MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkson Structured version   Visualization version   GIF version

Theorem wlkson 26552
Description: The set of walks between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 30-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypothesis
Ref Expression
wlkson.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wlkson ((𝐴𝑉𝐵𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)})
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝑓,𝐺,𝑝   𝑓,𝑉,𝑝

Proof of Theorem wlkson
Dummy variables 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wlkson.v . . . . 5 𝑉 = (Vtx‘𝐺)
211vgrex 25882 . . . 4 (𝐴𝑉𝐺 ∈ V)
32adantr 481 . . 3 ((𝐴𝑉𝐵𝑉) → 𝐺 ∈ V)
4 simpl 473 . . . 4 ((𝐴𝑉𝐵𝑉) → 𝐴𝑉)
54, 1syl6eleq 2711 . . 3 ((𝐴𝑉𝐵𝑉) → 𝐴 ∈ (Vtx‘𝐺))
6 simpr 477 . . . 4 ((𝐴𝑉𝐵𝑉) → 𝐵𝑉)
76, 1syl6eleq 2711 . . 3 ((𝐴𝑉𝐵𝑉) → 𝐵 ∈ (Vtx‘𝐺))
8 wksv 26515 . . . 4 {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V
98a1i 11 . . 3 ((𝐴𝑉𝐵𝑉) → {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V)
10 simpr 477 . . 3 (((𝐴𝑉𝐵𝑉) ∧ 𝑓(Walks‘𝐺)𝑝) → 𝑓(Walks‘𝐺)𝑝)
11 eqeq2 2633 . . . 4 (𝑎 = 𝐴 → ((𝑝‘0) = 𝑎 ↔ (𝑝‘0) = 𝐴))
12 eqeq2 2633 . . . 4 (𝑏 = 𝐵 → ((𝑝‘(#‘𝑓)) = 𝑏 ↔ (𝑝‘(#‘𝑓)) = 𝐵))
1311, 12bi2anan9 917 . . 3 ((𝑎 = 𝐴𝑏 = 𝐵) → (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ↔ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)))
14 biidd 252 . . 3 (𝑔 = 𝐺 → (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ↔ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)))
15 df-wlkson 26496 . . . 4 WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)}))
16 eqid 2622 . . . . . 6 (Vtx‘𝑔) = (Vtx‘𝑔)
17 3anass 1042 . . . . . . . 8 ((𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ↔ (𝑓(Walks‘𝑔)𝑝 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)))
18 ancom 466 . . . . . . . 8 ((𝑓(Walks‘𝑔)𝑝 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)) ↔ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝))
1917, 18bitri 264 . . . . . . 7 ((𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ↔ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝))
2019opabbii 4717 . . . . . 6 {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)} = {⟨𝑓, 𝑝⟩ ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)}
2116, 16, 20mpt2eq123i 6718 . . . . 5 (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)}) = (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)})
2221mpteq2i 4741 . . . 4 (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)})) = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)}))
2315, 22eqtri 2644 . . 3 WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)}))
243, 5, 7, 9, 10, 13, 14, 23mptmpt2opabbrd 7248 . 2 ((𝐴𝑉𝐵𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝)})
25 ancom 466 . . . 4 ((((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)))
26 3anass 1042 . . . 4 ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)))
2725, 26bitr4i 267 . . 3 ((((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵))
2827opabbii 4717 . 2 {⟨𝑓, 𝑝⟩ ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)}
2924, 28syl6eq 2672 1 ((𝐴𝑉𝐵𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200   class class class wbr 4653  {copab 4712  cmpt 4729  cfv 5888  (class class class)co 6650  cmpt2 6652  0cc0 9936  #chash 13117  Vtxcvtx 25874  Walkscwlks 26492  WalksOncwlkson 26493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-wlkson 26496
This theorem is referenced by:  iswlkon  26553  wlkonprop  26554
  Copyright terms: Public domain W3C validator