MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextfun Structured version   Visualization version   GIF version

Theorem wwlksnextfun 26793
Description: Lemma for wwlksnextbij 26797. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 18-Apr-2021.)
Hypotheses
Ref Expression
wwlksnextbij0.v 𝑉 = (Vtx‘𝐺)
wwlksnextbij0.e 𝐸 = (Edg‘𝐺)
wwlksnextbij0.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = (𝑁 + 2) ∧ (𝑤 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {( lastS ‘𝑊), ( lastS ‘𝑤)} ∈ 𝐸)}
wwlksnextbij.r 𝑅 = {𝑛𝑉 ∣ {( lastS ‘𝑊), 𝑛} ∈ 𝐸}
wwlksnextbij.f 𝐹 = (𝑡𝐷 ↦ ( lastS ‘𝑡))
Assertion
Ref Expression
wwlksnextfun (𝑁 ∈ ℕ0𝐹:𝐷𝑅)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑊   𝑡,𝐷   𝑛,𝐸   𝑤,𝐸   𝑡,𝑁,𝑤   𝑡,𝑅   𝑛,𝑉   𝑤,𝑉   𝑛,𝑊   𝑡,𝑛
Allowed substitution hints:   𝐷(𝑤,𝑛)   𝑅(𝑤,𝑛)   𝐸(𝑡)   𝐹(𝑤,𝑡,𝑛)   𝐺(𝑡,𝑛)   𝑁(𝑛)   𝑉(𝑡)   𝑊(𝑡)

Proof of Theorem wwlksnextfun
StepHypRef Expression
1 fveq2 6191 . . . . . . 7 (𝑤 = 𝑡 → (#‘𝑤) = (#‘𝑡))
21eqeq1d 2624 . . . . . 6 (𝑤 = 𝑡 → ((#‘𝑤) = (𝑁 + 2) ↔ (#‘𝑡) = (𝑁 + 2)))
3 oveq1 6657 . . . . . . 7 (𝑤 = 𝑡 → (𝑤 substr ⟨0, (𝑁 + 1)⟩) = (𝑡 substr ⟨0, (𝑁 + 1)⟩))
43eqeq1d 2624 . . . . . 6 (𝑤 = 𝑡 → ((𝑤 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ↔ (𝑡 substr ⟨0, (𝑁 + 1)⟩) = 𝑊))
5 fveq2 6191 . . . . . . . 8 (𝑤 = 𝑡 → ( lastS ‘𝑤) = ( lastS ‘𝑡))
65preq2d 4275 . . . . . . 7 (𝑤 = 𝑡 → {( lastS ‘𝑊), ( lastS ‘𝑤)} = {( lastS ‘𝑊), ( lastS ‘𝑡)})
76eleq1d 2686 . . . . . 6 (𝑤 = 𝑡 → ({( lastS ‘𝑊), ( lastS ‘𝑤)} ∈ 𝐸 ↔ {( lastS ‘𝑊), ( lastS ‘𝑡)} ∈ 𝐸))
82, 4, 73anbi123d 1399 . . . . 5 (𝑤 = 𝑡 → (((#‘𝑤) = (𝑁 + 2) ∧ (𝑤 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {( lastS ‘𝑊), ( lastS ‘𝑤)} ∈ 𝐸) ↔ ((#‘𝑡) = (𝑁 + 2) ∧ (𝑡 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {( lastS ‘𝑊), ( lastS ‘𝑡)} ∈ 𝐸)))
9 wwlksnextbij0.d . . . . 5 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = (𝑁 + 2) ∧ (𝑤 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {( lastS ‘𝑊), ( lastS ‘𝑤)} ∈ 𝐸)}
108, 9elrab2 3366 . . . 4 (𝑡𝐷 ↔ (𝑡 ∈ Word 𝑉 ∧ ((#‘𝑡) = (𝑁 + 2) ∧ (𝑡 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {( lastS ‘𝑊), ( lastS ‘𝑡)} ∈ 𝐸)))
11 simpll 790 . . . . . . . . . . . 12 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (#‘𝑡) = (𝑁 + 2)) → 𝑡 ∈ Word 𝑉)
12 nn0re 11301 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
13 2re 11090 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
1413a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
15 nn0ge0 11318 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
16 2pos 11112 . . . . . . . . . . . . . . . . 17 0 < 2
1716a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 0 < 2)
1812, 14, 15, 17addgegt0d 10601 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 2))
1918ad2antlr 763 . . . . . . . . . . . . . 14 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (#‘𝑡) = (𝑁 + 2)) → 0 < (𝑁 + 2))
20 breq2 4657 . . . . . . . . . . . . . . 15 ((#‘𝑡) = (𝑁 + 2) → (0 < (#‘𝑡) ↔ 0 < (𝑁 + 2)))
2120adantl 482 . . . . . . . . . . . . . 14 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (#‘𝑡) = (𝑁 + 2)) → (0 < (#‘𝑡) ↔ 0 < (𝑁 + 2)))
2219, 21mpbird 247 . . . . . . . . . . . . 13 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (#‘𝑡) = (𝑁 + 2)) → 0 < (#‘𝑡))
23 hashgt0n0 13156 . . . . . . . . . . . . 13 ((𝑡 ∈ Word 𝑉 ∧ 0 < (#‘𝑡)) → 𝑡 ≠ ∅)
2411, 22, 23syl2anc 693 . . . . . . . . . . . 12 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (#‘𝑡) = (𝑁 + 2)) → 𝑡 ≠ ∅)
2511, 24jca 554 . . . . . . . . . . 11 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (#‘𝑡) = (𝑁 + 2)) → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅))
2625expcom 451 . . . . . . . . . 10 ((#‘𝑡) = (𝑁 + 2) → ((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅)))
27263ad2ant1 1082 . . . . . . . . 9 (((#‘𝑡) = (𝑁 + 2) ∧ (𝑡 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {( lastS ‘𝑊), ( lastS ‘𝑡)} ∈ 𝐸) → ((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅)))
2827expd 452 . . . . . . . 8 (((#‘𝑡) = (𝑁 + 2) ∧ (𝑡 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {( lastS ‘𝑊), ( lastS ‘𝑡)} ∈ 𝐸) → (𝑡 ∈ Word 𝑉 → (𝑁 ∈ ℕ0 → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅))))
2928impcom 446 . . . . . . 7 ((𝑡 ∈ Word 𝑉 ∧ ((#‘𝑡) = (𝑁 + 2) ∧ (𝑡 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {( lastS ‘𝑊), ( lastS ‘𝑡)} ∈ 𝐸)) → (𝑁 ∈ ℕ0 → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅)))
3029impcom 446 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ Word 𝑉 ∧ ((#‘𝑡) = (𝑁 + 2) ∧ (𝑡 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {( lastS ‘𝑊), ( lastS ‘𝑡)} ∈ 𝐸))) → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅))
31 lswcl 13355 . . . . . 6 ((𝑡 ∈ Word 𝑉𝑡 ≠ ∅) → ( lastS ‘𝑡) ∈ 𝑉)
3230, 31syl 17 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ Word 𝑉 ∧ ((#‘𝑡) = (𝑁 + 2) ∧ (𝑡 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {( lastS ‘𝑊), ( lastS ‘𝑡)} ∈ 𝐸))) → ( lastS ‘𝑡) ∈ 𝑉)
33 simprr3 1111 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ Word 𝑉 ∧ ((#‘𝑡) = (𝑁 + 2) ∧ (𝑡 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {( lastS ‘𝑊), ( lastS ‘𝑡)} ∈ 𝐸))) → {( lastS ‘𝑊), ( lastS ‘𝑡)} ∈ 𝐸)
3432, 33jca 554 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ Word 𝑉 ∧ ((#‘𝑡) = (𝑁 + 2) ∧ (𝑡 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {( lastS ‘𝑊), ( lastS ‘𝑡)} ∈ 𝐸))) → (( lastS ‘𝑡) ∈ 𝑉 ∧ {( lastS ‘𝑊), ( lastS ‘𝑡)} ∈ 𝐸))
3510, 34sylan2b 492 . . 3 ((𝑁 ∈ ℕ0𝑡𝐷) → (( lastS ‘𝑡) ∈ 𝑉 ∧ {( lastS ‘𝑊), ( lastS ‘𝑡)} ∈ 𝐸))
36 preq2 4269 . . . . 5 (𝑛 = ( lastS ‘𝑡) → {( lastS ‘𝑊), 𝑛} = {( lastS ‘𝑊), ( lastS ‘𝑡)})
3736eleq1d 2686 . . . 4 (𝑛 = ( lastS ‘𝑡) → ({( lastS ‘𝑊), 𝑛} ∈ 𝐸 ↔ {( lastS ‘𝑊), ( lastS ‘𝑡)} ∈ 𝐸))
38 wwlksnextbij.r . . . 4 𝑅 = {𝑛𝑉 ∣ {( lastS ‘𝑊), 𝑛} ∈ 𝐸}
3937, 38elrab2 3366 . . 3 (( lastS ‘𝑡) ∈ 𝑅 ↔ (( lastS ‘𝑡) ∈ 𝑉 ∧ {( lastS ‘𝑊), ( lastS ‘𝑡)} ∈ 𝐸))
4035, 39sylibr 224 . 2 ((𝑁 ∈ ℕ0𝑡𝐷) → ( lastS ‘𝑡) ∈ 𝑅)
41 wwlksnextbij.f . 2 𝐹 = (𝑡𝐷 ↦ ( lastS ‘𝑡))
4240, 41fmptd 6385 1 (𝑁 ∈ ℕ0𝐹:𝐷𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  {crab 2916  c0 3915  {cpr 4179  cop 4183   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  2c2 11070  0cn0 11292  #chash 13117  Word cword 13291   lastS clsw 13292   substr csubstr 13295  Vtxcvtx 25874  Edgcedg 25939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300
This theorem is referenced by:  wwlksnextinj  26794  wwlksnextsur  26795
  Copyright terms: Public domain W3C validator