| Step | Hyp | Ref
| Expression |
| 1 | | wlkres.h |
. . 3
⊢ 𝐻 = (𝐹 ↾ (0..^𝑁)) |
| 2 | | wlkres.d |
. . . . . . . 8
⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| 3 | | wlkres.i |
. . . . . . . . 9
⊢ 𝐼 = (iEdg‘𝐺) |
| 4 | 3 | wlkf 26510 |
. . . . . . . 8
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 5 | | wrdfn 13319 |
. . . . . . . 8
⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 Fn (0..^(#‘𝐹))) |
| 6 | 2, 4, 5 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn (0..^(#‘𝐹))) |
| 7 | | wlkres.n |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ (0..^(#‘𝐹))) |
| 8 | | elfzouz2 12484 |
. . . . . . . 8
⊢ (𝑁 ∈ (0..^(#‘𝐹)) → (#‘𝐹) ∈
(ℤ≥‘𝑁)) |
| 9 | | fzoss2 12496 |
. . . . . . . 8
⊢
((#‘𝐹) ∈
(ℤ≥‘𝑁) → (0..^𝑁) ⊆ (0..^(#‘𝐹))) |
| 10 | 7, 8, 9 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (0..^𝑁) ⊆ (0..^(#‘𝐹))) |
| 11 | | fnssres 6004 |
. . . . . . 7
⊢ ((𝐹 Fn (0..^(#‘𝐹)) ∧ (0..^𝑁) ⊆ (0..^(#‘𝐹))) → (𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁)) |
| 12 | 6, 10, 11 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁)) |
| 13 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁)) |
| 14 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑥 → (𝐹‘𝑖) = (𝐹‘𝑥)) |
| 15 | 14 | eqeq1d 2624 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑥 → ((𝐹‘𝑖) = ((𝐹 ↾ (0..^𝑁))‘𝑥) ↔ (𝐹‘𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥))) |
| 16 | 15 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) ∧ 𝑖 = 𝑥) → ((𝐹‘𝑖) = ((𝐹 ↾ (0..^𝑁))‘𝑥) ↔ (𝐹‘𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥))) |
| 17 | | fvres 6207 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (0..^𝑁) → ((𝐹 ↾ (0..^𝑁))‘𝑥) = (𝐹‘𝑥)) |
| 18 | 17 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) = (𝐹‘𝑥)) |
| 19 | 18 | eqcomd 2628 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝐹‘𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥)) |
| 20 | 13, 16, 19 | rspcedvd 3317 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ∃𝑖 ∈ (0..^𝑁)(𝐹‘𝑖) = ((𝐹 ↾ (0..^𝑁))‘𝑥)) |
| 21 | 6 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → 𝐹 Fn (0..^(#‘𝐹))) |
| 22 | 10 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (0..^𝑁) ⊆ (0..^(#‘𝐹))) |
| 23 | 21, 22 | fvelimabd 6254 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ (𝐹 “ (0..^𝑁)) ↔ ∃𝑖 ∈ (0..^𝑁)(𝐹‘𝑖) = ((𝐹 ↾ (0..^𝑁))‘𝑥))) |
| 24 | 20, 23 | mpbird 247 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ (𝐹 “ (0..^𝑁))) |
| 25 | 2, 4 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
| 26 | | wrdf 13310 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(#‘𝐹))⟶dom 𝐼) |
| 27 | | ffvelrn 6357 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:(0..^(#‘𝐹))⟶dom 𝐼 ∧ 𝑥 ∈ (0..^(#‘𝐹))) → (𝐹‘𝑥) ∈ dom 𝐼) |
| 28 | 27 | expcom 451 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (0..^(#‘𝐹)) → (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 → (𝐹‘𝑥) ∈ dom 𝐼)) |
| 29 | 10 | sselda 3603 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^(#‘𝐹))) |
| 30 | 28, 29 | syl11 33 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 → ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝐹‘𝑥) ∈ dom 𝐼)) |
| 31 | 30 | expd 452 |
. . . . . . . . . . . . . 14
⊢ (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 → (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐹‘𝑥) ∈ dom 𝐼))) |
| 32 | 26, 31 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ Word dom 𝐼 → (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐹‘𝑥) ∈ dom 𝐼))) |
| 33 | 25, 32 | mpcom 38 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐹‘𝑥) ∈ dom 𝐼)) |
| 34 | 33 | imp 445 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝐹‘𝑥) ∈ dom 𝐼) |
| 35 | 18, 34 | eqeltrd 2701 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom 𝐼) |
| 36 | 24, 35 | elind 3798 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)) |
| 37 | | dmres 5419 |
. . . . . . . . 9
⊢ dom
(𝐼 ↾ (𝐹 “ (0..^𝑁))) = ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) |
| 38 | 36, 37 | syl6eleqr 2712 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| 39 | | wlkres.e |
. . . . . . . . . . 11
⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| 40 | 39 | dmeqd 5326 |
. . . . . . . . . 10
⊢ (𝜑 → dom (iEdg‘𝑆) = dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| 41 | 40 | eleq2d 2687 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆) ↔ ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))) |
| 42 | 41 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆) ↔ ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))) |
| 43 | 38, 42 | mpbird 247 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆)) |
| 44 | 43 | ralrimiva 2966 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ (0..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆)) |
| 45 | | ffnfv 6388 |
. . . . . 6
⊢ ((𝐹 ↾ (0..^𝑁)):(0..^𝑁)⟶dom (iEdg‘𝑆) ↔ ((𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁) ∧ ∀𝑥 ∈ (0..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆))) |
| 46 | 12, 44, 45 | sylanbrc 698 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)⟶dom (iEdg‘𝑆)) |
| 47 | | fzossfz 12488 |
. . . . . . . . 9
⊢
(0..^(#‘𝐹))
⊆ (0...(#‘𝐹)) |
| 48 | 47, 7 | sseldi 3601 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ (0...(#‘𝐹))) |
| 49 | | wlkreslem0 26565 |
. . . . . . . 8
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ (0...(#‘𝐹))) → (#‘(𝐹 ↾ (0..^𝑁))) = 𝑁) |
| 50 | 25, 48, 49 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (#‘(𝐹 ↾ (0..^𝑁))) = 𝑁) |
| 51 | 50 | oveq2d 6666 |
. . . . . 6
⊢ (𝜑 → (0..^(#‘(𝐹 ↾ (0..^𝑁)))) = (0..^𝑁)) |
| 52 | 51 | feq2d 6031 |
. . . . 5
⊢ (𝜑 → ((𝐹 ↾ (0..^𝑁)):(0..^(#‘(𝐹 ↾ (0..^𝑁))))⟶dom (iEdg‘𝑆) ↔ (𝐹 ↾ (0..^𝑁)):(0..^𝑁)⟶dom (iEdg‘𝑆))) |
| 53 | 46, 52 | mpbird 247 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)):(0..^(#‘(𝐹 ↾ (0..^𝑁))))⟶dom (iEdg‘𝑆)) |
| 54 | | iswrdb 13311 |
. . . 4
⊢ ((𝐹 ↾ (0..^𝑁)) ∈ Word dom (iEdg‘𝑆) ↔ (𝐹 ↾ (0..^𝑁)):(0..^(#‘(𝐹 ↾ (0..^𝑁))))⟶dom (iEdg‘𝑆)) |
| 55 | 53, 54 | sylibr 224 |
. . 3
⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)) ∈ Word dom (iEdg‘𝑆)) |
| 56 | 1, 55 | syl5eqel 2705 |
. 2
⊢ (𝜑 → 𝐻 ∈ Word dom (iEdg‘𝑆)) |
| 57 | | wlkres.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
| 58 | 57 | wlkp 26512 |
. . . . . . 7
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(#‘𝐹))⟶𝑉) |
| 59 | 2, 58 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑃:(0...(#‘𝐹))⟶𝑉) |
| 60 | | wlkres.s |
. . . . . . 7
⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
| 61 | 60 | feq3d 6032 |
. . . . . 6
⊢ (𝜑 → (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝑆) ↔ 𝑃:(0...(#‘𝐹))⟶𝑉)) |
| 62 | 59, 61 | mpbird 247 |
. . . . 5
⊢ (𝜑 → 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝑆)) |
| 63 | | elfzuz3 12339 |
. . . . . 6
⊢ (𝑁 ∈ (0...(#‘𝐹)) → (#‘𝐹) ∈
(ℤ≥‘𝑁)) |
| 64 | | fzss2 12381 |
. . . . . 6
⊢
((#‘𝐹) ∈
(ℤ≥‘𝑁) → (0...𝑁) ⊆ (0...(#‘𝐹))) |
| 65 | 48, 63, 64 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (0...𝑁) ⊆ (0...(#‘𝐹))) |
| 66 | 62, 65 | fssresd 6071 |
. . . 4
⊢ (𝜑 → (𝑃 ↾ (0...𝑁)):(0...𝑁)⟶(Vtx‘𝑆)) |
| 67 | 1 | fveq2i 6194 |
. . . . . . 7
⊢
(#‘𝐻) =
(#‘(𝐹 ↾
(0..^𝑁))) |
| 68 | 67, 50 | syl5eq 2668 |
. . . . . 6
⊢ (𝜑 → (#‘𝐻) = 𝑁) |
| 69 | 68 | oveq2d 6666 |
. . . . 5
⊢ (𝜑 → (0...(#‘𝐻)) = (0...𝑁)) |
| 70 | 69 | feq2d 6031 |
. . . 4
⊢ (𝜑 → ((𝑃 ↾ (0...𝑁)):(0...(#‘𝐻))⟶(Vtx‘𝑆) ↔ (𝑃 ↾ (0...𝑁)):(0...𝑁)⟶(Vtx‘𝑆))) |
| 71 | 66, 70 | mpbird 247 |
. . 3
⊢ (𝜑 → (𝑃 ↾ (0...𝑁)):(0...(#‘𝐻))⟶(Vtx‘𝑆)) |
| 72 | | wlkres.q |
. . . 4
⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) |
| 73 | 72 | feq1i 6036 |
. . 3
⊢ (𝑄:(0...(#‘𝐻))⟶(Vtx‘𝑆) ↔ (𝑃 ↾ (0...𝑁)):(0...(#‘𝐻))⟶(Vtx‘𝑆)) |
| 74 | 71, 73 | sylibr 224 |
. 2
⊢ (𝜑 → 𝑄:(0...(#‘𝐻))⟶(Vtx‘𝑆)) |
| 75 | | wlkv 26508 |
. . . . . . 7
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
| 76 | 57, 3 | iswlk 26506 |
. . . . . . . 8
⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
| 77 | 76 | biimpd 219 |
. . . . . . 7
⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
| 78 | 75, 77 | mpcom 38 |
. . . . . 6
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
| 79 | 2, 78 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
| 80 | 79 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
| 81 | 68 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝜑 → (0..^(#‘𝐻)) = (0..^𝑁)) |
| 82 | 81 | eleq2d 2687 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (0..^(#‘𝐻)) ↔ 𝑥 ∈ (0..^𝑁))) |
| 83 | 72 | fveq1i 6192 |
. . . . . . . . . . . . 13
⊢ (𝑄‘𝑥) = ((𝑃 ↾ (0...𝑁))‘𝑥) |
| 84 | | fzossfz 12488 |
. . . . . . . . . . . . . . . 16
⊢
(0..^𝑁) ⊆
(0...𝑁) |
| 85 | 84 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (0..^𝑁) ⊆ (0...𝑁)) |
| 86 | 85 | sselda 3603 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0...𝑁)) |
| 87 | 86 | fvresd 6208 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑃 ↾ (0...𝑁))‘𝑥) = (𝑃‘𝑥)) |
| 88 | 83, 87 | syl5req 2669 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝑃‘𝑥) = (𝑄‘𝑥)) |
| 89 | 72 | fveq1i 6192 |
. . . . . . . . . . . . 13
⊢ (𝑄‘(𝑥 + 1)) = ((𝑃 ↾ (0...𝑁))‘(𝑥 + 1)) |
| 90 | | fzofzp1 12565 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (0..^𝑁) → (𝑥 + 1) ∈ (0...𝑁)) |
| 91 | 90 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝑥 + 1) ∈ (0...𝑁)) |
| 92 | 91 | fvresd 6208 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑃 ↾ (0...𝑁))‘(𝑥 + 1)) = (𝑃‘(𝑥 + 1))) |
| 93 | 89, 92 | syl5req 2669 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) |
| 94 | 88, 93 | jca 554 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1)))) |
| 95 | 94 | ex 450 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (0..^𝑁) → ((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))))) |
| 96 | 82, 95 | sylbid 230 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (0..^(#‘𝐻)) → ((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))))) |
| 97 | 96 | imp 445 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → ((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1)))) |
| 98 | 25 | ancli 574 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝜑 ∧ 𝐹 ∈ Word dom 𝐼)) |
| 99 | 26 | ffund 6049 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ Word dom 𝐼 → Fun 𝐹) |
| 100 | 99 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) → Fun 𝐹) |
| 101 | 100 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → Fun 𝐹) |
| 102 | | fdm 6051 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 → dom 𝐹 = (0..^(#‘𝐹))) |
| 103 | | sseq2 3627 |
. . . . . . . . . . . . . . . . . . 19
⊢ (dom
𝐹 = (0..^(#‘𝐹)) → ((0..^𝑁) ⊆ dom 𝐹 ↔ (0..^𝑁) ⊆ (0..^(#‘𝐹)))) |
| 104 | 10, 103 | syl5ibr 236 |
. . . . . . . . . . . . . . . . . 18
⊢ (dom
𝐹 = (0..^(#‘𝐹)) → (𝜑 → (0..^𝑁) ⊆ dom 𝐹)) |
| 105 | 26, 102, 104 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ Word dom 𝐼 → (𝜑 → (0..^𝑁) ⊆ dom 𝐹)) |
| 106 | 105 | impcom 446 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) → (0..^𝑁) ⊆ dom 𝐹) |
| 107 | 106 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → (0..^𝑁) ⊆ dom 𝐹) |
| 108 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁)) |
| 109 | 101, 107,
108 | resfvresima 6494 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)) = (𝐼‘(𝐹‘𝑥))) |
| 110 | 98, 109 | sylan 488 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)) = (𝐼‘(𝐹‘𝑥))) |
| 111 | 110 | eqcomd 2628 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝐼‘(𝐹‘𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥))) |
| 112 | 111 | ex 450 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐼‘(𝐹‘𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)))) |
| 113 | 82, 112 | sylbid 230 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (0..^(#‘𝐻)) → (𝐼‘(𝐹‘𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)))) |
| 114 | 113 | imp 445 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → (𝐼‘(𝐹‘𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥))) |
| 115 | 39 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| 116 | 1 | fveq1i 6192 |
. . . . . . . . . . 11
⊢ (𝐻‘𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥) |
| 117 | 116 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → (𝐻‘𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥)) |
| 118 | 115, 117 | fveq12d 6197 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → ((iEdg‘𝑆)‘(𝐻‘𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥))) |
| 119 | 114, 118 | eqtr4d 2659 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) |
| 120 | 97, 119 | jca 554 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → (((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥)))) |
| 121 | 7, 8 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (#‘𝐹) ∈ (ℤ≥‘𝑁)) |
| 122 | 1 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐻 = (𝐹 ↾ (0..^𝑁))) |
| 123 | 122 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (#‘𝐻) = (#‘(𝐹 ↾ (0..^𝑁)))) |
| 124 | 123, 50 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ (𝜑 → (#‘𝐻) = 𝑁) |
| 125 | 124 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝜑 →
(ℤ≥‘(#‘𝐻)) = (ℤ≥‘𝑁)) |
| 126 | 121, 125 | eleqtrrd 2704 |
. . . . . . . . . 10
⊢ (𝜑 → (#‘𝐹) ∈
(ℤ≥‘(#‘𝐻))) |
| 127 | | fzoss2 12496 |
. . . . . . . . . 10
⊢
((#‘𝐹) ∈
(ℤ≥‘(#‘𝐻)) → (0..^(#‘𝐻)) ⊆ (0..^(#‘𝐹))) |
| 128 | 126, 127 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (0..^(#‘𝐻)) ⊆ (0..^(#‘𝐹))) |
| 129 | 128 | sselda 3603 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → 𝑥 ∈ (0..^(#‘𝐹))) |
| 130 | | wkslem1 26503 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ↔ if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥))))) |
| 131 | 130 | rspcv 3305 |
. . . . . . . 8
⊢ (𝑥 ∈ (0..^(#‘𝐹)) → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥))))) |
| 132 | 129, 131 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥))))) |
| 133 | | eqeq12 2635 |
. . . . . . . . . 10
⊢ (((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → ((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)) ↔ (𝑄‘𝑥) = (𝑄‘(𝑥 + 1)))) |
| 134 | 133 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → ((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)) ↔ (𝑄‘𝑥) = (𝑄‘(𝑥 + 1)))) |
| 135 | | simpr 477 |
. . . . . . . . . 10
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) |
| 136 | | sneq 4187 |
. . . . . . . . . . . 12
⊢ ((𝑃‘𝑥) = (𝑄‘𝑥) → {(𝑃‘𝑥)} = {(𝑄‘𝑥)}) |
| 137 | 136 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → {(𝑃‘𝑥)} = {(𝑄‘𝑥)}) |
| 138 | 137 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → {(𝑃‘𝑥)} = {(𝑄‘𝑥)}) |
| 139 | 135, 138 | eqeq12d 2637 |
. . . . . . . . 9
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)} ↔ ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)})) |
| 140 | | preq12 4270 |
. . . . . . . . . . 11
⊢ (((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))}) |
| 141 | 140 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))}) |
| 142 | 141, 135 | sseq12d 3634 |
. . . . . . . . 9
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → ({(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥)) ↔ {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥)))) |
| 143 | 134, 139,
142 | ifpbi123d 1027 |
. . . . . . . 8
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → (if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥))) ↔ if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥))))) |
| 144 | 143 | biimpd 219 |
. . . . . . 7
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → (if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥))) → if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥))))) |
| 145 | 120, 132,
144 | sylsyld 61 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥))))) |
| 146 | 145 | com12 32 |
. . . . 5
⊢
(∀𝑘 ∈
(0..^(#‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥))))) |
| 147 | 146 | 3ad2ant3 1084 |
. . . 4
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥))))) |
| 148 | 80, 147 | mpcom 38 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥)))) |
| 149 | 148 | ralrimiva 2966 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (0..^(#‘𝐻))if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥)))) |
| 150 | 57, 3, 2, 7, 60, 39, 1, 72 | wlkreslem 26566 |
. . 3
⊢ (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
| 151 | | eqid 2622 |
. . . 4
⊢
(Vtx‘𝑆) =
(Vtx‘𝑆) |
| 152 | | eqid 2622 |
. . . 4
⊢
(iEdg‘𝑆) =
(iEdg‘𝑆) |
| 153 | 151, 152 | iswlk 26506 |
. . 3
⊢ ((𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V) → (𝐻(Walks‘𝑆)𝑄 ↔ (𝐻 ∈ Word dom (iEdg‘𝑆) ∧ 𝑄:(0...(#‘𝐻))⟶(Vtx‘𝑆) ∧ ∀𝑥 ∈ (0..^(#‘𝐻))if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥)))))) |
| 154 | 150, 153 | syl 17 |
. 2
⊢ (𝜑 → (𝐻(Walks‘𝑆)𝑄 ↔ (𝐻 ∈ Word dom (iEdg‘𝑆) ∧ 𝑄:(0...(#‘𝐻))⟶(Vtx‘𝑆) ∧ ∀𝑥 ∈ (0..^(#‘𝐻))if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥)))))) |
| 155 | 56, 74, 149, 154 | mpbir3and 1245 |
1
⊢ (𝜑 → 𝐻(Walks‘𝑆)𝑄) |