MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsff1o Structured version   Visualization version   Unicode version

Theorem xpsff1o 16228
Description: The function appearing in xpsval 16232 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair  2o  =  { (/)
,  1o }. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
xpsff1o.f  |-  F  =  ( x  e.  A ,  y  e.  B  |->  `' ( { x }  +c  { y } ) )
Assertion
Ref Expression
xpsff1o  |-  F :
( A  X.  B
)
-1-1-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
Distinct variable groups:    x, k,
y, A    B, k, x, y
Allowed substitution hints:    F( x, y, k)

Proof of Theorem xpsff1o
Dummy variables  a 
b  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsfrnel2 16225 . . . . . 6  |-  ( `' ( { x }  +c  { y } )  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( x  e.  A  /\  y  e.  B
) )
21biimpri 218 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  B )  ->  `' ( { x }  +c  { y } )  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B ) )
32rgen2 2975 . . . 4  |-  A. x  e.  A  A. y  e.  B  `' ( { x }  +c  { y } )  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
4 xpsff1o.f . . . . 5  |-  F  =  ( x  e.  A ,  y  e.  B  |->  `' ( { x }  +c  { y } ) )
54fmpt2 7237 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  `' ( { x }  +c  { y } )  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
F : ( A  X.  B ) --> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B ) )
63, 5mpbi 220 . . 3  |-  F :
( A  X.  B
) --> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
7 1st2nd2 7205 . . . . . . . 8  |-  ( z  e.  ( A  X.  B )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
87fveq2d 6195 . . . . . . 7  |-  ( z  e.  ( A  X.  B )  ->  ( F `  z )  =  ( F `  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
)
9 df-ov 6653 . . . . . . . 8  |-  ( ( 1st `  z ) F ( 2nd `  z
) )  =  ( F `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
10 xp1st 7198 . . . . . . . . 9  |-  ( z  e.  ( A  X.  B )  ->  ( 1st `  z )  e.  A )
11 xp2nd 7199 . . . . . . . . 9  |-  ( z  e.  ( A  X.  B )  ->  ( 2nd `  z )  e.  B )
124xpsfval 16227 . . . . . . . . 9  |-  ( ( ( 1st `  z
)  e.  A  /\  ( 2nd `  z )  e.  B )  -> 
( ( 1st `  z
) F ( 2nd `  z ) )  =  `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z ) } ) )
1310, 11, 12syl2anc 693 . . . . . . . 8  |-  ( z  e.  ( A  X.  B )  ->  (
( 1st `  z
) F ( 2nd `  z ) )  =  `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z ) } ) )
149, 13syl5eqr 2670 . . . . . . 7  |-  ( z  e.  ( A  X.  B )  ->  ( F `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )  =  `' ( { ( 1st `  z
) }  +c  {
( 2nd `  z
) } ) )
158, 14eqtrd 2656 . . . . . 6  |-  ( z  e.  ( A  X.  B )  ->  ( F `  z )  =  `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z ) } ) )
16 1st2nd2 7205 . . . . . . . 8  |-  ( w  e.  ( A  X.  B )  ->  w  =  <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
1716fveq2d 6195 . . . . . . 7  |-  ( w  e.  ( A  X.  B )  ->  ( F `  w )  =  ( F `  <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
)
18 df-ov 6653 . . . . . . . 8  |-  ( ( 1st `  w ) F ( 2nd `  w
) )  =  ( F `  <. ( 1st `  w ) ,  ( 2nd `  w
) >. )
19 xp1st 7198 . . . . . . . . 9  |-  ( w  e.  ( A  X.  B )  ->  ( 1st `  w )  e.  A )
20 xp2nd 7199 . . . . . . . . 9  |-  ( w  e.  ( A  X.  B )  ->  ( 2nd `  w )  e.  B )
214xpsfval 16227 . . . . . . . . 9  |-  ( ( ( 1st `  w
)  e.  A  /\  ( 2nd `  w )  e.  B )  -> 
( ( 1st `  w
) F ( 2nd `  w ) )  =  `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } ) )
2219, 20, 21syl2anc 693 . . . . . . . 8  |-  ( w  e.  ( A  X.  B )  ->  (
( 1st `  w
) F ( 2nd `  w ) )  =  `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } ) )
2318, 22syl5eqr 2670 . . . . . . 7  |-  ( w  e.  ( A  X.  B )  ->  ( F `  <. ( 1st `  w ) ,  ( 2nd `  w )
>. )  =  `' ( { ( 1st `  w
) }  +c  {
( 2nd `  w
) } ) )
2417, 23eqtrd 2656 . . . . . 6  |-  ( w  e.  ( A  X.  B )  ->  ( F `  w )  =  `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } ) )
2515, 24eqeqan12d 2638 . . . . 5  |-  ( ( z  e.  ( A  X.  B )  /\  w  e.  ( A  X.  B ) )  -> 
( ( F `  z )  =  ( F `  w )  <->  `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z ) } )  =  `' ( { ( 1st `  w
) }  +c  {
( 2nd `  w
) } ) ) )
26 fveq1 6190 . . . . . . . 8  |-  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z
) } )  =  `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } )  ->  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z ) } ) `  (/) )  =  ( `' ( { ( 1st `  w
) }  +c  {
( 2nd `  w
) } ) `  (/) ) )
27 fvex 6201 . . . . . . . . 9  |-  ( 1st `  z )  e.  _V
28 xpsc0 16220 . . . . . . . . 9  |-  ( ( 1st `  z )  e.  _V  ->  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z ) } ) `  (/) )  =  ( 1st `  z
) )
2927, 28ax-mp 5 . . . . . . . 8  |-  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z
) } ) `  (/) )  =  ( 1st `  z )
30 fvex 6201 . . . . . . . . 9  |-  ( 1st `  w )  e.  _V
31 xpsc0 16220 . . . . . . . . 9  |-  ( ( 1st `  w )  e.  _V  ->  ( `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } ) `  (/) )  =  ( 1st `  w
) )
3230, 31ax-mp 5 . . . . . . . 8  |-  ( `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w
) } ) `  (/) )  =  ( 1st `  w )
3326, 29, 323eqtr3g 2679 . . . . . . 7  |-  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z
) } )  =  `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } )  ->  ( 1st `  z )  =  ( 1st `  w
) )
34 fveq1 6190 . . . . . . . 8  |-  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z
) } )  =  `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } )  ->  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z ) } ) `  1o )  =  ( `' ( { ( 1st `  w
) }  +c  {
( 2nd `  w
) } ) `  1o ) )
35 fvex 6201 . . . . . . . . 9  |-  ( 2nd `  z )  e.  _V
36 xpsc1 16221 . . . . . . . . 9  |-  ( ( 2nd `  z )  e.  _V  ->  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z ) } ) `  1o )  =  ( 2nd `  z ) )
3735, 36ax-mp 5 . . . . . . . 8  |-  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z
) } ) `  1o )  =  ( 2nd `  z )
38 fvex 6201 . . . . . . . . 9  |-  ( 2nd `  w )  e.  _V
39 xpsc1 16221 . . . . . . . . 9  |-  ( ( 2nd `  w )  e.  _V  ->  ( `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } ) `  1o )  =  ( 2nd `  w ) )
4038, 39ax-mp 5 . . . . . . . 8  |-  ( `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w
) } ) `  1o )  =  ( 2nd `  w )
4134, 37, 403eqtr3g 2679 . . . . . . 7  |-  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z
) } )  =  `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } )  ->  ( 2nd `  z )  =  ( 2nd `  w
) )
4233, 41opeq12d 4410 . . . . . 6  |-  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z
) } )  =  `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } )  ->  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  =  <. ( 1st `  w ) ,  ( 2nd `  w
) >. )
437, 16eqeqan12d 2638 . . . . . 6  |-  ( ( z  e.  ( A  X.  B )  /\  w  e.  ( A  X.  B ) )  -> 
( z  =  w  <->  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  =  <. ( 1st `  w ) ,  ( 2nd `  w
) >. ) )
4442, 43syl5ibr 236 . . . . 5  |-  ( ( z  e.  ( A  X.  B )  /\  w  e.  ( A  X.  B ) )  -> 
( `' ( { ( 1st `  z
) }  +c  {
( 2nd `  z
) } )  =  `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } )  ->  z  =  w ) )
4525, 44sylbid 230 . . . 4  |-  ( ( z  e.  ( A  X.  B )  /\  w  e.  ( A  X.  B ) )  -> 
( ( F `  z )  =  ( F `  w )  ->  z  =  w ) )
4645rgen2 2975 . . 3  |-  A. z  e.  ( A  X.  B
) A. w  e.  ( A  X.  B
) ( ( F `
 z )  =  ( F `  w
)  ->  z  =  w )
47 dff13 6512 . . 3  |-  ( F : ( A  X.  B ) -1-1-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <->  ( F : ( A  X.  B ) --> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  /\  A. z  e.  ( A  X.  B ) A. w  e.  ( A  X.  B
) ( ( F `
 z )  =  ( F `  w
)  ->  z  =  w ) ) )
486, 46, 47mpbir2an 955 . 2  |-  F :
( A  X.  B
) -1-1-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
49 xpsfrnel 16223 . . . . . 6  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( z  Fn  2o  /\  ( z `  (/) )  e.  A  /\  ( z `
 1o )  e.  B ) )
5049simp2bi 1077 . . . . 5  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  ( z `  (/) )  e.  A )
5149simp3bi 1078 . . . . 5  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  ( z `  1o )  e.  B
)
524xpsfval 16227 . . . . . . 7  |-  ( ( ( z `  (/) )  e.  A  /\  ( z `
 1o )  e.  B )  ->  (
( z `  (/) ) F ( z `  1o ) )  =  `' ( { ( z `  (/) ) }  +c  {
( z `  1o ) } ) )
5350, 51, 52syl2anc 693 . . . . . 6  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  ( ( z `
 (/) ) F ( z `  1o ) )  =  `' ( { ( z `  (/) ) }  +c  {
( z `  1o ) } ) )
54 ixpfn 7914 . . . . . . 7  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  z  Fn  2o )
55 xpsfeq 16224 . . . . . . 7  |-  ( z  Fn  2o  ->  `' ( { ( z `  (/) ) }  +c  {
( z `  1o ) } )  =  z )
5654, 55syl 17 . . . . . 6  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  `' ( { ( z `  (/) ) }  +c  { ( z `
 1o ) } )  =  z )
5753, 56eqtr2d 2657 . . . . 5  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  z  =  ( ( z `  (/) ) F ( z `  1o ) ) )
58 rspceov 6692 . . . . 5  |-  ( ( ( z `  (/) )  e.  A  /\  ( z `
 1o )  e.  B  /\  z  =  ( ( z `  (/) ) F ( z `
 1o ) ) )  ->  E. a  e.  A  E. b  e.  B  z  =  ( a F b ) )
5950, 51, 57, 58syl3anc 1326 . . . 4  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  E. a  e.  A  E. b  e.  B  z  =  ( a F b ) )
6059rgen 2922 . . 3  |-  A. z  e.  X_  k  e.  2o  if ( k  =  (/) ,  A ,  B ) E. a  e.  A  E. b  e.  B  z  =  ( a F b )
61 foov 6808 . . 3  |-  ( F : ( A  X.  B ) -onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <->  ( F : ( A  X.  B ) --> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  /\  A. z  e.  X_  k  e.  2o  if ( k  =  (/) ,  A ,  B ) E. a  e.  A  E. b  e.  B  z  =  ( a F b ) ) )
626, 60, 61mpbir2an 955 . 2  |-  F :
( A  X.  B
) -onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
63 df-f1o 5895 . 2  |-  ( F : ( A  X.  B ) -1-1-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( F : ( A  X.  B )
-1-1->
X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  /\  F : ( A  X.  B )
-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B ) ) )
6448, 62, 63mpbir2an 955 1  |-  F :
( A  X.  B
)
-1-1-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   (/)c0 3915   ifcif 4086   {csn 4177   <.cop 4183    X. cxp 5112   `'ccnv 5113    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   1oc1o 7553   2oc2o 7554   X_cixp 7908    +c ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-cda 8990
This theorem is referenced by:  xpsfrn  16229  xpsff1o2  16231
  Copyright terms: Public domain W3C validator