ 𝑅)) |
| 615 | 75 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → 𝑅 ⊆ (𝑅 ∪ {𝑍})) |
| 616 | 615 | resmptd 5452 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → ((𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ↾ 𝑅) = (𝑡 ∈ 𝑅 ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) |
| 617 | | nfv 1843 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘(𝑡 ∈ 𝑅 ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (2nd
‘𝑝) |
| 618 | 396 | mpteq2ia 4740 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ 𝑅 ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (𝑡 ∈ 𝑅 ↦ ((2nd ‘𝑝)‘𝑡)) |
| 619 | 618 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑡 ∈ 𝑅 ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (𝑡 ∈ 𝑅 ↦ ((2nd ‘𝑝)‘𝑡))) |
| 620 | 425 | feqmptd 6249 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝) = (𝑡 ∈ 𝑅 ↦ ((2nd ‘𝑝)‘𝑡))) |
| 621 | 619, 620 | eqtr4d 2659 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑡 ∈ 𝑅 ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (2nd
‘𝑝)) |
| 622 | 621 | 3exp 1264 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝑡 ∈ 𝑅 ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (2nd
‘𝑝)))) |
| 623 | 622 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝑡 ∈ 𝑅 ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (2nd
‘𝑝)))) |
| 624 | 381, 617,
623 | rexlimd 3026 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝑡 ∈ 𝑅 ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (2nd
‘𝑝))) |
| 625 | 376, 624 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑡 ∈ 𝑅 ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (2nd
‘𝑝)) |
| 626 | 625 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (𝑡 ∈ 𝑅 ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) = (2nd
‘𝑝)) |
| 627 | 614, 616,
626 | 3eqtrd 2660 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → (𝑐 ↾ 𝑅) = (2nd ‘𝑝)) |
| 628 | 612, 627 | opeq12d 4410 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) → 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
| 629 | | opex 4932 |
. . . . . . . . . 10
⊢
〈(1st ‘𝑝), (2nd ‘𝑝)〉 ∈ V |
| 630 | 629 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 〈(1st ‘𝑝), (2nd ‘𝑝)〉 ∈
V) |
| 631 | 582, 628,
581, 630 | fvmptd 6288 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐷‘(𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))) = 〈(1st
‘𝑝), (2nd
‘𝑝)〉) |
| 632 | | nfv 1843 |
. . . . . . . . . 10
⊢
Ⅎ𝑘〈(1st ‘𝑝), (2nd ‘𝑝)〉 = 𝑝 |
| 633 | | 1st2nd2 7205 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
| 634 | 633 | eqcomd 2628 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → 〈(1st ‘𝑝), (2nd ‘𝑝)〉 = 𝑝) |
| 635 | 634 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → 〈(1st ‘𝑝), (2nd ‘𝑝)〉 = 𝑝)) |
| 636 | 635 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → 〈(1st ‘𝑝), (2nd ‘𝑝)〉 = 𝑝))) |
| 637 | 381, 632,
636 | rexlimd 3026 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → 〈(1st ‘𝑝), (2nd ‘𝑝)〉 = 𝑝)) |
| 638 | 376, 637 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 〈(1st ‘𝑝), (2nd ‘𝑝)〉 = 𝑝) |
| 639 | 631, 638 | eqtr2d 2657 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑝 = (𝐷‘(𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))))) |
| 640 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) → (𝐷‘𝑐) = (𝐷‘(𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))))) |
| 641 | 640 | eqeq2d 2632 |
. . . . . . . 8
⊢ (𝑐 = (𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) → (𝑝 = (𝐷‘𝑐) ↔ 𝑝 = (𝐷‘(𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝))))))) |
| 642 | 641 | rspcev 3309 |
. . . . . . 7
⊢ (((𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))) ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 𝑝 = (𝐷‘(𝑡 ∈ (𝑅 ∪ {𝑍}) ↦ if(𝑡 ∈ 𝑅, ((2nd ‘𝑝)‘𝑡), (𝐽 − (1st ‘𝑝)))))) → ∃𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)𝑝 = (𝐷‘𝑐)) |
| 643 | 581, 639,
642 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∃𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)𝑝 = (𝐷‘𝑐)) |
| 644 | 643 | ralrimiva 2966 |
. . . . 5
⊢ (𝜑 → ∀𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))∃𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)𝑝 = (𝐷‘𝑐)) |
| 645 | 254, 644 | jca 554 |
. . . 4
⊢ (𝜑 → (𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)⟶∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ∧ ∀𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))∃𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)𝑝 = (𝐷‘𝑐))) |
| 646 | | dffo3 6374 |
. . . 4
⊢ (𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–onto→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ↔ (𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)⟶∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ∧ ∀𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))∃𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)𝑝 = (𝐷‘𝑐))) |
| 647 | 645, 646 | sylibr 224 |
. . 3
⊢ (𝜑 → 𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–onto→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
| 648 | 373, 647 | jca 554 |
. 2
⊢ (𝜑 → (𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–1-1→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ∧ 𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–onto→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)))) |
| 649 | | df-f1o 5895 |
. 2
⊢ (𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–1-1-onto→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ↔ (𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–1-1→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ∧ 𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–onto→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)))) |
| 650 | 648, 649 | sylibr 224 |
1
⊢ (𝜑 → 𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–1-1-onto→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |