![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkreslem | Structured version Visualization version GIF version |
Description: Lemma for wlkres 26567. (Contributed by AV, 5-Mar-2021.) |
Ref | Expression |
---|---|
wlkres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wlkres.i | ⊢ 𝐼 = (iEdg‘𝐺) |
wlkres.d | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
wlkres.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(#‘𝐹))) |
wlkres.s | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
wlkres.e | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
wlkres.h | ⊢ 𝐻 = (𝐹 ↾ (0..^𝑁)) |
wlkres.q | ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) |
Ref | Expression |
---|---|
wlkreslem | ⊢ (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . 3 ⊢ (𝑆 ∈ V → (𝜑 → 𝑆 ∈ V)) | |
2 | df-nel 2898 | . . . 4 ⊢ (𝑆 ∉ V ↔ ¬ 𝑆 ∈ V) | |
3 | wlkres.d | . . . . . 6 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
4 | df-br 4654 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 ↔ 〈𝐹, 𝑃〉 ∈ (Walks‘𝐺)) | |
5 | ne0i 3921 | . . . . . . . 8 ⊢ (〈𝐹, 𝑃〉 ∈ (Walks‘𝐺) → (Walks‘𝐺) ≠ ∅) | |
6 | wlkres.s | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
7 | wlkres.v | . . . . . . . . . . . . . 14 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | 6, 7 | syl6eq 2672 | . . . . . . . . . . . . 13 ⊢ (𝜑 → (Vtx‘𝑆) = (Vtx‘𝐺)) |
9 | 8 | anim1i 592 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑆 ∉ V) → ((Vtx‘𝑆) = (Vtx‘𝐺) ∧ 𝑆 ∉ V)) |
10 | 9 | ancomd 467 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑆 ∉ V) → (𝑆 ∉ V ∧ (Vtx‘𝑆) = (Vtx‘𝐺))) |
11 | wlk0prc 26550 | . . . . . . . . . . 11 ⊢ ((𝑆 ∉ V ∧ (Vtx‘𝑆) = (Vtx‘𝐺)) → (Walks‘𝐺) = ∅) | |
12 | eqneqall 2805 | . . . . . . . . . . 11 ⊢ ((Walks‘𝐺) = ∅ → ((Walks‘𝐺) ≠ ∅ → 𝑆 ∈ V)) | |
13 | 10, 11, 12 | 3syl 18 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑆 ∉ V) → ((Walks‘𝐺) ≠ ∅ → 𝑆 ∈ V)) |
14 | 13 | expcom 451 | . . . . . . . . 9 ⊢ (𝑆 ∉ V → (𝜑 → ((Walks‘𝐺) ≠ ∅ → 𝑆 ∈ V))) |
15 | 14 | com13 88 | . . . . . . . 8 ⊢ ((Walks‘𝐺) ≠ ∅ → (𝜑 → (𝑆 ∉ V → 𝑆 ∈ V))) |
16 | 5, 15 | syl 17 | . . . . . . 7 ⊢ (〈𝐹, 𝑃〉 ∈ (Walks‘𝐺) → (𝜑 → (𝑆 ∉ V → 𝑆 ∈ V))) |
17 | 4, 16 | sylbi 207 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝜑 → (𝑆 ∉ V → 𝑆 ∈ V))) |
18 | 3, 17 | mpcom 38 | . . . . 5 ⊢ (𝜑 → (𝑆 ∉ V → 𝑆 ∈ V)) |
19 | 18 | com12 32 | . . . 4 ⊢ (𝑆 ∉ V → (𝜑 → 𝑆 ∈ V)) |
20 | 2, 19 | sylbir 225 | . . 3 ⊢ (¬ 𝑆 ∈ V → (𝜑 → 𝑆 ∈ V)) |
21 | 1, 20 | pm2.61i 176 | . 2 ⊢ (𝜑 → 𝑆 ∈ V) |
22 | wlkres.h | . . 3 ⊢ 𝐻 = (𝐹 ↾ (0..^𝑁)) | |
23 | wlkres.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
24 | 23 | wlkf 26510 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
25 | wrdf 13310 | . . . . . 6 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(#‘𝐹))⟶dom 𝐼) | |
26 | 25 | ffund 6049 | . . . . 5 ⊢ (𝐹 ∈ Word dom 𝐼 → Fun 𝐹) |
27 | 3, 24, 26 | 3syl 18 | . . . 4 ⊢ (𝜑 → Fun 𝐹) |
28 | ovex 6678 | . . . 4 ⊢ (0..^𝑁) ∈ V | |
29 | resfunexg 6479 | . . . 4 ⊢ ((Fun 𝐹 ∧ (0..^𝑁) ∈ V) → (𝐹 ↾ (0..^𝑁)) ∈ V) | |
30 | 27, 28, 29 | sylancl 694 | . . 3 ⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)) ∈ V) |
31 | 22, 30 | syl5eqel 2705 | . 2 ⊢ (𝜑 → 𝐻 ∈ V) |
32 | wlkres.q | . . 3 ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) | |
33 | 7 | wlkp 26512 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(#‘𝐹))⟶𝑉) |
34 | ffun 6048 | . . . . 5 ⊢ (𝑃:(0...(#‘𝐹))⟶𝑉 → Fun 𝑃) | |
35 | 3, 33, 34 | 3syl 18 | . . . 4 ⊢ (𝜑 → Fun 𝑃) |
36 | ovex 6678 | . . . 4 ⊢ (0...𝑁) ∈ V | |
37 | resfunexg 6479 | . . . 4 ⊢ ((Fun 𝑃 ∧ (0...𝑁) ∈ V) → (𝑃 ↾ (0...𝑁)) ∈ V) | |
38 | 35, 36, 37 | sylancl 694 | . . 3 ⊢ (𝜑 → (𝑃 ↾ (0...𝑁)) ∈ V) |
39 | 32, 38 | syl5eqel 2705 | . 2 ⊢ (𝜑 → 𝑄 ∈ V) |
40 | 21, 31, 39 | 3jca 1242 | 1 ⊢ (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∉ wnel 2897 Vcvv 3200 ∅c0 3915 〈cop 4183 class class class wbr 4653 dom cdm 5114 ↾ cres 5116 “ cima 5117 Fun wfun 5882 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 0cc0 9936 ...cfz 12326 ..^cfzo 12465 #chash 13117 Word cword 13291 Vtxcvtx 25874 iEdgciedg 25875 Walkscwlks 26492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-wlks 26495 |
This theorem is referenced by: wlkres 26567 |
Copyright terms: Public domain | W3C validator |