MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlks2onv Structured version   Visualization version   GIF version

Theorem wwlks2onv 26847
Description: If a length 3 string represents a walk of length 2, its components are vertices. (Contributed by Alexander van der Vekens, 19-Feb-2018.)
Hypothesis
Ref Expression
wwlks2onv.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wwlks2onv ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴𝑉𝐵𝑉𝐶𝑉))

Proof of Theorem wwlks2onv
Dummy variables 𝑎 𝑐 𝑤 𝑏 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn0 11309 . . . . . . . 8 2 ∈ ℕ0
2 wwlks2onv.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
32wwlksnon 26738 . . . . . . . 8 ((2 ∈ ℕ0𝐺 ∈ V) → (2 WWalksNOn 𝐺) = (𝑎𝑉, 𝑐𝑉 ↦ {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘2) = 𝑐)}))
41, 3mpan 706 . . . . . . 7 (𝐺 ∈ V → (2 WWalksNOn 𝐺) = (𝑎𝑉, 𝑐𝑉 ↦ {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘2) = 𝑐)}))
54oveqd 6667 . . . . . 6 (𝐺 ∈ V → (𝐴(2 WWalksNOn 𝐺)𝐶) = (𝐴(𝑎𝑉, 𝑐𝑉 ↦ {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘2) = 𝑐)})𝐶))
65eleq2d 2687 . . . . 5 (𝐺 ∈ V → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(𝑎𝑉, 𝑐𝑉 ↦ {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘2) = 𝑐)})𝐶)))
7 eqid 2622 . . . . . . 7 (𝑎𝑉, 𝑐𝑉 ↦ {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘2) = 𝑐)}) = (𝑎𝑉, 𝑐𝑉 ↦ {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘2) = 𝑐)})
87elmpt2cl 6876 . . . . . 6 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(𝑎𝑉, 𝑐𝑉 ↦ {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘2) = 𝑐)})𝐶) → (𝐴𝑉𝐶𝑉))
9 simprl 794 . . . . . . . 8 (((⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(𝑎𝑉, 𝑐𝑉 ↦ {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘2) = 𝑐)})𝐶) ∧ 𝐵𝑈) ∧ (𝐴𝑉𝐶𝑉)) → 𝐴𝑉)
10 eqeq2 2633 . . . . . . . . . . . . . . 15 (𝑎 = 𝐴 → ((𝑤‘0) = 𝑎 ↔ (𝑤‘0) = 𝐴))
1110anbi1d 741 . . . . . . . . . . . . . 14 (𝑎 = 𝐴 → (((𝑤‘0) = 𝑎 ∧ (𝑤‘2) = 𝑐) ↔ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝑐)))
1211rabbidv 3189 . . . . . . . . . . . . 13 (𝑎 = 𝐴 → {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘2) = 𝑐)} = {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝑐)})
13 eqeq2 2633 . . . . . . . . . . . . . . 15 (𝑐 = 𝐶 → ((𝑤‘2) = 𝑐 ↔ (𝑤‘2) = 𝐶))
1413anbi2d 740 . . . . . . . . . . . . . 14 (𝑐 = 𝐶 → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝑐) ↔ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐶)))
1514rabbidv 3189 . . . . . . . . . . . . 13 (𝑐 = 𝐶 → {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝑐)} = {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐶)})
16 ovex 6678 . . . . . . . . . . . . . 14 (2 WWalksN 𝐺) ∈ V
1716rabex 4813 . . . . . . . . . . . . 13 {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐶)} ∈ V
1812, 15, 7, 17ovmpt2 6796 . . . . . . . . . . . 12 ((𝐴𝑉𝐶𝑉) → (𝐴(𝑎𝑉, 𝑐𝑉 ↦ {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘2) = 𝑐)})𝐶) = {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐶)})
1918eleq2d 2687 . . . . . . . . . . 11 ((𝐴𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(𝑎𝑉, 𝑐𝑉 ↦ {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘2) = 𝑐)})𝐶) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐶)}))
20 fveq1 6190 . . . . . . . . . . . . . . 15 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (𝑤‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
2120eqeq1d 2624 . . . . . . . . . . . . . 14 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → ((𝑤‘0) = 𝐴 ↔ (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴))
22 fveq1 6190 . . . . . . . . . . . . . . 15 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (𝑤‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
2322eqeq1d 2624 . . . . . . . . . . . . . 14 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → ((𝑤‘2) = 𝐶 ↔ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶))
2421, 23anbi12d 747 . . . . . . . . . . . . 13 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐶) ↔ ((⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)))
2524elrab 3363 . . . . . . . . . . . 12 (⟨“𝐴𝐵𝐶”⟩ ∈ {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐶)} ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)))
26 wwlknbp2 26752 . . . . . . . . . . . . . . 15 (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) → (⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ (#‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1)))
27 s3fv1 13637 . . . . . . . . . . . . . . . . . . 19 (𝐵𝑈 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
2827eqcomd 2628 . . . . . . . . . . . . . . . . . 18 (𝐵𝑈𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1))
2928adantl 482 . . . . . . . . . . . . . . . . 17 (((⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ (#‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1)) ∧ 𝐵𝑈) → 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1))
30 1ex 10035 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ V
3130tpid2 4304 . . . . . . . . . . . . . . . . . . . 20 1 ∈ {0, 1, 2}
32 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((#‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1) → (#‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1))
33 2p1e3 11151 . . . . . . . . . . . . . . . . . . . . . . 23 (2 + 1) = 3
3432, 33syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . 22 ((#‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1) → (#‘⟨“𝐴𝐵𝐶”⟩) = 3)
3534oveq2d 6666 . . . . . . . . . . . . . . . . . . . . 21 ((#‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1) → (0..^(#‘⟨“𝐴𝐵𝐶”⟩)) = (0..^3))
36 fzo0to3tp 12554 . . . . . . . . . . . . . . . . . . . . 21 (0..^3) = {0, 1, 2}
3735, 36syl6eq 2672 . . . . . . . . . . . . . . . . . . . 20 ((#‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1) → (0..^(#‘⟨“𝐴𝐵𝐶”⟩)) = {0, 1, 2})
3831, 37syl5eleqr 2708 . . . . . . . . . . . . . . . . . . 19 ((#‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1) → 1 ∈ (0..^(#‘⟨“𝐴𝐵𝐶”⟩)))
39 wrdsymbcl 13318 . . . . . . . . . . . . . . . . . . . 20 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ 1 ∈ (0..^(#‘⟨“𝐴𝐵𝐶”⟩))) → (⟨“𝐴𝐵𝐶”⟩‘1) ∈ (Vtx‘𝐺))
4039, 2syl6eleqr 2712 . . . . . . . . . . . . . . . . . . 19 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ 1 ∈ (0..^(#‘⟨“𝐴𝐵𝐶”⟩))) → (⟨“𝐴𝐵𝐶”⟩‘1) ∈ 𝑉)
4138, 40sylan2 491 . . . . . . . . . . . . . . . . . 18 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ (#‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1)) → (⟨“𝐴𝐵𝐶”⟩‘1) ∈ 𝑉)
4241adantr 481 . . . . . . . . . . . . . . . . 17 (((⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ (#‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1)) ∧ 𝐵𝑈) → (⟨“𝐴𝐵𝐶”⟩‘1) ∈ 𝑉)
4329, 42eqeltrd 2701 . . . . . . . . . . . . . . . 16 (((⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ (#‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1)) ∧ 𝐵𝑈) → 𝐵𝑉)
4443ex 450 . . . . . . . . . . . . . . 15 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ (#‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1)) → (𝐵𝑈𝐵𝑉))
4526, 44syl 17 . . . . . . . . . . . . . 14 (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) → (𝐵𝑈𝐵𝑉))
4645adantr 481 . . . . . . . . . . . . 13 ((⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)) → (𝐵𝑈𝐵𝑉))
4746a1i 11 . . . . . . . . . . . 12 ((𝐴𝑉𝐶𝑉) → ((⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)) → (𝐵𝑈𝐵𝑉)))
4825, 47syl5bi 232 . . . . . . . . . . 11 ((𝐴𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩ ∈ {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐶)} → (𝐵𝑈𝐵𝑉)))
4919, 48sylbid 230 . . . . . . . . . 10 ((𝐴𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(𝑎𝑉, 𝑐𝑉 ↦ {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘2) = 𝑐)})𝐶) → (𝐵𝑈𝐵𝑉)))
5049impd 447 . . . . . . . . 9 ((𝐴𝑉𝐶𝑉) → ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(𝑎𝑉, 𝑐𝑉 ↦ {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘2) = 𝑐)})𝐶) ∧ 𝐵𝑈) → 𝐵𝑉))
5150impcom 446 . . . . . . . 8 (((⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(𝑎𝑉, 𝑐𝑉 ↦ {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘2) = 𝑐)})𝐶) ∧ 𝐵𝑈) ∧ (𝐴𝑉𝐶𝑉)) → 𝐵𝑉)
52 simprr 796 . . . . . . . 8 (((⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(𝑎𝑉, 𝑐𝑉 ↦ {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘2) = 𝑐)})𝐶) ∧ 𝐵𝑈) ∧ (𝐴𝑉𝐶𝑉)) → 𝐶𝑉)
539, 51, 523jca 1242 . . . . . . 7 (((⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(𝑎𝑉, 𝑐𝑉 ↦ {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘2) = 𝑐)})𝐶) ∧ 𝐵𝑈) ∧ (𝐴𝑉𝐶𝑉)) → (𝐴𝑉𝐵𝑉𝐶𝑉))
5453exp31 630 . . . . . 6 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(𝑎𝑉, 𝑐𝑉 ↦ {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘2) = 𝑐)})𝐶) → (𝐵𝑈 → ((𝐴𝑉𝐶𝑉) → (𝐴𝑉𝐵𝑉𝐶𝑉))))
558, 54mpid 44 . . . . 5 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(𝑎𝑉, 𝑐𝑉 ↦ {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘2) = 𝑐)})𝐶) → (𝐵𝑈 → (𝐴𝑉𝐵𝑉𝐶𝑉)))
566, 55syl6bi 243 . . . 4 (𝐺 ∈ V → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐵𝑈 → (𝐴𝑉𝐵𝑉𝐶𝑉))))
5756com23 86 . . 3 (𝐺 ∈ V → (𝐵𝑈 → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐴𝑉𝐵𝑉𝐶𝑉))))
5857impd 447 . 2 (𝐺 ∈ V → ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴𝑉𝐵𝑉𝐶𝑉)))
59 df-wwlksnon 26724 . . . . . . . . . 10 WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑛) = 𝑏)}))
6059reldmmpt2 6771 . . . . . . . . 9 Rel dom WWalksNOn
6160ovprc2 6685 . . . . . . . 8 𝐺 ∈ V → (2 WWalksNOn 𝐺) = ∅)
6261oveqd 6667 . . . . . . 7 𝐺 ∈ V → (𝐴(2 WWalksNOn 𝐺)𝐶) = (𝐴𝐶))
63 0ov 6682 . . . . . . 7 (𝐴𝐶) = ∅
6462, 63syl6eq 2672 . . . . . 6 𝐺 ∈ V → (𝐴(2 WWalksNOn 𝐺)𝐶) = ∅)
6564eleq2d 2687 . . . . 5 𝐺 ∈ V → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ ∅))
66 noel 3919 . . . . . 6 ¬ ⟨“𝐴𝐵𝐶”⟩ ∈ ∅
6766pm2.21i 116 . . . . 5 (⟨“𝐴𝐵𝐶”⟩ ∈ ∅ → (𝐵𝑈 → (𝐴𝑉𝐵𝑉𝐶𝑉)))
6865, 67syl6bi 243 . . . 4 𝐺 ∈ V → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐵𝑈 → (𝐴𝑉𝐵𝑉𝐶𝑉))))
6968com23 86 . . 3 𝐺 ∈ V → (𝐵𝑈 → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐴𝑉𝐵𝑉𝐶𝑉))))
7069impd 447 . 2 𝐺 ∈ V → ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴𝑉𝐵𝑉𝐶𝑉)))
7158, 70pm2.61i 176 1 ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴𝑉𝐵𝑉𝐶𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  c0 3915  {ctp 4181  cfv 5888  (class class class)co 6650  cmpt2 6652  0cc0 9936  1c1 9937   + caddc 9939  2c2 11070  3c3 11071  0cn0 11292  ..^cfzo 12465  #chash 13117  Word cword 13291  ⟨“cs3 13587  Vtxcvtx 25874   WWalksN cwwlksn 26718   WWalksNOn cwwlksnon 26719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-wwlks 26722  df-wwlksn 26723  df-wwlksnon 26724
This theorem is referenced by:  frgr2wwlkeqm  27195
  Copyright terms: Public domain W3C validator