MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlk2v2elem2 Structured version   Visualization version   GIF version

Theorem wlk2v2elem2 27016
Description: Lemma 2 for wlk2v2e 27017: The values of 𝐼 after 𝐹 are edges between two vertices enumerated by 𝑃. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 9-Jan-2021.)
Hypotheses
Ref Expression
wlk2v2e.i 𝐼 = ⟨“{𝑋, 𝑌}”⟩
wlk2v2e.f 𝐹 = ⟨“00”⟩
wlk2v2e.x 𝑋 ∈ V
wlk2v2e.y 𝑌 ∈ V
wlk2v2e.p 𝑃 = ⟨“𝑋𝑌𝑋”⟩
Assertion
Ref Expression
wlk2v2elem2 𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}
Distinct variable groups:   𝑘,𝐹   𝑘,𝐼   𝑃,𝑘
Allowed substitution hints:   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem wlk2v2elem2
StepHypRef Expression
1 wlk2v2e.f . . . . . . 7 𝐹 = ⟨“00”⟩
21fveq1i 6192 . . . . . 6 (𝐹‘0) = (⟨“00”⟩‘0)
3 0z 11388 . . . . . . 7 0 ∈ ℤ
4 s2fv0 13632 . . . . . . 7 (0 ∈ ℤ → (⟨“00”⟩‘0) = 0)
53, 4ax-mp 5 . . . . . 6 (⟨“00”⟩‘0) = 0
62, 5eqtri 2644 . . . . 5 (𝐹‘0) = 0
76fveq2i 6194 . . . 4 (𝐼‘(𝐹‘0)) = (𝐼‘0)
8 wlk2v2e.i . . . . . 6 𝐼 = ⟨“{𝑋, 𝑌}”⟩
98fveq1i 6192 . . . . 5 (𝐼‘0) = (⟨“{𝑋, 𝑌}”⟩‘0)
10 prex 4909 . . . . . 6 {𝑋, 𝑌} ∈ V
11 s1fv 13390 . . . . . 6 ({𝑋, 𝑌} ∈ V → (⟨“{𝑋, 𝑌}”⟩‘0) = {𝑋, 𝑌})
1210, 11ax-mp 5 . . . . 5 (⟨“{𝑋, 𝑌}”⟩‘0) = {𝑋, 𝑌}
139, 12eqtri 2644 . . . 4 (𝐼‘0) = {𝑋, 𝑌}
14 wlk2v2e.p . . . . . . . 8 𝑃 = ⟨“𝑋𝑌𝑋”⟩
1514fveq1i 6192 . . . . . . 7 (𝑃‘0) = (⟨“𝑋𝑌𝑋”⟩‘0)
16 wlk2v2e.x . . . . . . . 8 𝑋 ∈ V
17 s3fv0 13636 . . . . . . . 8 (𝑋 ∈ V → (⟨“𝑋𝑌𝑋”⟩‘0) = 𝑋)
1816, 17ax-mp 5 . . . . . . 7 (⟨“𝑋𝑌𝑋”⟩‘0) = 𝑋
1915, 18eqtri 2644 . . . . . 6 (𝑃‘0) = 𝑋
2014fveq1i 6192 . . . . . . 7 (𝑃‘1) = (⟨“𝑋𝑌𝑋”⟩‘1)
21 wlk2v2e.y . . . . . . . 8 𝑌 ∈ V
22 s3fv1 13637 . . . . . . . 8 (𝑌 ∈ V → (⟨“𝑋𝑌𝑋”⟩‘1) = 𝑌)
2321, 22ax-mp 5 . . . . . . 7 (⟨“𝑋𝑌𝑋”⟩‘1) = 𝑌
2420, 23eqtri 2644 . . . . . 6 (𝑃‘1) = 𝑌
2519, 24preq12i 4273 . . . . 5 {(𝑃‘0), (𝑃‘1)} = {𝑋, 𝑌}
2625eqcomi 2631 . . . 4 {𝑋, 𝑌} = {(𝑃‘0), (𝑃‘1)}
277, 13, 263eqtri 2648 . . 3 (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}
281fveq1i 6192 . . . . . 6 (𝐹‘1) = (⟨“00”⟩‘1)
29 s2fv1 13633 . . . . . . 7 (0 ∈ ℤ → (⟨“00”⟩‘1) = 0)
303, 29ax-mp 5 . . . . . 6 (⟨“00”⟩‘1) = 0
3128, 30eqtri 2644 . . . . 5 (𝐹‘1) = 0
3231fveq2i 6194 . . . 4 (𝐼‘(𝐹‘1)) = (𝐼‘0)
33 prcom 4267 . . . . 5 {𝑋, 𝑌} = {𝑌, 𝑋}
3414fveq1i 6192 . . . . . . . 8 (𝑃‘2) = (⟨“𝑋𝑌𝑋”⟩‘2)
35 s3fv2 13638 . . . . . . . . 9 (𝑋 ∈ V → (⟨“𝑋𝑌𝑋”⟩‘2) = 𝑋)
3616, 35ax-mp 5 . . . . . . . 8 (⟨“𝑋𝑌𝑋”⟩‘2) = 𝑋
3734, 36eqtri 2644 . . . . . . 7 (𝑃‘2) = 𝑋
3824, 37preq12i 4273 . . . . . 6 {(𝑃‘1), (𝑃‘2)} = {𝑌, 𝑋}
3938eqcomi 2631 . . . . 5 {𝑌, 𝑋} = {(𝑃‘1), (𝑃‘2)}
4033, 39eqtri 2644 . . . 4 {𝑋, 𝑌} = {(𝑃‘1), (𝑃‘2)}
4132, 13, 403eqtri 2648 . . 3 (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}
42 2wlklem 26563 . . 3 (∀𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
4327, 41, 42mpbir2an 955 . 2 𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}
44 s2cli 13625 . . . . . . 7 ⟨“00”⟩ ∈ Word V
451, 44eqeltri 2697 . . . . . 6 𝐹 ∈ Word V
46 wrddm 13312 . . . . . 6 (𝐹 ∈ Word V → dom 𝐹 = (0..^(#‘𝐹)))
4745, 46ax-mp 5 . . . . 5 dom 𝐹 = (0..^(#‘𝐹))
4847eqcomi 2631 . . . 4 (0..^(#‘𝐹)) = dom 𝐹
491dmeqi 5325 . . . 4 dom 𝐹 = dom ⟨“00”⟩
50 s2dm 13635 . . . 4 dom ⟨“00”⟩ = {0, 1}
5148, 49, 503eqtri 2648 . . 3 (0..^(#‘𝐹)) = {0, 1}
5251raleqi 3142 . 2 (∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
5343, 52mpbir 221 1 𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  {cpr 4179  dom cdm 5114  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  2c2 11070  cz 11377  ..^cfzo 12465  #chash 13117  Word cword 13291  ⟨“cs1 13294  ⟨“cs2 13586  ⟨“cs3 13587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594
This theorem is referenced by:  wlk2v2e  27017
  Copyright terms: Public domain W3C validator