MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr1e Structured version   Visualization version   GIF version

Theorem upgr1e 26008
Description: A pseudograph with one edge. Such a graph is actually a simple pseudograph, see uspgr1e 26136. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.)
Hypotheses
Ref Expression
upgr1e.v 𝑉 = (Vtx‘𝐺)
upgr1e.a (𝜑𝐴𝑋)
upgr1e.b (𝜑𝐵𝑉)
upgr1e.c (𝜑𝐶𝑉)
upgr1e.e (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
Assertion
Ref Expression
upgr1e (𝜑𝐺 ∈ UPGraph )

Proof of Theorem upgr1e
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 upgr1e.a . . . . . 6 (𝜑𝐴𝑋)
2 prex 4909 . . . . . . . 8 {𝐵, 𝐶} ∈ V
32snid 4208 . . . . . . 7 {𝐵, 𝐶} ∈ {{𝐵, 𝐶}}
43a1i 11 . . . . . 6 (𝜑 → {𝐵, 𝐶} ∈ {{𝐵, 𝐶}})
51, 4fsnd 6179 . . . . 5 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}⟶{{𝐵, 𝐶}})
6 upgr1e.b . . . . . . . . 9 (𝜑𝐵𝑉)
7 upgr1e.c . . . . . . . . 9 (𝜑𝐶𝑉)
86, 7prssd 4354 . . . . . . . 8 (𝜑 → {𝐵, 𝐶} ⊆ 𝑉)
9 upgr1e.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
108, 9syl6sseq 3651 . . . . . . 7 (𝜑 → {𝐵, 𝐶} ⊆ (Vtx‘𝐺))
112elpw 4164 . . . . . . 7 ({𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝐵, 𝐶} ⊆ (Vtx‘𝐺))
1210, 11sylibr 224 . . . . . 6 (𝜑 → {𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺))
1312, 6upgr1elem 26007 . . . . 5 (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
145, 13fssd 6057 . . . 4 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
152a1i 11 . . . . . . . 8 (𝜑 → {𝐵, 𝐶} ∈ V)
1615, 6upgr1elem 26007 . . . . . . 7 (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (V ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
175, 16fssd 6057 . . . . . 6 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}⟶{𝑥 ∈ (V ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
18 fdm 6051 . . . . . 6 ({⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}⟶{𝑥 ∈ (V ∖ {∅}) ∣ (#‘𝑥) ≤ 2} → dom {⟨𝐴, {𝐵, 𝐶}⟩} = {𝐴})
1917, 18syl 17 . . . . 5 (𝜑 → dom {⟨𝐴, {𝐵, 𝐶}⟩} = {𝐴})
2019feq2d 6031 . . . 4 (𝜑 → ({⟨𝐴, {𝐵, 𝐶}⟩}:dom {⟨𝐴, {𝐵, 𝐶}⟩}⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ↔ {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
2114, 20mpbird 247 . . 3 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:dom {⟨𝐴, {𝐵, 𝐶}⟩}⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
22 upgr1e.e . . . 4 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
2322dmeqd 5326 . . . 4 (𝜑 → dom (iEdg‘𝐺) = dom {⟨𝐴, {𝐵, 𝐶}⟩})
2422, 23feq12d 6033 . . 3 (𝜑 → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ↔ {⟨𝐴, {𝐵, 𝐶}⟩}:dom {⟨𝐴, {𝐵, 𝐶}⟩}⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
2521, 24mpbird 247 . 2 (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
2691vgrex 25882 . . 3 (𝐵𝑉𝐺 ∈ V)
27 eqid 2622 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
28 eqid 2622 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
2927, 28isupgr 25979 . . 3 (𝐺 ∈ V → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
306, 26, 293syl 18 . 2 (𝜑 → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
3125, 30mpbird 247 1 (𝜑𝐺 ∈ UPGraph )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177  {cpr 4179  cop 4183   class class class wbr 4653  dom cdm 5114  wf 5884  cfv 5888  cle 10075  2c2 11070  #chash 13117  Vtxcvtx 25874  iEdgciedg 25875   UPGraph cupgr 25975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-upgr 25977
This theorem is referenced by:  upgr1eop  26010  upgr1eopALT  26012
  Copyright terms: Public domain W3C validator