MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzwo3 Structured version   Visualization version   GIF version

Theorem uzwo3 11783
Description: Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. This generalization of uzwo2 11752 allows the lower bound 𝐵 to be any real number. See also nnwo 11753 and nnwos 11755. (Contributed by NM, 12-Nov-2004.) (Proof shortened by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 27-Sep-2020.)
Assertion
Ref Expression
uzwo3 ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem uzwo3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 renegcl 10344 . . . 4 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
21adantr 481 . . 3 ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → -𝐵 ∈ ℝ)
3 arch 11289 . . 3 (-𝐵 ∈ ℝ → ∃𝑛 ∈ ℕ -𝐵 < 𝑛)
42, 3syl 17 . 2 ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → ∃𝑛 ∈ ℕ -𝐵 < 𝑛)
5 simplrl 800 . . . . 5 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧})
6 simplrl 800 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑛 ∈ ℕ)
7 nnnegz 11380 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → -𝑛 ∈ ℤ)
86, 7syl 17 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛 ∈ ℤ)
98zred 11482 . . . . . . . . . . 11 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛 ∈ ℝ)
10 simprl 794 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑧 ∈ ℤ)
1110zred 11482 . . . . . . . . . . 11 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑧 ∈ ℝ)
12 simpll 790 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝐵 ∈ ℝ)
136nnred 11035 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑛 ∈ ℝ)
14 simplrr 801 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝐵 < 𝑛)
1512, 13, 14ltnegcon1d 10607 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛 < 𝐵)
16 simprr 796 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝐵𝑧)
179, 12, 11, 15, 16ltletrd 10197 . . . . . . . . . . 11 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛 < 𝑧)
189, 11, 17ltled 10185 . . . . . . . . . 10 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛𝑧)
19 eluz 11701 . . . . . . . . . . 11 ((-𝑛 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 ∈ (ℤ‘-𝑛) ↔ -𝑛𝑧))
208, 10, 19syl2anc 693 . . . . . . . . . 10 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → (𝑧 ∈ (ℤ‘-𝑛) ↔ -𝑛𝑧))
2118, 20mpbird 247 . . . . . . . . 9 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑧 ∈ (ℤ‘-𝑛))
2221expr 643 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ 𝑧 ∈ ℤ) → (𝐵𝑧𝑧 ∈ (ℤ‘-𝑛)))
2322ralrimiva 2966 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∀𝑧 ∈ ℤ (𝐵𝑧𝑧 ∈ (ℤ‘-𝑛)))
24 rabss 3679 . . . . . . 7 ({𝑧 ∈ ℤ ∣ 𝐵𝑧} ⊆ (ℤ‘-𝑛) ↔ ∀𝑧 ∈ ℤ (𝐵𝑧𝑧 ∈ (ℤ‘-𝑛)))
2523, 24sylibr 224 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → {𝑧 ∈ ℤ ∣ 𝐵𝑧} ⊆ (ℤ‘-𝑛))
2625adantlr 751 . . . . 5 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → {𝑧 ∈ ℤ ∣ 𝐵𝑧} ⊆ (ℤ‘-𝑛))
275, 26sstrd 3613 . . . 4 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ⊆ (ℤ‘-𝑛))
28 simplrr 801 . . . 4 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ≠ ∅)
29 infssuzcl 11772 . . . 4 ((𝐴 ⊆ (ℤ‘-𝑛) ∧ 𝐴 ≠ ∅) → inf(𝐴, ℝ, < ) ∈ 𝐴)
3027, 28, 29syl2anc 693 . . 3 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → inf(𝐴, ℝ, < ) ∈ 𝐴)
31 infssuzle 11771 . . . . 5 ((𝐴 ⊆ (ℤ‘-𝑛) ∧ 𝑦𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑦)
3227, 31sylan 488 . . . 4 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ 𝑦𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑦)
3332ralrimiva 2966 . . 3 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∀𝑦𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦)
3430adantr 481 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → inf(𝐴, ℝ, < ) ∈ 𝐴)
35 simprr 796 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → ∀𝑦𝐴 𝑥𝑦)
36 breq2 4657 . . . . . . . 8 (𝑦 = inf(𝐴, ℝ, < ) → (𝑥𝑦𝑥 ≤ inf(𝐴, ℝ, < )))
3736rspcv 3305 . . . . . . 7 (inf(𝐴, ℝ, < ) ∈ 𝐴 → (∀𝑦𝐴 𝑥𝑦𝑥 ≤ inf(𝐴, ℝ, < )))
3834, 35, 37sylc 65 . . . . . 6 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝑥 ≤ inf(𝐴, ℝ, < ))
3927adantr 481 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝐴 ⊆ (ℤ‘-𝑛))
40 simprl 794 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝑥𝐴)
41 infssuzle 11771 . . . . . . 7 ((𝐴 ⊆ (ℤ‘-𝑛) ∧ 𝑥𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑥)
4239, 40, 41syl2anc 693 . . . . . 6 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → inf(𝐴, ℝ, < ) ≤ 𝑥)
43 uzssz 11707 . . . . . . . . . . 11 (ℤ‘-𝑛) ⊆ ℤ
44 zssre 11384 . . . . . . . . . . 11 ℤ ⊆ ℝ
4543, 44sstri 3612 . . . . . . . . . 10 (ℤ‘-𝑛) ⊆ ℝ
4627, 45syl6ss 3615 . . . . . . . . 9 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ⊆ ℝ)
4746adantr 481 . . . . . . . 8 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝐴 ⊆ ℝ)
4847, 40sseldd 3604 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝑥 ∈ ℝ)
4946, 30sseldd 3604 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → inf(𝐴, ℝ, < ) ∈ ℝ)
5049adantr 481 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → inf(𝐴, ℝ, < ) ∈ ℝ)
5148, 50letri3d 10179 . . . . . 6 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → (𝑥 = inf(𝐴, ℝ, < ) ↔ (𝑥 ≤ inf(𝐴, ℝ, < ) ∧ inf(𝐴, ℝ, < ) ≤ 𝑥)))
5238, 42, 51mpbir2and 957 . . . . 5 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝑥 = inf(𝐴, ℝ, < ))
5352expr 643 . . . 4 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ 𝑥𝐴) → (∀𝑦𝐴 𝑥𝑦𝑥 = inf(𝐴, ℝ, < )))
5453ralrimiva 2966 . . 3 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∀𝑥𝐴 (∀𝑦𝐴 𝑥𝑦𝑥 = inf(𝐴, ℝ, < )))
55 breq1 4656 . . . . 5 (𝑥 = inf(𝐴, ℝ, < ) → (𝑥𝑦 ↔ inf(𝐴, ℝ, < ) ≤ 𝑦))
5655ralbidv 2986 . . . 4 (𝑥 = inf(𝐴, ℝ, < ) → (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦))
5756eqreu 3398 . . 3 ((inf(𝐴, ℝ, < ) ∈ 𝐴 ∧ ∀𝑦𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦 ∧ ∀𝑥𝐴 (∀𝑦𝐴 𝑥𝑦𝑥 = inf(𝐴, ℝ, < ))) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)
5830, 33, 54, 57syl3anc 1326 . 2 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)
594, 58rexlimddv 3035 1 ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  ∃!wreu 2914  {crab 2916  wss 3574  c0 3915   class class class wbr 4653  cfv 5888  infcinf 8347  cr 9935   < clt 10074  cle 10075  -cneg 10267  cn 11020  cz 11377  cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  zmin  11784
  Copyright terms: Public domain W3C validator