Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
aic7xxx_old.c
Go to the documentation of this file.
1 /*+M*************************************************************************
2  * Adaptec AIC7xxx device driver for Linux.
3  *
4  * Copyright (c) 1994 John Aycock
5  * The University of Calgary Department of Computer Science.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; see the file COPYING. If not, write to
19  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F
22  * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA
23  * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide,
24  * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux,
25  * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file
26  * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual,
27  * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the
28  * ANSI SCSI-2 specification (draft 10c), ...
29  *
30  * --------------------------------------------------------------------------
31  *
32  * Modifications by Daniel M. Eischen ([email protected]):
33  *
34  * Substantially modified to include support for wide and twin bus
35  * adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes,
36  * SCB paging, and other rework of the code.
37  *
38  * Parts of this driver were also based on the FreeBSD driver by
39  * Justin T. Gibbs. His copyright follows:
40  *
41  * --------------------------------------------------------------------------
42  * Copyright (c) 1994-1997 Justin Gibbs.
43  * All rights reserved.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  * notice, this list of conditions, and the following disclaimer,
50  * without modification, immediately at the beginning of the file.
51  * 2. Redistributions in binary form must reproduce the above copyright
52  * notice, this list of conditions and the following disclaimer in the
53  * documentation and/or other materials provided with the distribution.
54  * 3. The name of the author may not be used to endorse or promote products
55  * derived from this software without specific prior written permission.
56  *
57  * Where this Software is combined with software released under the terms of
58  * the GNU General Public License ("GPL") and the terms of the GPL would require the
59  * combined work to also be released under the terms of the GPL, the terms
60  * and conditions of this License will apply in addition to those of the
61  * GPL with the exception of any terms or conditions of this License that
62  * conflict with, or are expressly prohibited by, the GPL.
63  *
64  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
68  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74  * SUCH DAMAGE.
75  *
76  * $Id: aic7xxx.c,v 1.119 1997/06/27 19:39:18 gibbs Exp $
77  *---------------------------------------------------------------------------
78  *
79  * Thanks also go to (in alphabetical order) the following:
80  *
81  * Rory Bolt - Sequencer bug fixes
82  * Jay Estabrook - Initial DEC Alpha support
83  * Doug Ledford - Much needed abort/reset bug fixes
84  * Kai Makisara - DMAing of SCBs
85  *
86  * A Boot time option was also added for not resetting the scsi bus.
87  *
88  * Form: aic7xxx=extended
89  * aic7xxx=no_reset
90  * aic7xxx=ultra
91  * aic7xxx=irq_trigger:[0,1] # 0 edge, 1 level
92  * aic7xxx=verbose
93  *
94  * Daniel M. Eischen, [email protected], 1/23/97
95  *
96  * $Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp $
97  *-M*************************************************************************/
98 
99 /*+M**************************************************************************
100  *
101  * Further driver modifications made by Doug Ledford <[email protected]>
102  *
103  * Copyright (c) 1997-1999 Doug Ledford
104  *
105  * These changes are released under the same licensing terms as the FreeBSD
106  * driver written by Justin Gibbs. Please see his Copyright notice above
107  * for the exact terms and conditions covering my changes as well as the
108  * warranty statement.
109  *
110  * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include
111  * but are not limited to:
112  *
113  * 1: Import of the latest FreeBSD sequencer code for this driver
114  * 2: Modification of kernel code to accommodate different sequencer semantics
115  * 3: Extensive changes throughout kernel portion of driver to improve
116  * abort/reset processing and error hanndling
117  * 4: Other work contributed by various people on the Internet
118  * 5: Changes to printk information and verbosity selection code
119  * 6: General reliability related changes, especially in IRQ management
120  * 7: Modifications to the default probe/attach order for supported cards
121  * 8: SMP friendliness has been improved
122  *
123  * Overall, this driver represents a significant departure from the official
124  * aic7xxx driver released by Dan Eischen in two ways. First, in the code
125  * itself. A diff between the two version of the driver is now a several
126  * thousand line diff. Second, in approach to solving the same problem. The
127  * problem is importing the FreeBSD aic7xxx driver code to linux can be a
128  * difficult and time consuming process, that also can be error prone. Dan
129  * Eischen's official driver uses the approach that the linux and FreeBSD
130  * drivers should be as identical as possible. To that end, his next version
131  * of this driver will be using a mid-layer code library that he is developing
132  * to moderate communications between the linux mid-level SCSI code and the
133  * low level FreeBSD driver. He intends to be able to essentially drop the
134  * FreeBSD driver into the linux kernel with only a few minor tweaks to some
135  * include files and the like and get things working, making for fast easy
136  * imports of the FreeBSD code into linux.
137  *
138  * I disagree with Dan's approach. Not that I don't think his way of doing
139  * things would be nice, easy to maintain, and create a more uniform driver
140  * between FreeBSD and Linux. I have no objection to those issues. My
141  * disagreement is on the needed functionality. There simply are certain
142  * things that are done differently in FreeBSD than linux that will cause
143  * problems for this driver regardless of any middle ware Dan implements.
144  * The biggest example of this at the moment is interrupt semantics. Linux
145  * doesn't provide the same protection techniques as FreeBSD does, nor can
146  * they be easily implemented in any middle ware code since they would truly
147  * belong in the kernel proper and would effect all drivers. For the time
148  * being, I see issues such as these as major stumbling blocks to the
149  * reliability of code based upon such middle ware. Therefore, I choose to
150  * use a different approach to importing the FreeBSD code that doesn't
151  * involve any middle ware type code. My approach is to import the sequencer
152  * code from FreeBSD wholesale. Then, to only make changes in the kernel
153  * portion of the driver as they are needed for the new sequencer semantics.
154  * In this way, the portion of the driver that speaks to the rest of the
155  * linux kernel is fairly static and can be changed/modified to solve
156  * any problems one might encounter without concern for the FreeBSD driver.
157  *
158  * Note: If time and experience should prove me wrong that the middle ware
159  * code Dan writes is reliable in its operation, then I'll retract my above
160  * statements. But, for those that don't know, I'm from Missouri (in the US)
161  * and our state motto is "The Show-Me State". Well, before I will put
162  * faith into it, you'll have to show me that it works :)
163  *
164  *_M*************************************************************************/
165 
166 /*
167  * The next three defines are user configurable. These should be the only
168  * defines a user might need to get in here and change. There are other
169  * defines buried deeper in the code, but those really shouldn't need touched
170  * under normal conditions.
171  */
172 
173 /*
174  * AIC7XXX_STRICT_PCI_SETUP
175  * Should we assume the PCI config options on our controllers are set with
176  * sane and proper values, or should we be anal about our PCI config
177  * registers and force them to what we want? The main advantage to
178  * defining this option is on non-Intel hardware where the BIOS may not
179  * have been run to set things up, or if you have one of the BIOSless
180  * Adaptec controllers, such as a 2910, that don't get set up by the
181  * BIOS. However, keep in mind that we really do set the most important
182  * items in the driver regardless of this setting, this only controls some
183  * of the more esoteric PCI options on these cards. In that sense, I
184  * would default to leaving this off. However, if people wish to try
185  * things both ways, that would also help me to know if there are some
186  * machines where it works one way but not another.
187  *
188  * -- July 7, 17:09
189  * OK...I need this on my machine for testing, so the default is to
190  * leave it defined.
191  *
192  * -- July 7, 18:49
193  * I needed it for testing, but it didn't make any difference, so back
194  * off she goes.
195  *
196  * -- July 16, 23:04
197  * I turned it back on to try and compensate for the 2.1.x PCI code
198  * which no longer relies solely on the BIOS and now tries to set
199  * things itself.
200  */
201 
202 #define AIC7XXX_STRICT_PCI_SETUP
203 
204 /*
205  * AIC7XXX_VERBOSE_DEBUGGING
206  * This option enables a lot of extra printk();s in the code, surrounded
207  * by if (aic7xxx_verbose ...) statements. Executing all of those if
208  * statements and the extra checks can get to where it actually does have
209  * an impact on CPU usage and such, as well as code size. Disabling this
210  * define will keep some of those from becoming part of the code.
211  *
212  * NOTE: Currently, this option has no real effect, I will be adding the
213  * various #ifdef's in the code later when I've decided a section is
214  * complete and no longer needs debugging. OK...a lot of things are now
215  * surrounded by this define, so turning this off does have an impact.
216  */
217 
218 /*
219  * #define AIC7XXX_VERBOSE_DEBUGGING
220  */
221 
222 #include <linux/module.h>
223 #include <stdarg.h>
224 #include <asm/io.h>
225 #include <asm/irq.h>
226 #include <asm/byteorder.h>
227 #include <linux/string.h>
228 #include <linux/errno.h>
229 #include <linux/kernel.h>
230 #include <linux/ioport.h>
231 #include <linux/delay.h>
232 #include <linux/pci.h>
233 #include <linux/proc_fs.h>
234 #include <linux/blkdev.h>
235 #include <linux/init.h>
236 #include <linux/spinlock.h>
237 #include <linux/smp.h>
238 #include <linux/interrupt.h>
239 #include "scsi.h"
240 #include <scsi/scsi_host.h>
241 #include "aic7xxx_old/aic7xxx.h"
242 
243 #include "aic7xxx_old/sequencer.h"
245 #include "aic7xxx_old/aic7xxx_reg.h"
246 #include <scsi/scsicam.h>
247 
248 #include <linux/stat.h>
249 #include <linux/slab.h> /* for kmalloc() */
250 
251 #define AIC7XXX_C_VERSION "5.2.6"
252 
253 #define ALL_TARGETS -1
254 #define ALL_CHANNELS -1
255 #define ALL_LUNS -1
256 #define MAX_TARGETS 16
257 #define MAX_LUNS 8
258 #ifndef TRUE
259 # define TRUE 1
260 #endif
261 #ifndef FALSE
262 # define FALSE 0
263 #endif
264 
265 #if defined(__powerpc__) || defined(__i386__) || defined(__x86_64__)
266 # define MMAPIO
267 #endif
268 
269 /*
270  * You can try raising me for better performance or lowering me if you have
271  * flaky devices that go off the scsi bus when hit with too many tagged
272  * commands (like some IBM SCSI-3 LVD drives).
273  */
274 #define AIC7XXX_CMDS_PER_DEVICE 32
275 
276 typedef struct
277 {
278  unsigned char tag_commands[16]; /* Allow for wide/twin adapters. */
280 
281 /*
282  * Make a define that will tell the driver not to the default tag depth
283  * everywhere.
284  */
285 #define DEFAULT_TAG_COMMANDS {0, 0, 0, 0, 0, 0, 0, 0,\
286  0, 0, 0, 0, 0, 0, 0, 0}
287 
288 /*
289  * Modify this as you see fit for your system. By setting tag_commands
290  * to 0, the driver will use it's own algorithm for determining the
291  * number of commands to use (see above). When 255, the driver will
292  * not enable tagged queueing for that particular device. When positive
293  * (> 0) and (< 255) the values in the array are used for the queue_depth.
294  * Note that the maximum value for an entry is 254, but you're insane if
295  * you try to use that many commands on one device.
296  *
297  * In this example, the first line will disable tagged queueing for all
298  * the devices on the first probed aic7xxx adapter.
299  *
300  * The second line enables tagged queueing with 4 commands/LUN for IDs
301  * (1, 2-11, 13-15), disables tagged queueing for ID 12, and tells the
302  * driver to use its own algorithm for ID 1.
303  *
304  * The third line is the same as the first line.
305  *
306  * The fourth line disables tagged queueing for devices 0 and 3. It
307  * enables tagged queueing for the other IDs, with 16 commands/LUN
308  * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for
309  * IDs 2, 5-7, and 9-15.
310  */
311 
312 /*
313  * NOTE: The below structure is for reference only, the actual structure
314  * to modify in order to change things is found after this fake one.
315  *
316 adapter_tag_info_t aic7xxx_tag_info[] =
317 {
318  {DEFAULT_TAG_COMMANDS},
319  {{4, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 255, 4, 4, 4}},
320  {DEFAULT_TAG_COMMANDS},
321  {{255, 16, 4, 255, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}}
322 };
323 */
324 
325 static adapter_tag_info_t aic7xxx_tag_info[] =
326 {
343 };
344 
345 
346 /*
347  * Define an array of board names that can be indexed by aha_type.
348  * Don't forget to change this when changing the types!
349  */
350 static const char *board_names[] = {
351  "AIC-7xxx Unknown", /* AIC_NONE */
352  "Adaptec AIC-7810 Hardware RAID Controller", /* AIC_7810 */
353  "Adaptec AIC-7770 SCSI host adapter", /* AIC_7770 */
354  "Adaptec AHA-274X SCSI host adapter", /* AIC_7771 */
355  "Adaptec AHA-284X SCSI host adapter", /* AIC_284x */
356  "Adaptec AIC-7850 SCSI host adapter", /* AIC_7850 */
357  "Adaptec AIC-7855 SCSI host adapter", /* AIC_7855 */
358  "Adaptec AIC-7860 Ultra SCSI host adapter", /* AIC_7860 */
359  "Adaptec AHA-2940A Ultra SCSI host adapter", /* AIC_7861 */
360  "Adaptec AIC-7870 SCSI host adapter", /* AIC_7870 */
361  "Adaptec AHA-294X SCSI host adapter", /* AIC_7871 */
362  "Adaptec AHA-394X SCSI host adapter", /* AIC_7872 */
363  "Adaptec AHA-398X SCSI host adapter", /* AIC_7873 */
364  "Adaptec AHA-2944 SCSI host adapter", /* AIC_7874 */
365  "Adaptec AIC-7880 Ultra SCSI host adapter", /* AIC_7880 */
366  "Adaptec AHA-294X Ultra SCSI host adapter", /* AIC_7881 */
367  "Adaptec AHA-394X Ultra SCSI host adapter", /* AIC_7882 */
368  "Adaptec AHA-398X Ultra SCSI host adapter", /* AIC_7883 */
369  "Adaptec AHA-2944 Ultra SCSI host adapter", /* AIC_7884 */
370  "Adaptec AHA-2940UW Pro Ultra SCSI host adapter", /* AIC_7887 */
371  "Adaptec AIC-7895 Ultra SCSI host adapter", /* AIC_7895 */
372  "Adaptec AIC-7890/1 Ultra2 SCSI host adapter", /* AIC_7890 */
373  "Adaptec AHA-293X Ultra2 SCSI host adapter", /* AIC_7890 */
374  "Adaptec AHA-294X Ultra2 SCSI host adapter", /* AIC_7890 */
375  "Adaptec AIC-7896/7 Ultra2 SCSI host adapter", /* AIC_7896 */
376  "Adaptec AHA-394X Ultra2 SCSI host adapter", /* AIC_7897 */
377  "Adaptec AHA-395X Ultra2 SCSI host adapter", /* AIC_7897 */
378  "Adaptec PCMCIA SCSI controller", /* card bus stuff */
379  "Adaptec AIC-7892 Ultra 160/m SCSI host adapter", /* AIC_7892 */
380  "Adaptec AIC-7899 Ultra 160/m SCSI host adapter", /* AIC_7899 */
381 };
382 
383 /*
384  * There should be a specific return value for this in scsi.h, but
385  * it seems that most drivers ignore it.
386  */
387 #define DID_UNDERFLOW DID_ERROR
388 
389 /*
390  * What we want to do is have the higher level scsi driver requeue
391  * the command to us. There is no specific driver status for this
392  * condition, but the higher level scsi driver will requeue the
393  * command on a DID_BUS_BUSY error.
394  *
395  * Upon further inspection and testing, it seems that DID_BUS_BUSY
396  * will *always* retry the command. We can get into an infinite loop
397  * if this happens when we really want some sort of counter that
398  * will automatically abort/reset the command after so many retries.
399  * Using DID_ERROR will do just that. (Made by a suggestion by
400  * Doug Ledford 8/1/96)
401  */
402 #define DID_RETRY_COMMAND DID_ERROR
403 
404 #define HSCSIID 0x07
405 #define SCSI_RESET 0x040
406 
407 /*
408  * EISA/VL-bus stuff
409  */
410 #define MINSLOT 1
411 #define MAXSLOT 15
412 #define SLOTBASE(x) ((x) << 12)
413 #define BASE_TO_SLOT(x) ((x) >> 12)
414 
415 /*
416  * Standard EISA Host ID regs (Offset from slot base)
417  */
418 #define AHC_HID0 0x80 /* 0,1: msb of ID2, 2-7: ID1 */
419 #define AHC_HID1 0x81 /* 0-4: ID3, 5-7: LSB ID2 */
420 #define AHC_HID2 0x82 /* product */
421 #define AHC_HID3 0x83 /* firmware revision */
422 
423 /*
424  * AIC-7770 I/O range to reserve for a card
425  */
426 #define MINREG 0xC00
427 #define MAXREG 0xCFF
428 
429 #define INTDEF 0x5C /* Interrupt Definition Register */
430 
431 /*
432  * AIC-78X0 PCI registers
433  */
434 #define CLASS_PROGIF_REVID 0x08
435 #define DEVREVID 0x000000FFul
436 #define PROGINFC 0x0000FF00ul
437 #define SUBCLASS 0x00FF0000ul
438 #define BASECLASS 0xFF000000ul
439 
440 #define CSIZE_LATTIME 0x0C
441 #define CACHESIZE 0x0000003Ful /* only 5 bits */
442 #define LATTIME 0x0000FF00ul
443 
444 #define DEVCONFIG 0x40
445 #define SCBSIZE32 0x00010000ul /* aic789X only */
446 #define MPORTMODE 0x00000400ul /* aic7870 only */
447 #define RAMPSM 0x00000200ul /* aic7870 only */
448 #define RAMPSM_ULTRA2 0x00000004
449 #define VOLSENSE 0x00000100ul
450 #define SCBRAMSEL 0x00000080ul
451 #define SCBRAMSEL_ULTRA2 0x00000008
452 #define MRDCEN 0x00000040ul
453 #define EXTSCBTIME 0x00000020ul /* aic7870 only */
454 #define EXTSCBPEN 0x00000010ul /* aic7870 only */
455 #define BERREN 0x00000008ul
456 #define DACEN 0x00000004ul
457 #define STPWLEVEL 0x00000002ul
458 #define DIFACTNEGEN 0x00000001ul /* aic7870 only */
459 
460 #define SCAMCTL 0x1a /* Ultra2 only */
461 #define CCSCBBADDR 0xf0 /* aic7895/6/7 */
462 
463 /*
464  * Define the different types of SEEPROMs on aic7xxx adapters
465  * and make it also represent the address size used in accessing
466  * its registers. The 93C46 chips have 1024 bits organized into
467  * 64 16-bit words, while the 93C56 chips have 2048 bits organized
468  * into 128 16-bit words. The C46 chips use 6 bits to address
469  * each word, while the C56 and C66 (4096 bits) use 8 bits to
470  * address each word.
471  */
472 typedef enum {C46 = 6, C56_66 = 8} seeprom_chip_type;
473 
474 /*
475  *
476  * Define the format of the SEEPROM registers (16 bits).
477  *
478  */
479 struct seeprom_config {
480 
481 /*
482  * SCSI ID Configuration Flags
483  */
484 #define CFXFER 0x0007 /* synchronous transfer rate */
485 #define CFSYNCH 0x0008 /* enable synchronous transfer */
486 #define CFDISC 0x0010 /* enable disconnection */
487 #define CFWIDEB 0x0020 /* wide bus device (wide card) */
488 #define CFSYNCHISULTRA 0x0040 /* CFSYNC is an ultra offset */
489 #define CFNEWULTRAFORMAT 0x0080 /* Use the Ultra2 SEEPROM format */
490 #define CFSTART 0x0100 /* send start unit SCSI command */
491 #define CFINCBIOS 0x0200 /* include in BIOS scan */
492 #define CFRNFOUND 0x0400 /* report even if not found */
493 #define CFMULTILUN 0x0800 /* probe mult luns in BIOS scan */
494 #define CFWBCACHEYES 0x4000 /* Enable W-Behind Cache on drive */
495 #define CFWBCACHENC 0xc000 /* Don't change W-Behind Cache */
496 /* UNUSED 0x3000 */
497  unsigned short device_flags[16]; /* words 0-15 */
498 
499 /*
500  * BIOS Control Bits
501  */
502 #define CFSUPREM 0x0001 /* support all removable drives */
503 #define CFSUPREMB 0x0002 /* support removable drives for boot only */
504 #define CFBIOSEN 0x0004 /* BIOS enabled */
505 /* UNUSED 0x0008 */
506 #define CFSM2DRV 0x0010 /* support more than two drives */
507 #define CF284XEXTEND 0x0020 /* extended translation (284x cards) */
508 /* UNUSED 0x0040 */
509 #define CFEXTEND 0x0080 /* extended translation enabled */
510 /* UNUSED 0xFF00 */
511  unsigned short bios_control; /* word 16 */
512 
513 /*
514  * Host Adapter Control Bits
515  */
516 #define CFAUTOTERM 0x0001 /* Perform Auto termination */
517 #define CFULTRAEN 0x0002 /* Ultra SCSI speed enable (Ultra cards) */
518 #define CF284XSELTO 0x0003 /* Selection timeout (284x cards) */
519 #define CF284XFIFO 0x000C /* FIFO Threshold (284x cards) */
520 #define CFSTERM 0x0004 /* SCSI low byte termination */
521 #define CFWSTERM 0x0008 /* SCSI high byte termination (wide card) */
522 #define CFSPARITY 0x0010 /* SCSI parity */
523 #define CF284XSTERM 0x0020 /* SCSI low byte termination (284x cards) */
524 #define CFRESETB 0x0040 /* reset SCSI bus at boot */
525 #define CFBPRIMARY 0x0100 /* Channel B primary on 7895 chipsets */
526 #define CFSEAUTOTERM 0x0400 /* aic7890 Perform SE Auto Term */
527 #define CFLVDSTERM 0x0800 /* aic7890 LVD Termination */
528 /* UNUSED 0xF280 */
529  unsigned short adapter_control; /* word 17 */
530 
531 /*
532  * Bus Release, Host Adapter ID
533  */
534 #define CFSCSIID 0x000F /* host adapter SCSI ID */
535 /* UNUSED 0x00F0 */
536 #define CFBRTIME 0xFF00 /* bus release time */
537  unsigned short brtime_id; /* word 18 */
538 
539 /*
540  * Maximum targets
541  */
542 #define CFMAXTARG 0x00FF /* maximum targets */
543 /* UNUSED 0xFF00 */
544  unsigned short max_targets; /* word 19 */
545 
546  unsigned short res_1[11]; /* words 20-30 */
547  unsigned short checksum; /* word 31 */
548 };
549 
550 #define SELBUS_MASK 0x0a
551 #define SELNARROW 0x00
552 #define SELBUSB 0x08
553 #define SINGLE_BUS 0x00
554 
555 #define SCB_TARGET(scb) \
556  (((scb)->hscb->target_channel_lun & TID) >> 4)
557 #define SCB_LUN(scb) \
558  ((scb)->hscb->target_channel_lun & LID)
559 #define SCB_IS_SCSIBUS_B(scb) \
560  (((scb)->hscb->target_channel_lun & SELBUSB) != 0)
561 
562 /*
563  * If an error occurs during a data transfer phase, run the command
564  * to completion - it's easier that way - making a note of the error
565  * condition in this location. This then will modify a DID_OK status
566  * into an appropriate error for the higher-level SCSI code.
567  */
568 #define aic7xxx_error(cmd) ((cmd)->SCp.Status)
569 
570 /*
571  * Keep track of the targets returned status.
572  */
573 #define aic7xxx_status(cmd) ((cmd)->SCp.sent_command)
574 
575 /*
576  * The position of the SCSI commands scb within the scb array.
577  */
578 #define aic7xxx_position(cmd) ((cmd)->SCp.have_data_in)
579 
580 /*
581  * The stored DMA mapping for single-buffer data transfers.
582  */
583 #define aic7xxx_mapping(cmd) ((cmd)->SCp.phase)
584 
585 /*
586  * Get out private data area from a scsi cmd pointer
587  */
588 #define AIC_DEV(cmd) ((struct aic_dev_data *)(cmd)->device->hostdata)
589 
590 /*
591  * So we can keep track of our host structs
592  */
593 static struct aic7xxx_host *first_aic7xxx = NULL;
594 
595 /*
596  * As of Linux 2.1, the mid-level SCSI code uses virtual addresses
597  * in the scatter-gather lists. We need to convert the virtual
598  * addresses to physical addresses.
599  */
601  unsigned int address;
602  unsigned int length;
603 };
604 
605 /*
606  * Maximum number of SG segments these cards can support.
607  */
608 #define AIC7XXX_MAX_SG 128
609 
610 /*
611  * The maximum number of SCBs we could have for ANY type
612  * of card. DON'T FORGET TO CHANGE THE SCB MASK IN THE
613  * SEQUENCER CODE IF THIS IS MODIFIED!
614  */
615 #define AIC7XXX_MAXSCB 255
616 
617 
619 /* ------------ Begin hardware supported fields ---------------- */
620 /* 0*/ unsigned char control;
621 /* 1*/ unsigned char target_channel_lun; /* 4/1/3 bits */
622 /* 2*/ unsigned char target_status;
623 /* 3*/ unsigned char SG_segment_count;
624 /* 4*/ unsigned int SG_list_pointer;
625 /* 8*/ unsigned char residual_SG_segment_count;
626 /* 9*/ unsigned char residual_data_count[3];
627 /*12*/ unsigned int data_pointer;
628 /*16*/ unsigned int data_count;
629 /*20*/ unsigned int SCSI_cmd_pointer;
630 /*24*/ unsigned char SCSI_cmd_length;
631 /*25*/ unsigned char tag; /* Index into our kernel SCB array.
632  * Also used as the tag for tagged I/O
633  */
634 #define SCB_PIO_TRANSFER_SIZE 26 /* amount we need to upload/download
635  * via PIO to initialize a transaction.
636  */
637 /*26*/ unsigned char next; /* Used to thread SCBs awaiting selection
638  * or disconnected down in the sequencer.
639  */
640 /*27*/ unsigned char prev;
641 /*28*/ unsigned int pad; /*
642  * Unused by the kernel, but we require
643  * the padding so that the array of
644  * hardware SCBs is aligned on 32 byte
645  * boundaries so the sequencer can index
646  */
647 };
649 typedef enum {
650  SCB_FREE = 0x0000,
651  SCB_DTR_SCB = 0x0001,
652  SCB_WAITINGQ = 0x0002,
653  SCB_ACTIVE = 0x0004,
654  SCB_SENSE = 0x0008,
655  SCB_ABORT = 0x0010,
657  SCB_RESET = 0x0040,
659  SCB_MSGOUT_PPR = 0x0100,
660  SCB_MSGOUT_SENT = 0x0200,
661  SCB_MSGOUT_SDTR = 0x0400,
662  SCB_MSGOUT_WDTR = 0x0800,
664  SCB_MSGOUT_SENT |
669  SCB_WAS_BUSY = 0x4000,
670  SCB_QUEUE_FULL = 0x8000
673 typedef enum {
674  AHC_FNONE = 0x00000000,
675  AHC_PAGESCBS = 0x00000001,
676  AHC_CHANNEL_B_PRIMARY = 0x00000002,
677  AHC_USEDEFAULTS = 0x00000004,
678  AHC_INDIRECT_PAGING = 0x00000008,
679  AHC_CHNLB = 0x00000020,
680  AHC_CHNLC = 0x00000040,
681  AHC_EXTEND_TRANS_A = 0x00000100,
682  AHC_EXTEND_TRANS_B = 0x00000200,
683  AHC_TERM_ENB_A = 0x00000400,
684  AHC_TERM_ENB_SE_LOW = 0x00000400,
685  AHC_TERM_ENB_B = 0x00000800,
686  AHC_TERM_ENB_SE_HIGH = 0x00000800,
687  AHC_HANDLING_REQINITS = 0x00001000,
688  AHC_TARGETMODE = 0x00002000,
689  AHC_NEWEEPROM_FMT = 0x00004000,
690  /*
691  * Here ends the FreeBSD defined flags and here begins the linux defined
692  * flags. NOTE: I did not preserve the old flag name during this change
693  * specifically to force me to evaluate what flags were being used properly
694  * and what flags weren't. This way, I could clean up the flag usage on
695  * a use by use basis. Doug Ledford
696  */
697  AHC_MOTHERBOARD = 0x00020000,
698  AHC_NO_STPWEN = 0x00040000,
699  AHC_RESET_DELAY = 0x00080000,
700  AHC_A_SCANNED = 0x00100000,
701  AHC_B_SCANNED = 0x00200000,
702  AHC_MULTI_CHANNEL = 0x00400000,
703  AHC_BIOS_ENABLED = 0x00800000,
704  AHC_SEEPROM_FOUND = 0x01000000,
705  AHC_TERM_ENB_LVD = 0x02000000,
706  AHC_ABORT_PENDING = 0x04000000,
707  AHC_RESET_PENDING = 0x08000000,
708 #define AHC_IN_ISR_BIT 28
709  AHC_IN_ISR = 0x10000000,
710  AHC_IN_ABORT = 0x20000000,
711  AHC_IN_RESET = 0x40000000,
712  AHC_EXTERNAL_SRAM = 0x80000000
715 typedef enum {
716  AHC_NONE = 0x0000,
717  AHC_CHIPID_MASK = 0x00ff,
718  AHC_AIC7770 = 0x0001,
719  AHC_AIC7850 = 0x0002,
720  AHC_AIC7860 = 0x0003,
721  AHC_AIC7870 = 0x0004,
722  AHC_AIC7880 = 0x0005,
723  AHC_AIC7890 = 0x0006,
724  AHC_AIC7895 = 0x0007,
725  AHC_AIC7896 = 0x0008,
726  AHC_AIC7892 = 0x0009,
727  AHC_AIC7899 = 0x000a,
728  AHC_VL = 0x0100,
729  AHC_EISA = 0x0200,
730  AHC_PCI = 0x0400,
733 typedef enum {
734  AHC_FENONE = 0x0000,
735  AHC_ULTRA = 0x0001,
736  AHC_ULTRA2 = 0x0002,
737  AHC_WIDE = 0x0004,
738  AHC_TWIN = 0x0008,
739  AHC_MORE_SRAM = 0x0010,
740  AHC_CMD_CHAN = 0x0020,
741  AHC_QUEUE_REGS = 0x0040,
742  AHC_SG_PRELOAD = 0x0080,
743  AHC_SPIOCAP = 0x0100,
744  AHC_ULTRA3 = 0x0200,
758 
759 #define SCB_DMA_ADDR(scb, addr) ((unsigned long)(addr) + (scb)->scb_dma->dma_offset)
761 struct aic7xxx_scb_dma {
762  unsigned long dma_offset; /* Correction you have to add
763  * to virtual address to get
764  * dma handle in this region */
765  dma_addr_t dma_address; /* DMA handle of the start,
766  * for unmap */
767  unsigned int dma_len; /* DMA length */
768 };
770 typedef enum {
771  AHC_BUG_NONE = 0x0000,
777  AHC_BUG_PCI_MWI = 0x0020,
778  AHC_BUG_SCBCHAN_UPLOAD = 0x0040,
781 struct aic7xxx_scb {
782  struct aic7xxx_hwscb *hscb; /* corresponding hardware scb */
783  struct scsi_cmnd *cmd; /* scsi_cmnd for this scb */
784  struct aic7xxx_scb *q_next; /* next scb in queue */
785  volatile scb_flag_type flags; /* current state of scb */
786  struct hw_scatterlist *sg_list; /* SG list in adapter format */
787  unsigned char tag_action;
788  unsigned char sg_count;
789  unsigned char *sense_cmd; /*
790  * Allocate 6 characters for
791  * sense command.
792  */
793  unsigned char *cmnd;
794  unsigned int sg_length; /*
795  * We init this during
796  * buildscb so we don't have
797  * to calculate anything during
798  * underflow/overflow/stat code
799  */
800  void *kmalloc_ptr;
801  struct aic7xxx_scb_dma *scb_dma;
802 };
803 
804 /*
805  * Define a linked list of SCBs.
806  */
807 typedef struct {
808  struct aic7xxx_scb *head;
809  struct aic7xxx_scb *tail;
812 static struct {
813  unsigned char errno;
814  const char *errmesg;
815 } hard_error[] = {
816  { ILLHADDR, "Illegal Host Access" },
817  { ILLSADDR, "Illegal Sequencer Address referenced" },
818  { ILLOPCODE, "Illegal Opcode in sequencer program" },
819  { SQPARERR, "Sequencer Ram Parity Error" },
820  { DPARERR, "Data-Path Ram Parity Error" },
821  { MPARERR, "Scratch Ram/SCB Array Ram Parity Error" },
822  { PCIERRSTAT,"PCI Error detected" },
823  { CIOPARERR, "CIOBUS Parity Error" }
824 };
825 
826 static unsigned char
827 generic_sense[] = { REQUEST_SENSE, 0, 0, 0, 255, 0 };
829 typedef struct {
830  scb_queue_type free_scbs; /*
831  * SCBs assigned to free slot on
832  * card (no paging required)
833  */
834  struct aic7xxx_scb *scb_array[AIC7XXX_MAXSCB];
835  struct aic7xxx_hwscb *hscbs;
836  unsigned char numscbs; /* current number of scbs */
837  unsigned char maxhscbs; /* hardware scbs */
838  unsigned char maxscbs; /* max scbs including pageable scbs */
839  dma_addr_t hscbs_dma; /* DMA handle to hscbs */
840  unsigned int hscbs_dma_len; /* length of the above DMA area */
841  void *hscb_kmalloc_ptr;
842 } scb_data_type;
844 struct target_cmd {
845  unsigned char mesg_bytes[4];
846  unsigned char command[28];
847 };
849 #define AHC_TRANS_CUR 0x0001
850 #define AHC_TRANS_ACTIVE 0x0002
851 #define AHC_TRANS_GOAL 0x0004
852 #define AHC_TRANS_USER 0x0008
853 #define AHC_TRANS_QUITE 0x0010
854 typedef struct {
855  unsigned char width;
856  unsigned char period;
857  unsigned char offset;
858  unsigned char options;
861 struct aic_dev_data {
863  volatile unsigned short temp_q_depth;
864  unsigned short max_q_depth;
865  volatile unsigned char active_cmds;
866  /*
867  * Statistics Kept:
868  *
869  * Total Xfers (count for each command that has a data xfer),
870  * broken down by reads && writes.
871  *
872  * Further sorted into a few bins for keeping tabs on how many commands
873  * we get of various sizes.
874  *
875  */
876  long w_total; /* total writes */
877  long r_total; /* total reads */
878  long barrier_total; /* total num of REQ_BARRIER commands */
879  long ordered_total; /* How many REQ_BARRIER commands we
880  used ordered tags to satisfy */
881  long w_bins[6]; /* binned write */
882  long r_bins[6]; /* binned reads */
885 #define BUS_DEVICE_RESET_PENDING 0x01
886 #define DEVICE_RESET_DELAY 0x02
887 #define DEVICE_PRINT_DTR 0x04
888 #define DEVICE_WAS_BUSY 0x08
889 #define DEVICE_DTR_SCANNED 0x10
890 #define DEVICE_SCSI_3 0x20
891  volatile unsigned char flags;
892  unsigned needppr:1;
893  unsigned needppr_copy:1;
894  unsigned needsdtr:1;
895  unsigned needsdtr_copy:1;
896  unsigned needwdtr:1;
897  unsigned needwdtr_copy:1;
898  unsigned dtr_pending:1;
899  struct scsi_device *SDptr;
900  struct list_head list;
901 };
902 
903 /*
904  * Define a structure used for each host adapter. Note, in order to avoid
905  * problems with architectures I can't test on (because I don't have one,
906  * such as the Alpha based systems) which happen to give faults for
907  * non-aligned memory accesses, care was taken to align this structure
908  * in a way that guaranteed all accesses larger than 8 bits were aligned
909  * on the appropriate boundary. It's also organized to try and be more
910  * cache line efficient. Be careful when changing this lest you might hurt
911  * overall performance and bring down the wrath of the masses.
912  */
913 struct aic7xxx_host {
914  /*
915  * This is the first 64 bytes in the host struct
916  */
917 
918  /*
919  * We are grouping things here....first, items that get either read or
920  * written with nearly every interrupt
921  */
922  volatile long flags;
923  ahc_feature features; /* chip features */
924  unsigned long base; /* card base address */
925  volatile unsigned char __iomem *maddr; /* memory mapped address */
926  unsigned long isr_count; /* Interrupt count */
927  unsigned long spurious_int;
930  struct scsi_cmnd *head;
931  struct scsi_cmnd *tail;
932  } completeq;
933 
934  /*
935  * Things read/written on nearly every entry into aic7xxx_queue()
936  */
938  unsigned char unpause; /* unpause value for HCNTRL */
939  unsigned char pause; /* pause value for HCNTRL */
940  volatile unsigned char qoutfifonext;
941  volatile unsigned char activescbs; /* active scbs */
942  volatile unsigned char max_activescbs;
943  volatile unsigned char qinfifonext;
944  volatile unsigned char *untagged_scbs;
945  volatile unsigned char *qoutfifo;
946  volatile unsigned char *qinfifo;
950  unsigned short ultraenb; /* Gets downloaded to card as a bitmap */
951  unsigned short discenable; /* Gets downloaded to card as a bitmap */
954  unsigned char msg_buf[13]; /* The message for the target */
955  unsigned char msg_type;
956 #define MSG_TYPE_NONE 0x00
957 #define MSG_TYPE_INITIATOR_MSGOUT 0x01
958 #define MSG_TYPE_INITIATOR_MSGIN 0x02
959  unsigned char msg_len; /* Length of message */
960  unsigned char msg_index; /* Index into msg_buf array */
961 
962 
963  /*
964  * We put the less frequently used host structure items
965  * after the more frequently used items to try and ease
966  * the burden on the cache subsystem.
967  * These entries are not *commonly* accessed, whereas
968  * the preceding entries are accessed very often.
969  */
971  unsigned int irq; /* IRQ for this adapter */
972  int instance; /* aic7xxx instance number */
973  int scsi_id; /* host adapter SCSI ID */
974  int scsi_id_b; /* channel B for twin adapters */
975  unsigned int bios_address;
977  unsigned short bios_control; /* bios control - SEEPROM */
978  unsigned short adapter_control; /* adapter control - SEEPROM */
979  struct pci_dev *pdev;
980  unsigned char pci_bus;
981  unsigned char pci_device_fn;
983  unsigned short sc_type;
984  unsigned short sc_size;
985  struct aic7xxx_host *next; /* allow for multiple IRQs */
986  struct Scsi_Host *host; /* pointer to scsi host */
987  struct list_head aic_devs; /* all aic_dev structs on host */
988  int host_no; /* SCSI host number */
989  unsigned long mbase; /* I/O memory address */
990  ahc_chip chip; /* chip type */
991  ahc_bugs bugs;
992  dma_addr_t fifo_dma; /* DMA handle for fifo arrays */
993 };
994 
995 /*
996  * Valid SCSIRATE values. (p. 3-17)
997  * Provides a mapping of transfer periods in ns/4 to the proper value to
998  * stick in the SCSIRATE reg to use that transfer rate.
999  */
1000 #define AHC_SYNCRATE_ULTRA3 0
1001 #define AHC_SYNCRATE_ULTRA2 1
1002 #define AHC_SYNCRATE_ULTRA 3
1003 #define AHC_SYNCRATE_FAST 6
1004 #define AHC_SYNCRATE_CRC 0x40
1005 #define AHC_SYNCRATE_SE 0x10
1006 static struct aic7xxx_syncrate {
1007  /* Rates in Ultra mode have bit 8 of sxfr set */
1008 #define ULTRA_SXFR 0x100
1009  int sxfr_ultra2;
1010  int sxfr;
1011  unsigned char period;
1012  const char *rate[2];
1013 } aic7xxx_syncrates[] = {
1014  { 0x42, 0x000, 9, {"80.0", "160.0"} },
1015  { 0x13, 0x000, 10, {"40.0", "80.0"} },
1016  { 0x14, 0x000, 11, {"33.0", "66.6"} },
1017  { 0x15, 0x100, 12, {"20.0", "40.0"} },
1018  { 0x16, 0x110, 15, {"16.0", "32.0"} },
1019  { 0x17, 0x120, 18, {"13.4", "26.8"} },
1020  { 0x18, 0x000, 25, {"10.0", "20.0"} },
1021  { 0x19, 0x010, 31, {"8.0", "16.0"} },
1022  { 0x1a, 0x020, 37, {"6.67", "13.3"} },
1023  { 0x1b, 0x030, 43, {"5.7", "11.4"} },
1024  { 0x10, 0x040, 50, {"5.0", "10.0"} },
1025  { 0x00, 0x050, 56, {"4.4", "8.8" } },
1026  { 0x00, 0x060, 62, {"4.0", "8.0" } },
1027  { 0x00, 0x070, 68, {"3.6", "7.2" } },
1028  { 0x00, 0x000, 0, {NULL, NULL} },
1029 };
1030 
1031 #define CTL_OF_SCB(scb) (((scb->hscb)->target_channel_lun >> 3) & 0x1), \
1032  (((scb->hscb)->target_channel_lun >> 4) & 0xf), \
1033  ((scb->hscb)->target_channel_lun & 0x07)
1034 
1035 #define CTL_OF_CMD(cmd) ((cmd->device->channel) & 0x01), \
1036  ((cmd->device->id) & 0x0f), \
1037  ((cmd->device->lun) & 0x07)
1038 
1039 #define TARGET_INDEX(cmd) ((cmd)->device->id | ((cmd)->device->channel << 3))
1040 
1041 /*
1042  * A nice little define to make doing our printks a little easier
1043  */
1045 #define WARN_LEAD KERN_WARNING "(scsi%d:%d:%d:%d) "
1046 #define INFO_LEAD KERN_INFO "(scsi%d:%d:%d:%d) "
1047 
1048 /*
1049  * XXX - these options apply unilaterally to _all_ 274x/284x/294x
1050  * cards in the system. This should be fixed. Exceptions to this
1051  * rule are noted in the comments.
1052  */
1053 
1054 /*
1055  * Use this as the default queue depth when setting tagged queueing on.
1056  */
1057 static unsigned int aic7xxx_default_queue_depth = AIC7XXX_CMDS_PER_DEVICE;
1058 
1059 /*
1060  * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This
1061  * has no effect on any later resets that might occur due to things like
1062  * SCSI bus timeouts.
1063  */
1064 static unsigned int aic7xxx_no_reset = 0;
1065 /*
1066  * Certain PCI motherboards will scan PCI devices from highest to lowest,
1067  * others scan from lowest to highest, and they tend to do all kinds of
1068  * strange things when they come into contact with PCI bridge chips. The
1069  * net result of all this is that the PCI card that is actually used to boot
1070  * the machine is very hard to detect. Most motherboards go from lowest
1071  * PCI slot number to highest, and the first SCSI controller found is the
1072  * one you boot from. The only exceptions to this are when a controller
1073  * has its BIOS disabled. So, we by default sort all of our SCSI controllers
1074  * from lowest PCI slot number to highest PCI slot number. We also force
1075  * all controllers with their BIOS disabled to the end of the list. This
1076  * works on *almost* all computers. Where it doesn't work, we have this
1077  * option. Setting this option to non-0 will reverse the order of the sort
1078  * to highest first, then lowest, but will still leave cards with their BIOS
1079  * disabled at the very end. That should fix everyone up unless there are
1080  * really strange cirumstances.
1081  */
1082 static int aic7xxx_reverse_scan = 0;
1083 /*
1084  * Should we force EXTENDED translation on a controller.
1085  * 0 == Use whatever is in the SEEPROM or default to off
1086  * 1 == Use whatever is in the SEEPROM or default to on
1087  */
1088 static unsigned int aic7xxx_extended = 0;
1089 /*
1090  * The IRQ trigger method used on EISA controllers. Does not effect PCI cards.
1091  * -1 = Use detected settings.
1092  * 0 = Force Edge triggered mode.
1093  * 1 = Force Level triggered mode.
1094  */
1095 static int aic7xxx_irq_trigger = -1;
1096 /*
1097  * This variable is used to override the termination settings on a controller.
1098  * This should not be used under normal conditions. However, in the case
1099  * that a controller does not have a readable SEEPROM (so that we can't
1100  * read the SEEPROM settings directly) and that a controller has a buggered
1101  * version of the cable detection logic, this can be used to force the
1102  * correct termination. It is preferable to use the manual termination
1103  * settings in the BIOS if possible, but some motherboard controllers store
1104  * those settings in a format we can't read. In other cases, auto term
1105  * should also work, but the chipset was put together with no auto term
1106  * logic (common on motherboard controllers). In those cases, we have
1107  * 32 bits here to work with. That's good for 8 controllers/channels. The
1108  * bits are organized as 4 bits per channel, with scsi0 getting the lowest
1109  * 4 bits in the int. A 1 in a bit position indicates the termination setting
1110  * that corresponds to that bit should be enabled, a 0 is disabled.
1111  * It looks something like this:
1112  *
1113  * 0x0f = 1111-Single Ended Low Byte Termination on/off
1114  * ||\-Single Ended High Byte Termination on/off
1115  * |\-LVD Low Byte Termination on/off
1116  * \-LVD High Byte Termination on/off
1117  *
1118  * For non-Ultra2 controllers, the upper 2 bits are not important. So, to
1119  * enable both high byte and low byte termination on scsi0, I would need to
1120  * make sure that the override_term variable was set to 0x03 (bits 0011).
1121  * To make sure that all termination is enabled on an Ultra2 controller at
1122  * scsi2 and only high byte termination on scsi1 and high and low byte
1123  * termination on scsi0, I would set override_term=0xf23 (bits 1111 0010 0011)
1124  *
1125  * For the most part, users should never have to use this, that's why I
1126  * left it fairly cryptic instead of easy to understand. If you need it,
1127  * most likely someone will be telling you what your's needs to be set to.
1128  */
1129 static int aic7xxx_override_term = -1;
1130 /*
1131  * Certain motherboard chipset controllers tend to screw
1132  * up the polarity of the term enable output pin. Use this variable
1133  * to force the correct polarity for your system. This is a bitfield variable
1134  * similar to the previous one, but this one has one bit per channel instead
1135  * of four.
1136  * 0 = Force the setting to active low.
1137  * 1 = Force setting to active high.
1138  * Most Adaptec cards are active high, several motherboards are active low.
1139  * To force a 2940 card at SCSI 0 to active high and a motherboard 7895
1140  * controller at scsi1 and scsi2 to active low, and a 2910 card at scsi3
1141  * to active high, you would need to set stpwlev=0x9 (bits 1001).
1142  *
1143  * People shouldn't need to use this, but if you are experiencing lots of
1144  * SCSI timeout problems, this may help. There is one sure way to test what
1145  * this option needs to be. Using a boot floppy to boot the system, configure
1146  * your system to enable all SCSI termination (in the Adaptec SCSI BIOS) and
1147  * if needed then also pass a value to override_term to make sure that the
1148  * driver is enabling SCSI termination, then set this variable to either 0
1149  * or 1. When the driver boots, make sure there are *NO* SCSI cables
1150  * connected to your controller. If it finds and inits the controller
1151  * without problem, then the setting you passed to stpwlev was correct. If
1152  * the driver goes into a reset loop and hangs the system, then you need the
1153  * other setting for this variable. If neither setting lets the machine
1154  * boot then you have definite termination problems that may not be fixable.
1155  */
1156 static int aic7xxx_stpwlev = -1;
1157 /*
1158  * Set this to non-0 in order to force the driver to panic the kernel
1159  * and print out debugging info on a SCSI abort or reset cycle.
1160  */
1161 static int aic7xxx_panic_on_abort = 0;
1162 /*
1163  * PCI bus parity checking of the Adaptec controllers. This is somewhat
1164  * dubious at best. To my knowledge, this option has never actually
1165  * solved a PCI parity problem, but on certain machines with broken PCI
1166  * chipset configurations, it can generate tons of false error messages.
1167  * It's included in the driver for completeness.
1168  * 0 = Shut off PCI parity check
1169  * -1 = Normal polarity pci parity checking
1170  * 1 = reverse polarity pci parity checking
1171  *
1172  * NOTE: you can't actually pass -1 on the lilo prompt. So, to set this
1173  * variable to -1 you would actually want to simply pass the variable
1174  * name without a number. That will invert the 0 which will result in
1175  * -1.
1176  */
1177 static int aic7xxx_pci_parity = 0;
1178 /*
1179  * Set this to any non-0 value to cause us to dump the contents of all
1180  * the card's registers in a hex dump format tailored to each model of
1181  * controller.
1182  *
1183  * NOTE: THE CONTROLLER IS LEFT IN AN UNUSABLE STATE BY THIS OPTION.
1184  * YOU CANNOT BOOT UP WITH THIS OPTION, IT IS FOR DEBUGGING PURPOSES
1185  * ONLY
1186  */
1187 static int aic7xxx_dump_card = 0;
1188 /*
1189  * Set this to a non-0 value to make us dump out the 32 bit instruction
1190  * registers on the card after completing the sequencer download. This
1191  * allows the actual sequencer download to be verified. It is possible
1192  * to use this option and still boot up and run your system. This is
1193  * only intended for debugging purposes.
1194  */
1195 static int aic7xxx_dump_sequencer = 0;
1196 /*
1197  * Certain newer motherboards have put new PCI based devices into the
1198  * IO spaces that used to typically be occupied by VLB or EISA cards.
1199  * This overlap can cause these newer motherboards to lock up when scanned
1200  * for older EISA and VLB devices. Setting this option to non-0 will
1201  * cause the driver to skip scanning for any VLB or EISA controllers and
1202  * only support the PCI controllers. NOTE: this means that if the kernel
1203  * os compiled with PCI support disabled, then setting this to non-0
1204  * would result in never finding any devices :)
1205  */
1206 static int aic7xxx_no_probe = 0;
1207 /*
1208  * On some machines, enabling the external SCB RAM isn't reliable yet. I
1209  * haven't had time to make test patches for things like changing the
1210  * timing mode on that external RAM either. Some of those changes may
1211  * fix the problem. Until then though, we default to external SCB RAM
1212  * off and give a command line option to enable it.
1213  */
1214 static int aic7xxx_scbram = 0;
1215 /*
1216  * So that we can set how long each device is given as a selection timeout.
1217  * The table of values goes like this:
1218  * 0 - 256ms
1219  * 1 - 128ms
1220  * 2 - 64ms
1221  * 3 - 32ms
1222  * We default to 64ms because it's fast. Some old SCSI-I devices need a
1223  * longer time. The final value has to be left shifted by 3, hence 0x10
1224  * is the final value.
1225  */
1226 static int aic7xxx_seltime = 0x10;
1227 /*
1228  * So that insmod can find the variable and make it point to something
1229  */
1230 #ifdef MODULE
1231 static char * aic7xxx = NULL;
1232 module_param(aic7xxx, charp, 0);
1233 #endif
1235 #define VERBOSE_NORMAL 0x0000
1236 #define VERBOSE_NEGOTIATION 0x0001
1237 #define VERBOSE_SEQINT 0x0002
1238 #define VERBOSE_SCSIINT 0x0004
1239 #define VERBOSE_PROBE 0x0008
1240 #define VERBOSE_PROBE2 0x0010
1241 #define VERBOSE_NEGOTIATION2 0x0020
1242 #define VERBOSE_MINOR_ERROR 0x0040
1243 #define VERBOSE_TRACING 0x0080
1244 #define VERBOSE_ABORT 0x0f00
1245 #define VERBOSE_ABORT_MID 0x0100
1246 #define VERBOSE_ABORT_FIND 0x0200
1247 #define VERBOSE_ABORT_PROCESS 0x0400
1248 #define VERBOSE_ABORT_RETURN 0x0800
1249 #define VERBOSE_RESET 0xf000
1250 #define VERBOSE_RESET_MID 0x1000
1251 #define VERBOSE_RESET_FIND 0x2000
1252 #define VERBOSE_RESET_PROCESS 0x4000
1253 #define VERBOSE_RESET_RETURN 0x8000
1255  VERBOSE_PROBE; /* verbose messages */
1256 
1257 
1258 /****************************************************************************
1259  *
1260  * We're going to start putting in function declarations so that order of
1261  * functions is no longer important. As needed, they are added here.
1262  *
1263  ***************************************************************************/
1264 
1265 static int aic7xxx_release(struct Scsi_Host *host);
1266 static void aic7xxx_set_syncrate(struct aic7xxx_host *p,
1267  struct aic7xxx_syncrate *syncrate, int target, int channel,
1268  unsigned int period, unsigned int offset, unsigned char options,
1269  unsigned int type, struct aic_dev_data *aic_dev);
1270 static void aic7xxx_set_width(struct aic7xxx_host *p, int target, int channel,
1271  int lun, unsigned int width, unsigned int type,
1272  struct aic_dev_data *aic_dev);
1273 static void aic7xxx_panic_abort(struct aic7xxx_host *p, struct scsi_cmnd *cmd);
1274 static void aic7xxx_print_card(struct aic7xxx_host *p);
1275 static void aic7xxx_print_scratch_ram(struct aic7xxx_host *p);
1276 static void aic7xxx_print_sequencer(struct aic7xxx_host *p, int downloaded);
1277 #ifdef AIC7XXX_VERBOSE_DEBUGGING
1278 static void aic7xxx_check_scbs(struct aic7xxx_host *p, char *buffer);
1279 #endif
1280 
1281 /****************************************************************************
1282  *
1283  * These functions are now used. They happen to be wrapped in useless
1284  * inb/outb port read/writes around the real reads and writes because it
1285  * seems that certain very fast CPUs have a problem dealing with us when
1286  * going at full speed.
1287  *
1288  ***************************************************************************/
1289 
1290 static unsigned char
1291 aic_inb(struct aic7xxx_host *p, long port)
1292 {
1293 #ifdef MMAPIO
1294  unsigned char x;
1295  if(p->maddr)
1296  {
1297  x = readb(p->maddr + port);
1298  }
1299  else
1300  {
1301  x = inb(p->base + port);
1302  }
1303  return(x);
1304 #else
1305  return(inb(p->base + port));
1306 #endif
1307 }
1308 
1309 static void
1310 aic_outb(struct aic7xxx_host *p, unsigned char val, long port)
1311 {
1312 #ifdef MMAPIO
1313  if(p->maddr)
1314  {
1315  writeb(val, p->maddr + port);
1316  mb(); /* locked operation in order to force CPU ordering */
1317  readb(p->maddr + HCNTRL); /* dummy read to flush the PCI write */
1318  }
1319  else
1320  {
1321  outb(val, p->base + port);
1322  mb(); /* locked operation in order to force CPU ordering */
1323  }
1324 #else
1325  outb(val, p->base + port);
1326  mb(); /* locked operation in order to force CPU ordering */
1327 #endif
1328 }
1329 
1330 /*+F*************************************************************************
1331  * Function:
1332  * aic7xxx_setup
1333  *
1334  * Description:
1335  * Handle Linux boot parameters. This routine allows for assigning a value
1336  * to a parameter with a ':' between the parameter and the value.
1337  * ie. aic7xxx=unpause:0x0A,extended
1338  *-F*************************************************************************/
1339 static int
1340 aic7xxx_setup(char *s)
1341 {
1342  int i, n;
1343  char *p;
1344  char *end;
1345 
1346  static struct {
1347  const char *name;
1348  unsigned int *flag;
1349  } options[] = {
1350  { "extended", &aic7xxx_extended },
1351  { "no_reset", &aic7xxx_no_reset },
1352  { "irq_trigger", &aic7xxx_irq_trigger },
1353  { "verbose", &aic7xxx_verbose },
1354  { "reverse_scan",&aic7xxx_reverse_scan },
1355  { "override_term", &aic7xxx_override_term },
1356  { "stpwlev", &aic7xxx_stpwlev },
1357  { "no_probe", &aic7xxx_no_probe },
1358  { "panic_on_abort", &aic7xxx_panic_on_abort },
1359  { "pci_parity", &aic7xxx_pci_parity },
1360  { "dump_card", &aic7xxx_dump_card },
1361  { "dump_sequencer", &aic7xxx_dump_sequencer },
1362  { "default_queue_depth", &aic7xxx_default_queue_depth },
1363  { "scbram", &aic7xxx_scbram },
1364  { "seltime", &aic7xxx_seltime },
1365  { "tag_info", NULL }
1366  };
1367 
1368  end = strchr(s, '\0');
1369 
1370  while ((p = strsep(&s, ",.")) != NULL)
1371  {
1372  for (i = 0; i < ARRAY_SIZE(options); i++)
1373  {
1374  n = strlen(options[i].name);
1375  if (!strncmp(options[i].name, p, n))
1376  {
1377  if (!strncmp(p, "tag_info", n))
1378  {
1379  if (p[n] == ':')
1380  {
1381  char *base;
1382  char *tok, *tok_end, *tok_end2;
1383  char tok_list[] = { '.', ',', '{', '}', '\0' };
1384  int i, instance = -1, device = -1;
1385  unsigned char done = FALSE;
1386 
1387  base = p;
1388  tok = base + n + 1; /* Forward us just past the ':' */
1389  tok_end = strchr(tok, '\0');
1390  if (tok_end < end)
1391  *tok_end = ',';
1392  while(!done)
1393  {
1394  switch(*tok)
1395  {
1396  case '{':
1397  if (instance == -1)
1398  instance = 0;
1399  else if (device == -1)
1400  device = 0;
1401  tok++;
1402  break;
1403  case '}':
1404  if (device != -1)
1405  device = -1;
1406  else if (instance != -1)
1407  instance = -1;
1408  tok++;
1409  break;
1410  case ',':
1411  case '.':
1412  if (instance == -1)
1413  done = TRUE;
1414  else if (device >= 0)
1415  device++;
1416  else if (instance >= 0)
1417  instance++;
1418  if ( (device >= MAX_TARGETS) ||
1419  (instance >= ARRAY_SIZE(aic7xxx_tag_info)) )
1420  done = TRUE;
1421  tok++;
1422  if (!done)
1423  {
1424  base = tok;
1425  }
1426  break;
1427  case '\0':
1428  done = TRUE;
1429  break;
1430  default:
1431  done = TRUE;
1432  tok_end = strchr(tok, '\0');
1433  for(i=0; tok_list[i]; i++)
1434  {
1435  tok_end2 = strchr(tok, tok_list[i]);
1436  if ( (tok_end2) && (tok_end2 < tok_end) )
1437  {
1438  tok_end = tok_end2;
1439  done = FALSE;
1440  }
1441  }
1442  if ( (instance >= 0) && (device >= 0) &&
1443  (instance < ARRAY_SIZE(aic7xxx_tag_info)) &&
1444  (device < MAX_TARGETS) )
1445  aic7xxx_tag_info[instance].tag_commands[device] =
1446  simple_strtoul(tok, NULL, 0) & 0xff;
1447  tok = tok_end;
1448  break;
1449  }
1450  }
1451  while((p != base) && (p != NULL))
1452  p = strsep(&s, ",.");
1453  }
1454  }
1455  else if (p[n] == ':')
1456  {
1457  *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0);
1458  if(!strncmp(p, "seltime", n))
1459  {
1460  *(options[i].flag) = (*(options[i].flag) % 4) << 3;
1461  }
1462  }
1463  else if (!strncmp(p, "verbose", n))
1464  {
1465  *(options[i].flag) = 0xff29;
1466  }
1467  else
1468  {
1469  *(options[i].flag) = ~(*(options[i].flag));
1470  if(!strncmp(p, "seltime", n))
1471  {
1472  *(options[i].flag) = (*(options[i].flag) % 4) << 3;
1473  }
1474  }
1475  }
1476  }
1477  }
1478  return 1;
1479 }
1480 
1481 __setup("aic7xxx=", aic7xxx_setup);
1482 
1483 /*+F*************************************************************************
1484  * Function:
1485  * pause_sequencer
1486  *
1487  * Description:
1488  * Pause the sequencer and wait for it to actually stop - this
1489  * is important since the sequencer can disable pausing for critical
1490  * sections.
1491  *-F*************************************************************************/
1492 static void
1493 pause_sequencer(struct aic7xxx_host *p)
1494 {
1495  aic_outb(p, p->pause, HCNTRL);
1496  while ((aic_inb(p, HCNTRL) & PAUSE) == 0)
1497  {
1498  ;
1499  }
1500  if(p->features & AHC_ULTRA2)
1501  {
1502  aic_inb(p, CCSCBCTL);
1503  }
1504 }
1505 
1506 /*+F*************************************************************************
1507  * Function:
1508  * unpause_sequencer
1509  *
1510  * Description:
1511  * Unpause the sequencer. Unremarkable, yet done often enough to
1512  * warrant an easy way to do it.
1513  *-F*************************************************************************/
1514 static void
1515 unpause_sequencer(struct aic7xxx_host *p, int unpause_always)
1516 {
1517  if (unpause_always ||
1518  ( !(aic_inb(p, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) &&
1519  !(p->flags & AHC_HANDLING_REQINITS) ) )
1520  {
1521  aic_outb(p, p->unpause, HCNTRL);
1522  }
1523 }
1524 
1525 /*+F*************************************************************************
1526  * Function:
1527  * restart_sequencer
1528  *
1529  * Description:
1530  * Restart the sequencer program from address zero. This assumes
1531  * that the sequencer is already paused.
1532  *-F*************************************************************************/
1533 static void
1534 restart_sequencer(struct aic7xxx_host *p)
1535 {
1536  aic_outb(p, 0, SEQADDR0);
1537  aic_outb(p, 0, SEQADDR1);
1538  aic_outb(p, FASTMODE, SEQCTL);
1539 }
1540 
1541 /*
1542  * We include the aic7xxx_seq.c file here so that the other defines have
1543  * already been made, and so that it comes before the code that actually
1544  * downloads the instructions (since we don't typically use function
1545  * prototype, our code has to be ordered that way, it's a left-over from
1546  * the original driver days.....I should fix it some time DL).
1547  */
1548 #include "aic7xxx_old/aic7xxx_seq.c"
1549 
1550 /*+F*************************************************************************
1551  * Function:
1552  * aic7xxx_check_patch
1553  *
1554  * Description:
1555  * See if the next patch to download should be downloaded.
1556  *-F*************************************************************************/
1557 static int
1558 aic7xxx_check_patch(struct aic7xxx_host *p,
1559  struct sequencer_patch **start_patch, int start_instr, int *skip_addr)
1560 {
1561  struct sequencer_patch *cur_patch;
1562  struct sequencer_patch *last_patch;
1563  int num_patches;
1564 
1565  num_patches = ARRAY_SIZE(sequencer_patches);
1566  last_patch = &sequencer_patches[num_patches];
1567  cur_patch = *start_patch;
1568 
1569  while ((cur_patch < last_patch) && (start_instr == cur_patch->begin))
1570  {
1571  if (cur_patch->patch_func(p) == 0)
1572  {
1573  /*
1574  * Start rejecting code.
1575  */
1576  *skip_addr = start_instr + cur_patch->skip_instr;
1577  cur_patch += cur_patch->skip_patch;
1578  }
1579  else
1580  {
1581  /*
1582  * Found an OK patch. Advance the patch pointer to the next patch
1583  * and wait for our instruction pointer to get here.
1584  */
1585  cur_patch++;
1586  }
1587  }
1588 
1589  *start_patch = cur_patch;
1590  if (start_instr < *skip_addr)
1591  /*
1592  * Still skipping
1593  */
1594  return (0);
1595  return(1);
1596 }
1597 
1598 
1599 /*+F*************************************************************************
1600  * Function:
1601  * aic7xxx_download_instr
1602  *
1603  * Description:
1604  * Find the next patch to download.
1605  *-F*************************************************************************/
1606 static void
1607 aic7xxx_download_instr(struct aic7xxx_host *p, int instrptr,
1608  unsigned char *dconsts)
1609 {
1610  union ins_formats instr;
1611  struct ins_format1 *fmt1_ins;
1612  struct ins_format3 *fmt3_ins;
1613  unsigned char opcode;
1614 
1615  instr = *(union ins_formats*) &seqprog[instrptr * 4];
1616 
1617  instr.integer = le32_to_cpu(instr.integer);
1618 
1619  fmt1_ins = &instr.format1;
1620  fmt3_ins = NULL;
1621 
1622  /* Pull the opcode */
1623  opcode = instr.format1.opcode;
1624  switch (opcode)
1625  {
1626  case AIC_OP_JMP:
1627  case AIC_OP_JC:
1628  case AIC_OP_JNC:
1629  case AIC_OP_CALL:
1630  case AIC_OP_JNE:
1631  case AIC_OP_JNZ:
1632  case AIC_OP_JE:
1633  case AIC_OP_JZ:
1634  {
1635  struct sequencer_patch *cur_patch;
1636  int address_offset;
1637  unsigned int address;
1638  int skip_addr;
1639  int i;
1640 
1641  fmt3_ins = &instr.format3;
1642  address_offset = 0;
1643  address = fmt3_ins->address;
1644  cur_patch = sequencer_patches;
1645  skip_addr = 0;
1646 
1647  for (i = 0; i < address;)
1648  {
1649  aic7xxx_check_patch(p, &cur_patch, i, &skip_addr);
1650  if (skip_addr > i)
1651  {
1652  int end_addr;
1653 
1654  end_addr = min_t(int, address, skip_addr);
1655  address_offset += end_addr - i;
1656  i = skip_addr;
1657  }
1658  else
1659  {
1660  i++;
1661  }
1662  }
1663  address -= address_offset;
1664  fmt3_ins->address = address;
1665  /* Fall Through to the next code section */
1666  }
1667  case AIC_OP_OR:
1668  case AIC_OP_AND:
1669  case AIC_OP_XOR:
1670  case AIC_OP_ADD:
1671  case AIC_OP_ADC:
1672  case AIC_OP_BMOV:
1673  if (fmt1_ins->parity != 0)
1674  {
1675  fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
1676  }
1677  fmt1_ins->parity = 0;
1678  /* Fall Through to the next code section */
1679  case AIC_OP_ROL:
1680  if ((p->features & AHC_ULTRA2) != 0)
1681  {
1682  int i, count;
1683 
1684  /* Calculate odd parity for the instruction */
1685  for ( i=0, count=0; i < 31; i++)
1686  {
1687  unsigned int mask;
1688 
1689  mask = 0x01 << i;
1690  if ((instr.integer & mask) != 0)
1691  count++;
1692  }
1693  if (!(count & 0x01))
1694  instr.format1.parity = 1;
1695  }
1696  else
1697  {
1698  if (fmt3_ins != NULL)
1699  {
1700  instr.integer = fmt3_ins->immediate |
1701  (fmt3_ins->source << 8) |
1702  (fmt3_ins->address << 16) |
1703  (fmt3_ins->opcode << 25);
1704  }
1705  else
1706  {
1707  instr.integer = fmt1_ins->immediate |
1708  (fmt1_ins->source << 8) |
1709  (fmt1_ins->destination << 16) |
1710  (fmt1_ins->ret << 24) |
1711  (fmt1_ins->opcode << 25);
1712  }
1713  }
1714  aic_outb(p, (instr.integer & 0xff), SEQRAM);
1715  aic_outb(p, ((instr.integer >> 8) & 0xff), SEQRAM);
1716  aic_outb(p, ((instr.integer >> 16) & 0xff), SEQRAM);
1717  aic_outb(p, ((instr.integer >> 24) & 0xff), SEQRAM);
1718  udelay(10);
1719  break;
1720 
1721  default:
1722  panic("aic7xxx: Unknown opcode encountered in sequencer program.");
1723  break;
1724  }
1725 }
1726 
1727 
1728 /*+F*************************************************************************
1729  * Function:
1730  * aic7xxx_loadseq
1731  *
1732  * Description:
1733  * Load the sequencer code into the controller memory.
1734  *-F*************************************************************************/
1735 static void
1736 aic7xxx_loadseq(struct aic7xxx_host *p)
1737 {
1738  struct sequencer_patch *cur_patch;
1739  int i;
1740  int downloaded;
1741  int skip_addr;
1742  unsigned char download_consts[4] = {0, 0, 0, 0};
1743 
1745  {
1746  printk(KERN_INFO "(scsi%d) Downloading sequencer code...", p->host_no);
1747  }
1748 #if 0
1749  download_consts[TMODE_NUMCMDS] = p->num_targetcmds;
1750 #endif
1751  download_consts[TMODE_NUMCMDS] = 0;
1752  cur_patch = &sequencer_patches[0];
1753  downloaded = 0;
1754  skip_addr = 0;
1755 
1756  aic_outb(p, PERRORDIS|LOADRAM|FAILDIS|FASTMODE, SEQCTL);
1757  aic_outb(p, 0, SEQADDR0);
1758  aic_outb(p, 0, SEQADDR1);
1759 
1760  for (i = 0; i < sizeof(seqprog) / 4; i++)
1761  {
1762  if (aic7xxx_check_patch(p, &cur_patch, i, &skip_addr) == 0)
1763  {
1764  /* Skip this instruction for this configuration. */
1765  continue;
1766  }
1767  aic7xxx_download_instr(p, i, &download_consts[0]);
1768  downloaded++;
1769  }
1770 
1771  aic_outb(p, 0, SEQADDR0);
1772  aic_outb(p, 0, SEQADDR1);
1773  aic_outb(p, FASTMODE | FAILDIS, SEQCTL);
1774  unpause_sequencer(p, TRUE);
1775  mdelay(1);
1776  pause_sequencer(p);
1777  aic_outb(p, FASTMODE, SEQCTL);
1778  if (aic7xxx_verbose & VERBOSE_PROBE)
1779  {
1780  printk(" %d instructions downloaded\n", downloaded);
1781  }
1782  if (aic7xxx_dump_sequencer)
1783  aic7xxx_print_sequencer(p, downloaded);
1784 }
1785 
1786 /*+F*************************************************************************
1787  * Function:
1788  * aic7xxx_print_sequencer
1789  *
1790  * Description:
1791  * Print the contents of the sequencer memory to the screen.
1792  *-F*************************************************************************/
1793 static void
1794 aic7xxx_print_sequencer(struct aic7xxx_host *p, int downloaded)
1795 {
1796  int i, k, temp;
1797 
1798  aic_outb(p, PERRORDIS|LOADRAM|FAILDIS|FASTMODE, SEQCTL);
1799  aic_outb(p, 0, SEQADDR0);
1800  aic_outb(p, 0, SEQADDR1);
1801 
1802  k = 0;
1803  for (i=0; i < downloaded; i++)
1804  {
1805  if ( k == 0 )
1806  printk("%03x: ", i);
1807  temp = aic_inb(p, SEQRAM);
1808  temp |= (aic_inb(p, SEQRAM) << 8);
1809  temp |= (aic_inb(p, SEQRAM) << 16);
1810  temp |= (aic_inb(p, SEQRAM) << 24);
1811  printk("%08x", temp);
1812  if ( ++k == 8 )
1813  {
1814  printk("\n");
1815  k = 0;
1816  }
1817  else
1818  printk(" ");
1819  }
1820  aic_outb(p, 0, SEQADDR0);
1821  aic_outb(p, 0, SEQADDR1);
1822  aic_outb(p, FASTMODE | FAILDIS, SEQCTL);
1823  unpause_sequencer(p, TRUE);
1824  mdelay(1);
1825  pause_sequencer(p);
1826  aic_outb(p, FASTMODE, SEQCTL);
1827  printk("\n");
1828 }
1829 
1830 /*+F*************************************************************************
1831  * Function:
1832  * aic7xxx_info
1833  *
1834  * Description:
1835  * Return a string describing the driver.
1836  *-F*************************************************************************/
1837 static const char *
1838 aic7xxx_info(struct Scsi_Host *dooh)
1839 {
1840  static char buffer[256];
1841  char *bp;
1842  struct aic7xxx_host *p;
1843 
1844  bp = &buffer[0];
1845  p = (struct aic7xxx_host *)dooh->hostdata;
1846  memset(bp, 0, sizeof(buffer));
1847  strcpy(bp, "Adaptec AHA274x/284x/294x (EISA/VLB/PCI-Fast SCSI) ");
1849  strcat(bp, "/");
1851  strcat(bp, "\n");
1852  strcat(bp, " <");
1853  strcat(bp, board_names[p->board_name_index]);
1854  strcat(bp, ">");
1855 
1856  return(bp);
1857 }
1858 
1859 /*+F*************************************************************************
1860  * Function:
1861  * aic7xxx_find_syncrate
1862  *
1863  * Description:
1864  * Look up the valid period to SCSIRATE conversion in our table
1865  *-F*************************************************************************/
1866 static struct aic7xxx_syncrate *
1867 aic7xxx_find_syncrate(struct aic7xxx_host *p, unsigned int *period,
1868  unsigned int maxsync, unsigned char *options)
1869 {
1870  struct aic7xxx_syncrate *syncrate;
1871  int done = FALSE;
1872 
1873  switch(*options)
1874  {
1877  if(!(p->features & AHC_ULTRA3))
1878  {
1879  *options = 0;
1880  maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
1881  }
1882  break;
1885  if(!(p->features & AHC_ULTRA3))
1886  {
1887  *options = 0;
1888  maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
1889  }
1890  else
1891  {
1892  /*
1893  * we don't support the Quick Arbitration variants of dual edge
1894  * clocking. As it turns out, we want to send back the
1895  * same basic option, but without the QA attribute.
1896  * We know that we are responding because we would never set
1897  * these options ourself, we would only respond to them.
1898  */
1899  switch(*options)
1900  {
1902  *options = MSG_EXT_PPR_OPTION_DT_CRC;
1903  break;
1905  *options = MSG_EXT_PPR_OPTION_DT_UNITS;
1906  break;
1907  }
1908  }
1909  break;
1910  default:
1911  *options = 0;
1912  maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
1913  break;
1914  }
1915  syncrate = &aic7xxx_syncrates[maxsync];
1916  while ( (syncrate->rate[0] != NULL) &&
1917  (!(p->features & AHC_ULTRA2) || syncrate->sxfr_ultra2) )
1918  {
1919  if (*period <= syncrate->period)
1920  {
1921  switch(*options)
1922  {
1925  if(!(syncrate->sxfr_ultra2 & AHC_SYNCRATE_CRC))
1926  {
1927  done = TRUE;
1928  /*
1929  * oops, we went too low for the CRC/DualEdge signalling, so
1930  * clear the options byte
1931  */
1932  *options = 0;
1933  /*
1934  * We'll be sending a reply to this packet to set the options
1935  * properly, so unilaterally set the period as well.
1936  */
1937  *period = syncrate->period;
1938  }
1939  else
1940  {
1941  done = TRUE;
1942  if(syncrate == &aic7xxx_syncrates[maxsync])
1943  {
1944  *period = syncrate->period;
1945  }
1946  }
1947  break;
1948  default:
1949  if(!(syncrate->sxfr_ultra2 & AHC_SYNCRATE_CRC))
1950  {
1951  done = TRUE;
1952  if(syncrate == &aic7xxx_syncrates[maxsync])
1953  {
1954  *period = syncrate->period;
1955  }
1956  }
1957  break;
1958  }
1959  if(done)
1960  {
1961  break;
1962  }
1963  }
1964  syncrate++;
1965  }
1966  if ( (*period == 0) || (syncrate->rate[0] == NULL) ||
1967  ((p->features & AHC_ULTRA2) && (syncrate->sxfr_ultra2 == 0)) )
1968  {
1969  /*
1970  * Use async transfers for this target
1971  */
1972  *options = 0;
1973  *period = 255;
1974  syncrate = NULL;
1975  }
1976  return (syncrate);
1977 }
1978 
1979 
1980 /*+F*************************************************************************
1981  * Function:
1982  * aic7xxx_find_period
1983  *
1984  * Description:
1985  * Look up the valid SCSIRATE to period conversion in our table
1986  *-F*************************************************************************/
1987 static unsigned int
1988 aic7xxx_find_period(struct aic7xxx_host *p, unsigned int scsirate,
1989  unsigned int maxsync)
1990 {
1991  struct aic7xxx_syncrate *syncrate;
1992 
1993  if (p->features & AHC_ULTRA2)
1994  {
1995  scsirate &= SXFR_ULTRA2;
1996  }
1997  else
1998  {
1999  scsirate &= SXFR;
2000  }
2001 
2002  syncrate = &aic7xxx_syncrates[maxsync];
2003  while (syncrate->rate[0] != NULL)
2004  {
2005  if (p->features & AHC_ULTRA2)
2006  {
2007  if (syncrate->sxfr_ultra2 == 0)
2008  break;
2009  else if (scsirate == syncrate->sxfr_ultra2)
2010  return (syncrate->period);
2011  else if (scsirate == (syncrate->sxfr_ultra2 & ~AHC_SYNCRATE_CRC))
2012  return (syncrate->period);
2013  }
2014  else if (scsirate == (syncrate->sxfr & ~ULTRA_SXFR))
2015  {
2016  return (syncrate->period);
2017  }
2018  syncrate++;
2019  }
2020  return (0); /* async */
2021 }
2022 
2023 /*+F*************************************************************************
2024  * Function:
2025  * aic7xxx_validate_offset
2026  *
2027  * Description:
2028  * Set a valid offset value for a particular card in use and transfer
2029  * settings in use.
2030  *-F*************************************************************************/
2031 static void
2032 aic7xxx_validate_offset(struct aic7xxx_host *p,
2033  struct aic7xxx_syncrate *syncrate, unsigned int *offset, int wide)
2034 {
2035  unsigned int maxoffset;
2036 
2037  /* Limit offset to what the card (and device) can do */
2038  if (syncrate == NULL)
2039  {
2040  maxoffset = 0;
2041  }
2042  else if (p->features & AHC_ULTRA2)
2043  {
2044  maxoffset = MAX_OFFSET_ULTRA2;
2045  }
2046  else
2047  {
2048  if (wide)
2049  maxoffset = MAX_OFFSET_16BIT;
2050  else
2051  maxoffset = MAX_OFFSET_8BIT;
2052  }
2053  *offset = min(*offset, maxoffset);
2054 }
2055 
2056 /*+F*************************************************************************
2057  * Function:
2058  * aic7xxx_set_syncrate
2059  *
2060  * Description:
2061  * Set the actual syncrate down in the card and in our host structs
2062  *-F*************************************************************************/
2063 static void
2064 aic7xxx_set_syncrate(struct aic7xxx_host *p, struct aic7xxx_syncrate *syncrate,
2065  int target, int channel, unsigned int period, unsigned int offset,
2066  unsigned char options, unsigned int type, struct aic_dev_data *aic_dev)
2067 {
2068  unsigned char tindex;
2069  unsigned short target_mask;
2070  unsigned char lun, old_options;
2071  unsigned int old_period, old_offset;
2072 
2073  tindex = target | (channel << 3);
2074  target_mask = 0x01 << tindex;
2075  lun = aic_inb(p, SCB_TCL) & 0x07;
2076 
2077  if (syncrate == NULL)
2078  {
2079  period = 0;
2080  offset = 0;
2081  }
2082 
2083  old_period = aic_dev->cur.period;
2084  old_offset = aic_dev->cur.offset;
2085  old_options = aic_dev->cur.options;
2086 
2087 
2088  if (type & AHC_TRANS_CUR)
2089  {
2090  unsigned int scsirate;
2091 
2092  scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
2093  if (p->features & AHC_ULTRA2)
2094  {
2095  scsirate &= ~SXFR_ULTRA2;
2096  if (syncrate != NULL)
2097  {
2098  switch(options)
2099  {
2101  /*
2102  * mask off the CRC bit in the xfer settings
2103  */
2104  scsirate |= (syncrate->sxfr_ultra2 & ~AHC_SYNCRATE_CRC);
2105  break;
2106  default:
2107  scsirate |= syncrate->sxfr_ultra2;
2108  break;
2109  }
2110  }
2111  if (type & AHC_TRANS_ACTIVE)
2112  {
2113  aic_outb(p, offset, SCSIOFFSET);
2114  }
2115  aic_outb(p, offset, TARG_OFFSET + tindex);
2116  }
2117  else /* Not an Ultra2 controller */
2118  {
2119  scsirate &= ~(SXFR|SOFS);
2120  p->ultraenb &= ~target_mask;
2121  if (syncrate != NULL)
2122  {
2123  if (syncrate->sxfr & ULTRA_SXFR)
2124  {
2125  p->ultraenb |= target_mask;
2126  }
2127  scsirate |= (syncrate->sxfr & SXFR);
2128  scsirate |= (offset & SOFS);
2129  }
2130  if (type & AHC_TRANS_ACTIVE)
2131  {
2132  unsigned char sxfrctl0;
2133 
2134  sxfrctl0 = aic_inb(p, SXFRCTL0);
2135  sxfrctl0 &= ~FAST20;
2136  if (p->ultraenb & target_mask)
2137  sxfrctl0 |= FAST20;
2138  aic_outb(p, sxfrctl0, SXFRCTL0);
2139  }
2140  aic_outb(p, p->ultraenb & 0xff, ULTRA_ENB);
2141  aic_outb(p, (p->ultraenb >> 8) & 0xff, ULTRA_ENB + 1 );
2142  }
2143  if (type & AHC_TRANS_ACTIVE)
2144  {
2145  aic_outb(p, scsirate, SCSIRATE);
2146  }
2147  aic_outb(p, scsirate, TARG_SCSIRATE + tindex);
2148  aic_dev->cur.period = period;
2149  aic_dev->cur.offset = offset;
2150  aic_dev->cur.options = options;
2151  if ( !(type & AHC_TRANS_QUITE) &&
2153  (aic_dev->flags & DEVICE_PRINT_DTR) )
2154  {
2155  if (offset)
2156  {
2157  int rate_mod = (scsirate & WIDEXFER) ? 1 : 0;
2158 
2159  printk(INFO_LEAD "Synchronous at %s Mbyte/sec, "
2160  "offset %d.\n", p->host_no, channel, target, lun,
2161  syncrate->rate[rate_mod], offset);
2162  }
2163  else
2164  {
2165  printk(INFO_LEAD "Using asynchronous transfers.\n",
2166  p->host_no, channel, target, lun);
2167  }
2168  aic_dev->flags &= ~DEVICE_PRINT_DTR;
2169  }
2170  }
2171 
2172  if (type & AHC_TRANS_GOAL)
2173  {
2174  aic_dev->goal.period = period;
2175  aic_dev->goal.offset = offset;
2176  aic_dev->goal.options = options;
2177  }
2178 
2179  if (type & AHC_TRANS_USER)
2180  {
2181  p->user[tindex].period = period;
2182  p->user[tindex].offset = offset;
2183  p->user[tindex].options = options;
2184  }
2185 }
2186 
2187 /*+F*************************************************************************
2188  * Function:
2189  * aic7xxx_set_width
2190  *
2191  * Description:
2192  * Set the actual width down in the card and in our host structs
2193  *-F*************************************************************************/
2194 static void
2195 aic7xxx_set_width(struct aic7xxx_host *p, int target, int channel, int lun,
2196  unsigned int width, unsigned int type, struct aic_dev_data *aic_dev)
2197 {
2198  unsigned char tindex;
2199  unsigned short target_mask;
2200  unsigned int old_width;
2201 
2202  tindex = target | (channel << 3);
2203  target_mask = 1 << tindex;
2204 
2205  old_width = aic_dev->cur.width;
2206 
2207  if (type & AHC_TRANS_CUR)
2208  {
2209  unsigned char scsirate;
2210 
2211  scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
2212 
2213  scsirate &= ~WIDEXFER;
2214  if (width == MSG_EXT_WDTR_BUS_16_BIT)
2215  scsirate |= WIDEXFER;
2216 
2217  aic_outb(p, scsirate, TARG_SCSIRATE + tindex);
2218 
2219  if (type & AHC_TRANS_ACTIVE)
2220  aic_outb(p, scsirate, SCSIRATE);
2221 
2222  aic_dev->cur.width = width;
2223 
2224  if ( !(type & AHC_TRANS_QUITE) &&
2226  (aic_dev->flags & DEVICE_PRINT_DTR) )
2227  {
2228  printk(INFO_LEAD "Using %s transfers\n", p->host_no, channel, target,
2229  lun, (scsirate & WIDEXFER) ? "Wide(16bit)" : "Narrow(8bit)" );
2230  }
2231  }
2232 
2233  if (type & AHC_TRANS_GOAL)
2234  aic_dev->goal.width = width;
2235  if (type & AHC_TRANS_USER)
2236  p->user[tindex].width = width;
2237 
2238  if (aic_dev->goal.offset)
2239  {
2240  if (p->features & AHC_ULTRA2)
2241  {
2242  aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
2243  }
2244  else if (width == MSG_EXT_WDTR_BUS_16_BIT)
2245  {
2246  aic_dev->goal.offset = MAX_OFFSET_16BIT;
2247  }
2248  else
2249  {
2250  aic_dev->goal.offset = MAX_OFFSET_8BIT;
2251  }
2252  }
2253 }
2254 
2255 /*+F*************************************************************************
2256  * Function:
2257  * scbq_init
2258  *
2259  * Description:
2260  * SCB queue initialization.
2261  *
2262  *-F*************************************************************************/
2263 static void
2264 scbq_init(volatile scb_queue_type *queue)
2265 {
2266  queue->head = NULL;
2267  queue->tail = NULL;
2268 }
2269 
2270 /*+F*************************************************************************
2271  * Function:
2272  * scbq_insert_head
2273  *
2274  * Description:
2275  * Add an SCB to the head of the list.
2276  *
2277  *-F*************************************************************************/
2278 static inline void
2279 scbq_insert_head(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
2280 {
2281  scb->q_next = queue->head;
2282  queue->head = scb;
2283  if (queue->tail == NULL) /* If list was empty, update tail. */
2284  queue->tail = queue->head;
2285 }
2286 
2287 /*+F*************************************************************************
2288  * Function:
2289  * scbq_remove_head
2290  *
2291  * Description:
2292  * Remove an SCB from the head of the list.
2293  *
2294  *-F*************************************************************************/
2295 static inline struct aic7xxx_scb *
2296 scbq_remove_head(volatile scb_queue_type *queue)
2297 {
2298  struct aic7xxx_scb * scbp;
2299 
2300  scbp = queue->head;
2301  if (queue->head != NULL)
2302  queue->head = queue->head->q_next;
2303  if (queue->head == NULL) /* If list is now empty, update tail. */
2304  queue->tail = NULL;
2305  return(scbp);
2306 }
2307 
2308 /*+F*************************************************************************
2309  * Function:
2310  * scbq_remove
2311  *
2312  * Description:
2313  * Removes an SCB from the list.
2314  *
2315  *-F*************************************************************************/
2316 static inline void
2317 scbq_remove(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
2318 {
2319  if (queue->head == scb)
2320  {
2321  /* At beginning of queue, remove from head. */
2322  scbq_remove_head(queue);
2323  }
2324  else
2325  {
2326  struct aic7xxx_scb *curscb = queue->head;
2327 
2328  /*
2329  * Search until the next scb is the one we're looking for, or
2330  * we run out of queue.
2331  */
2332  while ((curscb != NULL) && (curscb->q_next != scb))
2333  {
2334  curscb = curscb->q_next;
2335  }
2336  if (curscb != NULL)
2337  {
2338  /* Found it. */
2339  curscb->q_next = scb->q_next;
2340  if (scb->q_next == NULL)
2341  {
2342  /* Update the tail when removing the tail. */
2343  queue->tail = curscb;
2344  }
2345  }
2346  }
2347 }
2348 
2349 /*+F*************************************************************************
2350  * Function:
2351  * scbq_insert_tail
2352  *
2353  * Description:
2354  * Add an SCB at the tail of the list.
2355  *
2356  *-F*************************************************************************/
2357 static inline void
2358 scbq_insert_tail(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
2359 {
2360  scb->q_next = NULL;
2361  if (queue->tail != NULL) /* Add the scb at the end of the list. */
2362  queue->tail->q_next = scb;
2363  queue->tail = scb; /* Update the tail. */
2364  if (queue->head == NULL) /* If list was empty, update head. */
2365  queue->head = queue->tail;
2366 }
2367 
2368 /*+F*************************************************************************
2369  * Function:
2370  * aic7xxx_match_scb
2371  *
2372  * Description:
2373  * Checks to see if an scb matches the target/channel as specified.
2374  * If target is ALL_TARGETS (-1), then we're looking for any device
2375  * on the specified channel; this happens when a channel is going
2376  * to be reset and all devices on that channel must be aborted.
2377  *-F*************************************************************************/
2378 static int
2379 aic7xxx_match_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb,
2380  int target, int channel, int lun, unsigned char tag)
2381 {
2382  int targ = (scb->hscb->target_channel_lun >> 4) & 0x0F;
2383  int chan = (scb->hscb->target_channel_lun >> 3) & 0x01;
2384  int slun = scb->hscb->target_channel_lun & 0x07;
2385  int match;
2386 
2387  match = ((chan == channel) || (channel == ALL_CHANNELS));
2388  if (match != 0)
2389  match = ((targ == target) || (target == ALL_TARGETS));
2390  if (match != 0)
2391  match = ((lun == slun) || (lun == ALL_LUNS));
2392  if (match != 0)
2393  match = ((tag == scb->hscb->tag) || (tag == SCB_LIST_NULL));
2394 
2395  return (match);
2396 }
2397 
2398 /*+F*************************************************************************
2399  * Function:
2400  * aic7xxx_add_curscb_to_free_list
2401  *
2402  * Description:
2403  * Adds the current scb (in SCBPTR) to the list of free SCBs.
2404  *-F*************************************************************************/
2405 static void
2406 aic7xxx_add_curscb_to_free_list(struct aic7xxx_host *p)
2407 {
2408  /*
2409  * Invalidate the tag so that aic7xxx_find_scb doesn't think
2410  * it's active
2411  */
2412  aic_outb(p, SCB_LIST_NULL, SCB_TAG);
2413  aic_outb(p, 0, SCB_CONTROL);
2414 
2415  aic_outb(p, aic_inb(p, FREE_SCBH), SCB_NEXT);
2416  aic_outb(p, aic_inb(p, SCBPTR), FREE_SCBH);
2417 }
2418 
2419 /*+F*************************************************************************
2420  * Function:
2421  * aic7xxx_rem_scb_from_disc_list
2422  *
2423  * Description:
2424  * Removes the current SCB from the disconnected list and adds it
2425  * to the free list.
2426  *-F*************************************************************************/
2427 static unsigned char
2428 aic7xxx_rem_scb_from_disc_list(struct aic7xxx_host *p, unsigned char scbptr,
2429  unsigned char prev)
2430 {
2431  unsigned char next;
2432 
2433  aic_outb(p, scbptr, SCBPTR);
2434  next = aic_inb(p, SCB_NEXT);
2435  aic7xxx_add_curscb_to_free_list(p);
2436 
2437  if (prev != SCB_LIST_NULL)
2438  {
2439  aic_outb(p, prev, SCBPTR);
2440  aic_outb(p, next, SCB_NEXT);
2441  }
2442  else
2443  {
2444  aic_outb(p, next, DISCONNECTED_SCBH);
2445  }
2446 
2447  return next;
2448 }
2449 
2450 /*+F*************************************************************************
2451  * Function:
2452  * aic7xxx_busy_target
2453  *
2454  * Description:
2455  * Set the specified target busy.
2456  *-F*************************************************************************/
2457 static inline void
2458 aic7xxx_busy_target(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2459 {
2460  p->untagged_scbs[scb->hscb->target_channel_lun] = scb->hscb->tag;
2461 }
2462 
2463 /*+F*************************************************************************
2464  * Function:
2465  * aic7xxx_index_busy_target
2466  *
2467  * Description:
2468  * Returns the index of the busy target, and optionally sets the
2469  * target inactive.
2470  *-F*************************************************************************/
2471 static inline unsigned char
2472 aic7xxx_index_busy_target(struct aic7xxx_host *p, unsigned char tcl,
2473  int unbusy)
2474 {
2475  unsigned char busy_scbid;
2476 
2477  busy_scbid = p->untagged_scbs[tcl];
2478  if (unbusy)
2479  {
2480  p->untagged_scbs[tcl] = SCB_LIST_NULL;
2481  }
2482  return (busy_scbid);
2483 }
2484 
2485 /*+F*************************************************************************
2486  * Function:
2487  * aic7xxx_find_scb
2488  *
2489  * Description:
2490  * Look through the SCB array of the card and attempt to find the
2491  * hardware SCB that corresponds to the passed in SCB. Return
2492  * SCB_LIST_NULL if unsuccessful. This routine assumes that the
2493  * card is already paused.
2494  *-F*************************************************************************/
2495 static unsigned char
2496 aic7xxx_find_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2497 {
2498  unsigned char saved_scbptr;
2499  unsigned char curindex;
2500 
2501  saved_scbptr = aic_inb(p, SCBPTR);
2502  curindex = 0;
2503  for (curindex = 0; curindex < p->scb_data->maxhscbs; curindex++)
2504  {
2505  aic_outb(p, curindex, SCBPTR);
2506  if (aic_inb(p, SCB_TAG) == scb->hscb->tag)
2507  {
2508  break;
2509  }
2510  }
2511  aic_outb(p, saved_scbptr, SCBPTR);
2512  if (curindex >= p->scb_data->maxhscbs)
2513  {
2514  curindex = SCB_LIST_NULL;
2515  }
2516 
2517  return (curindex);
2518 }
2519 
2520 /*+F*************************************************************************
2521  * Function:
2522  * aic7xxx_allocate_scb
2523  *
2524  * Description:
2525  * Get an SCB from the free list or by allocating a new one.
2526  *-F*************************************************************************/
2527 static int
2528 aic7xxx_allocate_scb(struct aic7xxx_host *p)
2529 {
2530  struct aic7xxx_scb *scbp = NULL;
2531  int scb_size = (sizeof (struct hw_scatterlist) * AIC7XXX_MAX_SG) + 12 + 6;
2532  int i;
2533  int step = PAGE_SIZE / 1024;
2534  unsigned long scb_count = 0;
2535  struct hw_scatterlist *hsgp;
2536  struct aic7xxx_scb *scb_ap;
2537  struct aic7xxx_scb_dma *scb_dma;
2538  unsigned char *bufs;
2539 
2540  if (p->scb_data->numscbs < p->scb_data->maxscbs)
2541  {
2542  /*
2543  * Calculate the optimal number of SCBs to allocate.
2544  *
2545  * NOTE: This formula works because the sizeof(sg_array) is always
2546  * 1024. Therefore, scb_size * i would always be > PAGE_SIZE *
2547  * (i/step). The (i-1) allows the left hand side of the equation
2548  * to grow into the right hand side to a point of near perfect
2549  * efficiency since scb_size * (i -1) is growing slightly faster
2550  * than the right hand side. If the number of SG array elements
2551  * is changed, this function may not be near so efficient any more.
2552  *
2553  * Since the DMA'able buffers are now allocated in a separate
2554  * chunk this algorithm has been modified to match. The '12'
2555  * and '6' factors in scb_size are for the DMA'able command byte
2556  * and sensebuffers respectively. -DaveM
2557  */
2558  for ( i=step;; i *= 2 )
2559  {
2560  if ( (scb_size * (i-1)) >= ( (PAGE_SIZE * (i/step)) - 64 ) )
2561  {
2562  i /= 2;
2563  break;
2564  }
2565  }
2566  scb_count = min( (i-1), p->scb_data->maxscbs - p->scb_data->numscbs);
2567  scb_ap = kmalloc(sizeof (struct aic7xxx_scb) * scb_count
2568  + sizeof(struct aic7xxx_scb_dma), GFP_ATOMIC);
2569  if (scb_ap == NULL)
2570  return(0);
2571  scb_dma = (struct aic7xxx_scb_dma *)&scb_ap[scb_count];
2572  hsgp = (struct hw_scatterlist *)
2573  pci_alloc_consistent(p->pdev, scb_size * scb_count,
2574  &scb_dma->dma_address);
2575  if (hsgp == NULL)
2576  {
2577  kfree(scb_ap);
2578  return(0);
2579  }
2580  bufs = (unsigned char *)&hsgp[scb_count * AIC7XXX_MAX_SG];
2581 #ifdef AIC7XXX_VERBOSE_DEBUGGING
2582  if (aic7xxx_verbose > 0xffff)
2583  {
2584  if (p->scb_data->numscbs == 0)
2585  printk(INFO_LEAD "Allocating initial %ld SCB structures.\n",
2586  p->host_no, -1, -1, -1, scb_count);
2587  else
2588  printk(INFO_LEAD "Allocating %ld additional SCB structures.\n",
2589  p->host_no, -1, -1, -1, scb_count);
2590  }
2591 #endif
2592  memset(scb_ap, 0, sizeof (struct aic7xxx_scb) * scb_count);
2593  scb_dma->dma_offset = (unsigned long)scb_dma->dma_address
2594  - (unsigned long)hsgp;
2595  scb_dma->dma_len = scb_size * scb_count;
2596  for (i=0; i < scb_count; i++)
2597  {
2598  scbp = &scb_ap[i];
2599  scbp->hscb = &p->scb_data->hscbs[p->scb_data->numscbs];
2600  scbp->sg_list = &hsgp[i * AIC7XXX_MAX_SG];
2601  scbp->sense_cmd = bufs;
2602  scbp->cmnd = bufs + 6;
2603  bufs += 12 + 6;
2604  scbp->scb_dma = scb_dma;
2605  memset(scbp->hscb, 0, sizeof(struct aic7xxx_hwscb));
2606  scbp->hscb->tag = p->scb_data->numscbs;
2607  /*
2608  * Place in the scb array; never is removed
2609  */
2610  p->scb_data->scb_array[p->scb_data->numscbs++] = scbp;
2611  scbq_insert_tail(&p->scb_data->free_scbs, scbp);
2612  }
2613  scbp->kmalloc_ptr = scb_ap;
2614  }
2615  return(scb_count);
2616 }
2617 
2618 /*+F*************************************************************************
2619  * Function:
2620  * aic7xxx_queue_cmd_complete
2621  *
2622  * Description:
2623  * Due to race conditions present in the SCSI subsystem, it is easier
2624  * to queue completed commands, then call scsi_done() on them when
2625  * we're finished. This function queues the completed commands.
2626  *-F*************************************************************************/
2627 static void
2628 aic7xxx_queue_cmd_complete(struct aic7xxx_host *p, struct scsi_cmnd *cmd)
2629 {
2631  cmd->host_scribble = (char *)p->completeq.head;
2632  p->completeq.head = cmd;
2633 }
2634 
2635 /*+F*************************************************************************
2636  * Function:
2637  * aic7xxx_done_cmds_complete
2638  *
2639  * Description:
2640  * Process the completed command queue.
2641  *-F*************************************************************************/
2642 static void aic7xxx_done_cmds_complete(struct aic7xxx_host *p)
2643 {
2644  struct scsi_cmnd *cmd;
2645 
2646  while (p->completeq.head != NULL) {
2647  cmd = p->completeq.head;
2648  p->completeq.head = (struct scsi_cmnd *) cmd->host_scribble;
2649  cmd->host_scribble = NULL;
2650  cmd->scsi_done(cmd);
2651  }
2652 }
2653 
2654 /*+F*************************************************************************
2655  * Function:
2656  * aic7xxx_free_scb
2657  *
2658  * Description:
2659  * Free the scb and insert into the free scb list.
2660  *-F*************************************************************************/
2661 static void
2662 aic7xxx_free_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2663 {
2664 
2665  scb->flags = SCB_FREE;
2666  scb->cmd = NULL;
2667  scb->sg_count = 0;
2668  scb->sg_length = 0;
2669  scb->tag_action = 0;
2670  scb->hscb->control = 0;
2671  scb->hscb->target_status = 0;
2672  scb->hscb->target_channel_lun = SCB_LIST_NULL;
2673 
2674  scbq_insert_head(&p->scb_data->free_scbs, scb);
2675 }
2676 
2677 /*+F*************************************************************************
2678  * Function:
2679  * aic7xxx_done
2680  *
2681  * Description:
2682  * Calls the higher level scsi done function and frees the scb.
2683  *-F*************************************************************************/
2684 static void
2685 aic7xxx_done(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2686 {
2687  struct scsi_cmnd *cmd = scb->cmd;
2688  struct aic_dev_data *aic_dev = cmd->device->hostdata;
2689  int tindex = TARGET_INDEX(cmd);
2690  struct aic7xxx_scb *scbp;
2691  unsigned char queue_depth;
2692 
2693  scsi_dma_unmap(cmd);
2694 
2695  if (scb->flags & SCB_SENSE)
2696  {
2697  pci_unmap_single(p->pdev,
2698  le32_to_cpu(scb->sg_list[0].address),
2701  }
2702  if (scb->flags & SCB_RECOVERY_SCB)
2703  {
2704  p->flags &= ~AHC_ABORT_PENDING;
2705  }
2706  if (scb->flags & (SCB_RESET|SCB_ABORT))
2707  {
2708  cmd->result |= (DID_RESET << 16);
2709  }
2710 
2711  if ((scb->flags & SCB_MSGOUT_BITS) != 0)
2712  {
2713  unsigned short mask;
2714  int message_error = FALSE;
2715 
2716  mask = 0x01 << tindex;
2717 
2718  /*
2719  * Check to see if we get an invalid message or a message error
2720  * after failing to negotiate a wide or sync transfer message.
2721  */
2722  if ((scb->flags & SCB_SENSE) &&
2723  ((scb->cmd->sense_buffer[12] == 0x43) || /* INVALID_MESSAGE */
2724  (scb->cmd->sense_buffer[12] == 0x49))) /* MESSAGE_ERROR */
2725  {
2726  message_error = TRUE;
2727  }
2728 
2729  if (scb->flags & SCB_MSGOUT_WDTR)
2730  {
2731  if (message_error)
2732  {
2733  if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2734  (aic_dev->flags & DEVICE_PRINT_DTR) )
2735  {
2736  printk(INFO_LEAD "Device failed to complete Wide Negotiation "
2737  "processing and\n", p->host_no, CTL_OF_SCB(scb));
2738  printk(INFO_LEAD "returned a sense error code for invalid message, "
2739  "disabling future\n", p->host_no, CTL_OF_SCB(scb));
2740  printk(INFO_LEAD "Wide negotiation to this device.\n", p->host_no,
2741  CTL_OF_SCB(scb));
2742  }
2743  aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
2744  }
2745  }
2746  if (scb->flags & SCB_MSGOUT_SDTR)
2747  {
2748  if (message_error)
2749  {
2750  if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2751  (aic_dev->flags & DEVICE_PRINT_DTR) )
2752  {
2753  printk(INFO_LEAD "Device failed to complete Sync Negotiation "
2754  "processing and\n", p->host_no, CTL_OF_SCB(scb));
2755  printk(INFO_LEAD "returned a sense error code for invalid message, "
2756  "disabling future\n", p->host_no, CTL_OF_SCB(scb));
2757  printk(INFO_LEAD "Sync negotiation to this device.\n", p->host_no,
2758  CTL_OF_SCB(scb));
2759  aic_dev->flags &= ~DEVICE_PRINT_DTR;
2760  }
2761  aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
2762  }
2763  }
2764  if (scb->flags & SCB_MSGOUT_PPR)
2765  {
2766  if(message_error)
2767  {
2768  if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2769  (aic_dev->flags & DEVICE_PRINT_DTR) )
2770  {
2771  printk(INFO_LEAD "Device failed to complete Parallel Protocol "
2772  "Request processing and\n", p->host_no, CTL_OF_SCB(scb));
2773  printk(INFO_LEAD "returned a sense error code for invalid message, "
2774  "disabling future\n", p->host_no, CTL_OF_SCB(scb));
2775  printk(INFO_LEAD "Parallel Protocol Request negotiation to this "
2776  "device.\n", p->host_no, CTL_OF_SCB(scb));
2777  }
2778  /*
2779  * Disable PPR negotiation and revert back to WDTR and SDTR setup
2780  */
2781  aic_dev->needppr = aic_dev->needppr_copy = 0;
2782  aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
2783  aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
2784  }
2785  }
2786  }
2787 
2788  queue_depth = aic_dev->temp_q_depth;
2789  if (queue_depth >= aic_dev->active_cmds)
2790  {
2791  scbp = scbq_remove_head(&aic_dev->delayed_scbs);
2792  if (scbp)
2793  {
2794  if (queue_depth == 1)
2795  {
2796  /*
2797  * Give extra preference to untagged devices, such as CD-R devices
2798  * This makes it more likely that a drive *won't* stuff up while
2799  * waiting on data at a critical time, such as CD-R writing and
2800  * audio CD ripping operations. Should also benefit tape drives.
2801  */
2802  scbq_insert_head(&p->waiting_scbs, scbp);
2803  }
2804  else
2805  {
2806  scbq_insert_tail(&p->waiting_scbs, scbp);
2807  }
2808 #ifdef AIC7XXX_VERBOSE_DEBUGGING
2809  if (aic7xxx_verbose > 0xffff)
2810  printk(INFO_LEAD "Moving SCB from delayed to waiting queue.\n",
2811  p->host_no, CTL_OF_SCB(scbp));
2812 #endif
2813  if (queue_depth > aic_dev->active_cmds)
2814  {
2815  scbp = scbq_remove_head(&aic_dev->delayed_scbs);
2816  if (scbp)
2817  scbq_insert_tail(&p->waiting_scbs, scbp);
2818  }
2819  }
2820  }
2821  if (!(scb->tag_action))
2822  {
2823  aic7xxx_index_busy_target(p, scb->hscb->target_channel_lun,
2824  /* unbusy */ TRUE);
2825  if (cmd->device->simple_tags)
2826  {
2827  aic_dev->temp_q_depth = aic_dev->max_q_depth;
2828  }
2829  }
2830  if(scb->flags & SCB_DTR_SCB)
2831  {
2832  aic_dev->dtr_pending = 0;
2833  }
2834  aic_dev->active_cmds--;
2835  p->activescbs--;
2836 
2837  if ((scb->sg_length >= 512) && (((cmd->result >> 16) & 0xf) == DID_OK))
2838  {
2839  long *ptr;
2840  int x, i;
2841 
2842 
2843  if (rq_data_dir(cmd->request) == WRITE)
2844  {
2845  aic_dev->w_total++;
2846  ptr = aic_dev->w_bins;
2847  }
2848  else
2849  {
2850  aic_dev->r_total++;
2851  ptr = aic_dev->r_bins;
2852  }
2853  x = scb->sg_length;
2854  x >>= 10;
2855  for(i=0; i<6; i++)
2856  {
2857  x >>= 2;
2858  if(!x) {
2859  ptr[i]++;
2860  break;
2861  }
2862  }
2863  if(i == 6 && x)
2864  ptr[5]++;
2865  }
2866  aic7xxx_free_scb(p, scb);
2867  aic7xxx_queue_cmd_complete(p, cmd);
2868 
2869 }
2870 
2871 /*+F*************************************************************************
2872  * Function:
2873  * aic7xxx_run_done_queue
2874  *
2875  * Description:
2876  * Calls the aic7xxx_done() for the scsi_cmnd of each scb in the
2877  * aborted list, and adds each scb to the free list. If complete
2878  * is TRUE, we also process the commands complete list.
2879  *-F*************************************************************************/
2880 static void
2881 aic7xxx_run_done_queue(struct aic7xxx_host *p, /*complete*/ int complete)
2882 {
2883  struct aic7xxx_scb *scb;
2884  int i, found = 0;
2885 
2886  for (i = 0; i < p->scb_data->numscbs; i++)
2887  {
2888  scb = p->scb_data->scb_array[i];
2889  if (scb->flags & SCB_QUEUED_FOR_DONE)
2890  {
2891  if (scb->flags & SCB_QUEUE_FULL)
2892  {
2893  scb->cmd->result = QUEUE_FULL << 1;
2894  }
2895  else
2896  {
2898  printk(INFO_LEAD "Aborting scb %d\n",
2899  p->host_no, CTL_OF_SCB(scb), scb->hscb->tag);
2900  /*
2901  * Clear any residual information since the normal aic7xxx_done() path
2902  * doesn't touch the residuals.
2903  */
2904  scb->hscb->residual_SG_segment_count = 0;
2905  scb->hscb->residual_data_count[0] = 0;
2906  scb->hscb->residual_data_count[1] = 0;
2907  scb->hscb->residual_data_count[2] = 0;
2908  }
2909  found++;
2910  aic7xxx_done(p, scb);
2911  }
2912  }
2914  {
2915  printk(INFO_LEAD "%d commands found and queued for "
2916  "completion.\n", p->host_no, -1, -1, -1, found);
2917  }
2918  if (complete)
2919  {
2920  aic7xxx_done_cmds_complete(p);
2921  }
2922 }
2923 
2924 /*+F*************************************************************************
2925  * Function:
2926  * aic7xxx_abort_waiting_scb
2927  *
2928  * Description:
2929  * Manipulate the waiting for selection list and return the
2930  * scb that follows the one that we remove.
2931  *-F*************************************************************************/
2932 static unsigned char
2933 aic7xxx_abort_waiting_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb,
2934  unsigned char scbpos, unsigned char prev)
2935 {
2936  unsigned char curscb, next;
2937 
2938  /*
2939  * Select the SCB we want to abort and pull the next pointer out of it.
2940  */
2941  curscb = aic_inb(p, SCBPTR);
2942  aic_outb(p, scbpos, SCBPTR);
2943  next = aic_inb(p, SCB_NEXT);
2944 
2945  aic7xxx_add_curscb_to_free_list(p);
2946 
2947  /*
2948  * Update the waiting list
2949  */
2950  if (prev == SCB_LIST_NULL)
2951  {
2952  /*
2953  * First in the list
2954  */
2955  aic_outb(p, next, WAITING_SCBH);
2956  }
2957  else
2958  {
2959  /*
2960  * Select the scb that pointed to us and update its next pointer.
2961  */
2962  aic_outb(p, prev, SCBPTR);
2963  aic_outb(p, next, SCB_NEXT);
2964  }
2965  /*
2966  * Point us back at the original scb position and inform the SCSI
2967  * system that the command has been aborted.
2968  */
2969  aic_outb(p, curscb, SCBPTR);
2970  return (next);
2971 }
2972 
2973 /*+F*************************************************************************
2974  * Function:
2975  * aic7xxx_search_qinfifo
2976  *
2977  * Description:
2978  * Search the queue-in FIFO for matching SCBs and conditionally
2979  * requeue. Returns the number of matching SCBs.
2980  *-F*************************************************************************/
2981 static int
2982 aic7xxx_search_qinfifo(struct aic7xxx_host *p, int target, int channel,
2983  int lun, unsigned char tag, int flags, int requeue,
2984  volatile scb_queue_type *queue)
2985 {
2986  int found;
2987  unsigned char qinpos, qintail;
2988  struct aic7xxx_scb *scbp;
2989 
2990  found = 0;
2991  qinpos = aic_inb(p, QINPOS);
2992  qintail = p->qinfifonext;
2993 
2994  p->qinfifonext = qinpos;
2995 
2996  while (qinpos != qintail)
2997  {
2998  scbp = p->scb_data->scb_array[p->qinfifo[qinpos++]];
2999  if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3000  {
3001  /*
3002  * We found an scb that needs to be removed.
3003  */
3004  if (requeue && (queue != NULL))
3005  {
3006  if (scbp->flags & SCB_WAITINGQ)
3007  {
3008  scbq_remove(queue, scbp);
3009  scbq_remove(&p->waiting_scbs, scbp);
3010  scbq_remove(&AIC_DEV(scbp->cmd)->delayed_scbs, scbp);
3011  AIC_DEV(scbp->cmd)->active_cmds++;
3012  p->activescbs++;
3013  }
3014  scbq_insert_tail(queue, scbp);
3015  AIC_DEV(scbp->cmd)->active_cmds--;
3016  p->activescbs--;
3017  scbp->flags |= SCB_WAITINGQ;
3018  if ( !(scbp->tag_action & TAG_ENB) )
3019  {
3020  aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
3021  TRUE);
3022  }
3023  }
3024  else if (requeue)
3025  {
3026  p->qinfifo[p->qinfifonext++] = scbp->hscb->tag;
3027  }
3028  else
3029  {
3030  /*
3031  * Preserve any SCB_RECOVERY_SCB flags on this scb then set the
3032  * flags we were called with, presumeably so aic7xxx_run_done_queue
3033  * can find this scb
3034  */
3035  scbp->flags = flags | (scbp->flags & SCB_RECOVERY_SCB);
3036  if (aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
3037  FALSE) == scbp->hscb->tag)
3038  {
3039  aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
3040  TRUE);
3041  }
3042  }
3043  found++;
3044  }
3045  else
3046  {
3047  p->qinfifo[p->qinfifonext++] = scbp->hscb->tag;
3048  }
3049  }
3050  /*
3051  * Now that we've done the work, clear out any left over commands in the
3052  * qinfifo and update the KERNEL_QINPOS down on the card.
3053  *
3054  * NOTE: This routine expect the sequencer to already be paused when
3055  * it is run....make sure it's that way!
3056  */
3057  qinpos = p->qinfifonext;
3058  while(qinpos != qintail)
3059  {
3060  p->qinfifo[qinpos++] = SCB_LIST_NULL;
3061  }
3062  if (p->features & AHC_QUEUE_REGS)
3063  aic_outb(p, p->qinfifonext, HNSCB_QOFF);
3064  else
3065  aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
3066 
3067  return (found);
3068 }
3069 
3070 /*+F*************************************************************************
3071  * Function:
3072  * aic7xxx_scb_on_qoutfifo
3073  *
3074  * Description:
3075  * Is the scb that was passed to us currently on the qoutfifo?
3076  *-F*************************************************************************/
3077 static int
3078 aic7xxx_scb_on_qoutfifo(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
3079 {
3080  int i=0;
3081 
3082  while(p->qoutfifo[(p->qoutfifonext + i) & 0xff ] != SCB_LIST_NULL)
3083  {
3084  if(p->qoutfifo[(p->qoutfifonext + i) & 0xff ] == scb->hscb->tag)
3085  return TRUE;
3086  else
3087  i++;
3088  }
3089  return FALSE;
3090 }
3091 
3092 
3093 /*+F*************************************************************************
3094  * Function:
3095  * aic7xxx_reset_device
3096  *
3097  * Description:
3098  * The device at the given target/channel has been reset. Abort
3099  * all active and queued scbs for that target/channel. This function
3100  * need not worry about linked next pointers because if was a MSG_ABORT_TAG
3101  * then we had a tagged command (no linked next), if it was MSG_ABORT or
3102  * MSG_BUS_DEV_RESET then the device won't know about any commands any more
3103  * and no busy commands will exist, and if it was a bus reset, then nothing
3104  * knows about any linked next commands any more. In all cases, we don't
3105  * need to worry about the linked next or busy scb, we just need to clear
3106  * them.
3107  *-F*************************************************************************/
3108 static void
3109 aic7xxx_reset_device(struct aic7xxx_host *p, int target, int channel,
3110  int lun, unsigned char tag)
3111 {
3112  struct aic7xxx_scb *scbp, *prev_scbp;
3113  struct scsi_device *sd;
3114  unsigned char active_scb, tcl, scb_tag;
3115  int i = 0, init_lists = FALSE;
3116  struct aic_dev_data *aic_dev;
3117 
3118  /*
3119  * Restore this when we're done
3120  */
3121  active_scb = aic_inb(p, SCBPTR);
3122  scb_tag = aic_inb(p, SCB_TAG);
3123 
3125  {
3126  printk(INFO_LEAD "Reset device, hardware_scb %d,\n",
3127  p->host_no, channel, target, lun, active_scb);
3128  printk(INFO_LEAD "Current scb %d, SEQADDR 0x%x, LASTPHASE "
3129  "0x%x\n",
3130  p->host_no, channel, target, lun, scb_tag,
3131  aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
3132  aic_inb(p, LASTPHASE));
3133  printk(INFO_LEAD "SG_CACHEPTR 0x%x, SG_COUNT %d, SCSISIGI 0x%x\n",
3134  p->host_no, channel, target, lun,
3135  (p->features & AHC_ULTRA2) ? aic_inb(p, SG_CACHEPTR) : 0,
3136  aic_inb(p, SG_COUNT), aic_inb(p, SCSISIGI));
3137  printk(INFO_LEAD "SSTAT0 0x%x, SSTAT1 0x%x, SSTAT2 0x%x\n",
3138  p->host_no, channel, target, lun, aic_inb(p, SSTAT0),
3139  aic_inb(p, SSTAT1), aic_inb(p, SSTAT2));
3140  }
3141 
3142  /*
3143  * Deal with the busy target and linked next issues.
3144  */
3145  list_for_each_entry(aic_dev, &p->aic_devs, list)
3146  {
3148  printk(INFO_LEAD "processing aic_dev %p\n", p->host_no, channel, target,
3149  lun, aic_dev);
3150  sd = aic_dev->SDptr;
3151 
3152  if((target != ALL_TARGETS && target != sd->id) ||
3153  (channel != ALL_CHANNELS && channel != sd->channel))
3154  continue;
3156  printk(INFO_LEAD "Cleaning up status information "
3157  "and delayed_scbs.\n", p->host_no, sd->channel, sd->id, sd->lun);
3158  aic_dev->flags &= ~BUS_DEVICE_RESET_PENDING;
3159  if ( tag == SCB_LIST_NULL )
3160  {
3161  aic_dev->dtr_pending = 0;
3162  aic_dev->needppr = aic_dev->needppr_copy;
3163  aic_dev->needsdtr = aic_dev->needsdtr_copy;
3164  aic_dev->needwdtr = aic_dev->needwdtr_copy;
3165  aic_dev->flags = DEVICE_PRINT_DTR;
3166  aic_dev->temp_q_depth = aic_dev->max_q_depth;
3167  }
3168  tcl = (sd->id << 4) | (sd->channel << 3) | sd->lun;
3169  if ( (aic7xxx_index_busy_target(p, tcl, FALSE) == tag) ||
3170  (tag == SCB_LIST_NULL) )
3171  aic7xxx_index_busy_target(p, tcl, /* unbusy */ TRUE);
3172  prev_scbp = NULL;
3173  scbp = aic_dev->delayed_scbs.head;
3174  while (scbp != NULL)
3175  {
3176  prev_scbp = scbp;
3177  scbp = scbp->q_next;
3178  if (aic7xxx_match_scb(p, prev_scbp, target, channel, lun, tag))
3179  {
3180  scbq_remove(&aic_dev->delayed_scbs, prev_scbp);
3181  if (prev_scbp->flags & SCB_WAITINGQ)
3182  {
3183  aic_dev->active_cmds++;
3184  p->activescbs++;
3185  }
3186  prev_scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3187  prev_scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3188  }
3189  }
3190  }
3191 
3193  printk(INFO_LEAD "Cleaning QINFIFO.\n", p->host_no, channel, target, lun );
3194  aic7xxx_search_qinfifo(p, target, channel, lun, tag,
3195  SCB_RESET | SCB_QUEUED_FOR_DONE, /* requeue */ FALSE, NULL);
3196 
3197 /*
3198  * Search the waiting_scbs queue for matches, this catches any SCB_QUEUED
3199  * ABORT/RESET commands.
3200  */
3202  printk(INFO_LEAD "Cleaning waiting_scbs.\n", p->host_no, channel,
3203  target, lun );
3204  {
3205  struct aic7xxx_scb *scbp, *prev_scbp;
3206 
3207  prev_scbp = NULL;
3208  scbp = p->waiting_scbs.head;
3209  while (scbp != NULL)
3210  {
3211  prev_scbp = scbp;
3212  scbp = scbp->q_next;
3213  if (aic7xxx_match_scb(p, prev_scbp, target, channel, lun, tag))
3214  {
3215  scbq_remove(&p->waiting_scbs, prev_scbp);
3216  if (prev_scbp->flags & SCB_WAITINGQ)
3217  {
3218  AIC_DEV(prev_scbp->cmd)->active_cmds++;
3219  p->activescbs++;
3220  }
3221  prev_scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3222  prev_scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3223  }
3224  }
3225  }
3226 
3227 
3228  /*
3229  * Search waiting for selection list.
3230  */
3232  printk(INFO_LEAD "Cleaning waiting for selection "
3233  "list.\n", p->host_no, channel, target, lun);
3234  {
3235  unsigned char next, prev, scb_index;
3236 
3237  next = aic_inb(p, WAITING_SCBH); /* Start at head of list. */
3238  prev = SCB_LIST_NULL;
3239  while (next != SCB_LIST_NULL)
3240  {
3241  aic_outb(p, next, SCBPTR);
3242  scb_index = aic_inb(p, SCB_TAG);
3243  if (scb_index >= p->scb_data->numscbs)
3244  {
3245  /*
3246  * No aic7xxx_verbose check here.....we want to see this since it
3247  * means either the kernel driver or the sequencer screwed things up
3248  */
3249  printk(WARN_LEAD "Waiting List inconsistency; SCB index=%d, "
3250  "numscbs=%d\n", p->host_no, channel, target, lun, scb_index,
3251  p->scb_data->numscbs);
3252  next = aic_inb(p, SCB_NEXT);
3253  aic7xxx_add_curscb_to_free_list(p);
3254  }
3255  else
3256  {
3257  scbp = p->scb_data->scb_array[scb_index];
3258  if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3259  {
3260  next = aic7xxx_abort_waiting_scb(p, scbp, next, prev);
3261  if (scbp->flags & SCB_WAITINGQ)
3262  {
3263  AIC_DEV(scbp->cmd)->active_cmds++;
3264  p->activescbs++;
3265  }
3266  scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3267  scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3268  if (prev == SCB_LIST_NULL)
3269  {
3270  /*
3271  * This is either the first scb on the waiting list, or we
3272  * have already yanked the first and haven't left any behind.
3273  * Either way, we need to turn off the selection hardware if
3274  * it isn't already off.
3275  */
3276  aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
3277  aic_outb(p, CLRSELTIMEO, CLRSINT1);
3278  }
3279  }
3280  else
3281  {
3282  prev = next;
3283  next = aic_inb(p, SCB_NEXT);
3284  }
3285  }
3286  }
3287  }
3288 
3289  /*
3290  * Go through disconnected list and remove any entries we have queued
3291  * for completion, zeroing their control byte too.
3292  */
3294  printk(INFO_LEAD "Cleaning disconnected scbs "
3295  "list.\n", p->host_no, channel, target, lun);
3296  if (p->flags & AHC_PAGESCBS)
3297  {
3298  unsigned char next, prev, scb_index;
3299 
3300  next = aic_inb(p, DISCONNECTED_SCBH);
3301  prev = SCB_LIST_NULL;
3302  while (next != SCB_LIST_NULL)
3303  {
3304  aic_outb(p, next, SCBPTR);
3305  scb_index = aic_inb(p, SCB_TAG);
3306  if (scb_index > p->scb_data->numscbs)
3307  {
3308  printk(WARN_LEAD "Disconnected List inconsistency; SCB index=%d, "
3309  "numscbs=%d\n", p->host_no, channel, target, lun, scb_index,
3310  p->scb_data->numscbs);
3311  next = aic7xxx_rem_scb_from_disc_list(p, next, prev);
3312  }
3313  else
3314  {
3315  scbp = p->scb_data->scb_array[scb_index];
3316  if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3317  {
3318  next = aic7xxx_rem_scb_from_disc_list(p, next, prev);
3319  if (scbp->flags & SCB_WAITINGQ)
3320  {
3321  AIC_DEV(scbp->cmd)->active_cmds++;
3322  p->activescbs++;
3323  }
3324  scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3325  scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3326  scbp->hscb->control = 0;
3327  }
3328  else
3329  {
3330  prev = next;
3331  next = aic_inb(p, SCB_NEXT);
3332  }
3333  }
3334  }
3335  }
3336 
3337  /*
3338  * Walk the free list making sure no entries on the free list have
3339  * a valid SCB_TAG value or SCB_CONTROL byte.
3340  */
3341  if (p->flags & AHC_PAGESCBS)
3342  {
3343  unsigned char next;
3344 
3345  next = aic_inb(p, FREE_SCBH);
3346  while (next != SCB_LIST_NULL)
3347  {
3348  aic_outb(p, next, SCBPTR);
3349  if (aic_inb(p, SCB_TAG) < p->scb_data->numscbs)
3350  {
3351  printk(WARN_LEAD "Free list inconsistency!.\n", p->host_no, channel,
3352  target, lun);
3353  init_lists = TRUE;
3354  next = SCB_LIST_NULL;
3355  }
3356  else
3357  {
3358  aic_outb(p, SCB_LIST_NULL, SCB_TAG);
3359  aic_outb(p, 0, SCB_CONTROL);
3360  next = aic_inb(p, SCB_NEXT);
3361  }
3362  }
3363  }
3364 
3365  /*
3366  * Go through the hardware SCB array looking for commands that
3367  * were active but not on any list.
3368  */
3369  if (init_lists)
3370  {
3371  aic_outb(p, SCB_LIST_NULL, FREE_SCBH);
3372  aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
3373  aic_outb(p, SCB_LIST_NULL, DISCONNECTED_SCBH);
3374  }
3375  for (i = p->scb_data->maxhscbs - 1; i >= 0; i--)
3376  {
3377  unsigned char scbid;
3378 
3379  aic_outb(p, i, SCBPTR);
3380  if (init_lists)
3381  {
3382  aic_outb(p, SCB_LIST_NULL, SCB_TAG);
3383  aic_outb(p, SCB_LIST_NULL, SCB_NEXT);
3384  aic_outb(p, 0, SCB_CONTROL);
3385  aic7xxx_add_curscb_to_free_list(p);
3386  }
3387  else
3388  {
3389  scbid = aic_inb(p, SCB_TAG);
3390  if (scbid < p->scb_data->numscbs)
3391  {
3392  scbp = p->scb_data->scb_array[scbid];
3393  if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3394  {
3395  aic_outb(p, 0, SCB_CONTROL);
3396  aic_outb(p, SCB_LIST_NULL, SCB_TAG);
3397  aic7xxx_add_curscb_to_free_list(p);
3398  }
3399  }
3400  }
3401  }
3402 
3403  /*
3404  * Go through the entire SCB array now and look for commands for
3405  * for this target that are stillactive. These are other (most likely
3406  * tagged) commands that were disconnected when the reset occurred.
3407  * Any commands we find here we know this about, it wasn't on any queue,
3408  * it wasn't in the qinfifo, it wasn't in the disconnected or waiting
3409  * lists, so it really must have been a paged out SCB. In that case,
3410  * we shouldn't need to bother with updating any counters, just mark
3411  * the correct flags and go on.
3412  */
3413  for (i = 0; i < p->scb_data->numscbs; i++)
3414  {
3415  scbp = p->scb_data->scb_array[i];
3416  if ((scbp->flags & SCB_ACTIVE) &&
3417  aic7xxx_match_scb(p, scbp, target, channel, lun, tag) &&
3418  !aic7xxx_scb_on_qoutfifo(p, scbp))
3419  {
3420  if (scbp->flags & SCB_WAITINGQ)
3421  {
3422  scbq_remove(&p->waiting_scbs, scbp);
3423  scbq_remove(&AIC_DEV(scbp->cmd)->delayed_scbs, scbp);
3424  AIC_DEV(scbp->cmd)->active_cmds++;
3425  p->activescbs++;
3426  }
3427  scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3428  scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3429  }
3430  }
3431 
3432  aic_outb(p, active_scb, SCBPTR);
3433 }
3434 
3435 
3436 /*+F*************************************************************************
3437  * Function:
3438  * aic7xxx_clear_intstat
3439  *
3440  * Description:
3441  * Clears the interrupt status.
3442  *-F*************************************************************************/
3443 static void
3444 aic7xxx_clear_intstat(struct aic7xxx_host *p)
3445 {
3446  /* Clear any interrupt conditions this may have caused. */
3447  aic_outb(p, CLRSELDO | CLRSELDI | CLRSELINGO, CLRSINT0);
3448  aic_outb(p, CLRSELTIMEO | CLRATNO | CLRSCSIRSTI | CLRBUSFREE | CLRSCSIPERR |
3450  aic_outb(p, CLRSCSIINT | CLRSEQINT | CLRBRKADRINT | CLRPARERR, CLRINT);
3451 }
3452 
3453 /*+F*************************************************************************
3454  * Function:
3455  * aic7xxx_reset_current_bus
3456  *
3457  * Description:
3458  * Reset the current SCSI bus.
3459  *-F*************************************************************************/
3460 static void
3461 aic7xxx_reset_current_bus(struct aic7xxx_host *p)
3462 {
3463 
3464  /* Disable reset interrupts. */
3465  aic_outb(p, aic_inb(p, SIMODE1) & ~ENSCSIRST, SIMODE1);
3466 
3467  /* Turn off the bus' current operations, after all, we shouldn't have any
3468  * valid commands left to cause a RSELI and SELO once we've tossed the
3469  * bus away with this reset, so we might as well shut down the sequencer
3470  * until the bus is restarted as opposed to saving the current settings
3471  * and restoring them (which makes no sense to me). */
3472 
3473  /* Turn on the bus reset. */
3474  aic_outb(p, aic_inb(p, SCSISEQ) | SCSIRSTO, SCSISEQ);
3475  while ( (aic_inb(p, SCSISEQ) & SCSIRSTO) == 0)
3476  mdelay(5);
3477 
3478  /*
3479  * Some of the new Ultra2 chipsets need a longer delay after a chip
3480  * reset than just the init setup creates, so we have to delay here
3481  * before we go into a reset in order to make the chips happy.
3482  */
3483  if (p->features & AHC_ULTRA2)
3484  mdelay(250);
3485  else
3486  mdelay(50);
3487 
3488  /* Turn off the bus reset. */
3489  aic_outb(p, 0, SCSISEQ);
3490  mdelay(10);
3491 
3492  aic7xxx_clear_intstat(p);
3493  /* Re-enable reset interrupts. */
3494  aic_outb(p, aic_inb(p, SIMODE1) | ENSCSIRST, SIMODE1);
3495 
3496 }
3497 
3498 /*+F*************************************************************************
3499  * Function:
3500  * aic7xxx_reset_channel
3501  *
3502  * Description:
3503  * Reset the channel.
3504  *-F*************************************************************************/
3505 static void
3506 aic7xxx_reset_channel(struct aic7xxx_host *p, int channel, int initiate_reset)
3507 {
3508  unsigned long offset_min, offset_max;
3509  unsigned char sblkctl;
3510  int cur_channel;
3511 
3513  printk(INFO_LEAD "Reset channel called, %s initiate reset.\n",
3514  p->host_no, channel, -1, -1, (initiate_reset==TRUE) ? "will" : "won't" );
3515 
3516 
3517  if (channel == 1)
3518  {
3519  offset_min = 8;
3520  offset_max = 16;
3521  }
3522  else
3523  {
3524  if (p->features & AHC_TWIN)
3525  {
3526  /* Channel A */
3527  offset_min = 0;
3528  offset_max = 8;
3529  }
3530  else
3531  {
3532  offset_min = 0;
3533  if (p->features & AHC_WIDE)
3534  {
3535  offset_max = 16;
3536  }
3537  else
3538  {
3539  offset_max = 8;
3540  }
3541  }
3542  }
3543 
3544  while (offset_min < offset_max)
3545  {
3546  /*
3547  * Revert to async/narrow transfers until we renegotiate.
3548  */
3549  aic_outb(p, 0, TARG_SCSIRATE + offset_min);
3550  if (p->features & AHC_ULTRA2)
3551  {
3552  aic_outb(p, 0, TARG_OFFSET + offset_min);
3553  }
3554  offset_min++;
3555  }
3556 
3557  /*
3558  * Reset the bus and unpause/restart the controller
3559  */
3560  sblkctl = aic_inb(p, SBLKCTL);
3561  if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
3562  cur_channel = (sblkctl & SELBUSB) >> 3;
3563  else
3564  cur_channel = 0;
3565  if ( (cur_channel != channel) && (p->features & AHC_TWIN) )
3566  {
3567  /*
3568  * Case 1: Command for another bus is active
3569  */
3570  if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3571  printk(INFO_LEAD "Stealthily resetting idle channel.\n", p->host_no,
3572  channel, -1, -1);
3573  /*
3574  * Stealthily reset the other bus without upsetting the current bus.
3575  */
3576  aic_outb(p, sblkctl ^ SELBUSB, SBLKCTL);
3577  aic_outb(p, aic_inb(p, SIMODE1) & ~ENBUSFREE, SIMODE1);
3578  if (initiate_reset)
3579  {
3580  aic7xxx_reset_current_bus(p);
3581  }
3582  aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP), SCSISEQ);
3583  aic7xxx_clear_intstat(p);
3584  aic_outb(p, sblkctl, SBLKCTL);
3585  }
3586  else
3587  {
3588  /*
3589  * Case 2: A command from this bus is active or we're idle.
3590  */
3591  if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3592  printk(INFO_LEAD "Resetting currently active channel.\n", p->host_no,
3593  channel, -1, -1);
3594  aic_outb(p, aic_inb(p, SIMODE1) & ~(ENBUSFREE|ENREQINIT),
3595  SIMODE1);
3597  p->msg_type = MSG_TYPE_NONE;
3598  p->msg_len = 0;
3599  if (initiate_reset)
3600  {
3601  aic7xxx_reset_current_bus(p);
3602  }
3603  aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP), SCSISEQ);
3604  aic7xxx_clear_intstat(p);
3605  }
3607  printk(INFO_LEAD "Channel reset\n", p->host_no, channel, -1, -1);
3608  /*
3609  * Clean up all the state information for the pending transactions
3610  * on this bus.
3611  */
3612  aic7xxx_reset_device(p, ALL_TARGETS, channel, ALL_LUNS, SCB_LIST_NULL);
3613 
3614  if ( !(p->features & AHC_TWIN) )
3615  {
3616  restart_sequencer(p);
3617  }
3618 
3619  return;
3620 }
3621 
3622 /*+F*************************************************************************
3623  * Function:
3624  * aic7xxx_run_waiting_queues
3625  *
3626  * Description:
3627  * Scan the awaiting_scbs queue downloading and starting as many
3628  * scbs as we can.
3629  *-F*************************************************************************/
3630 static void
3631 aic7xxx_run_waiting_queues(struct aic7xxx_host *p)
3632 {
3633  struct aic7xxx_scb *scb;
3634  struct aic_dev_data *aic_dev;
3635  int sent;
3636 
3637 
3638  if (p->waiting_scbs.head == NULL)
3639  return;
3640 
3641  sent = 0;
3642 
3643  /*
3644  * First handle SCBs that are waiting but have been assigned a slot.
3645  */
3646  while ((scb = scbq_remove_head(&p->waiting_scbs)) != NULL)
3647  {
3648  aic_dev = scb->cmd->device->hostdata;
3649  if ( !scb->tag_action )
3650  {
3651  aic_dev->temp_q_depth = 1;
3652  }
3653  if ( aic_dev->active_cmds >= aic_dev->temp_q_depth)
3654  {
3655  scbq_insert_tail(&aic_dev->delayed_scbs, scb);
3656  }
3657  else
3658  {
3659  scb->flags &= ~SCB_WAITINGQ;
3660  aic_dev->active_cmds++;
3661  p->activescbs++;
3662  if ( !(scb->tag_action) )
3663  {
3664  aic7xxx_busy_target(p, scb);
3665  }
3666  p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
3667  sent++;
3668  }
3669  }
3670  if (sent)
3671  {
3672  if (p->features & AHC_QUEUE_REGS)
3673  aic_outb(p, p->qinfifonext, HNSCB_QOFF);
3674  else
3675  {
3676  pause_sequencer(p);
3677  aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
3678  unpause_sequencer(p, FALSE);
3679  }
3680  if (p->activescbs > p->max_activescbs)
3681  p->max_activescbs = p->activescbs;
3682  }
3683 }
3684 
3685 #ifdef CONFIG_PCI
3686 
3687 #define DPE 0x80
3688 #define SSE 0x40
3689 #define RMA 0x20
3690 #define RTA 0x10
3691 #define STA 0x08
3692 #define DPR 0x01
3693 
3694 /*+F*************************************************************************
3695  * Function:
3696  * aic7xxx_pci_intr
3697  *
3698  * Description:
3699  * Check the scsi card for PCI errors and clear the interrupt
3700  *
3701  * NOTE: If you don't have this function and a 2940 card encounters
3702  * a PCI error condition, the machine will end up locked as the
3703  * interrupt handler gets slammed with non-stop PCI error interrupts
3704  *-F*************************************************************************/
3705 static void
3706 aic7xxx_pci_intr(struct aic7xxx_host *p)
3707 {
3708  unsigned char status1;
3709 
3710  pci_read_config_byte(p->pdev, PCI_STATUS + 1, &status1);
3711 
3712  if ( (status1 & DPE) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3713  printk(WARN_LEAD "Data Parity Error during PCI address or PCI write"
3714  "phase.\n", p->host_no, -1, -1, -1);
3715  if ( (status1 & SSE) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3716  printk(WARN_LEAD "Signal System Error Detected\n", p->host_no,
3717  -1, -1, -1);
3718  if ( (status1 & RMA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3719  printk(WARN_LEAD "Received a PCI Master Abort\n", p->host_no,
3720  -1, -1, -1);
3721  if ( (status1 & RTA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3722  printk(WARN_LEAD "Received a PCI Target Abort\n", p->host_no,
3723  -1, -1, -1);
3724  if ( (status1 & STA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3725  printk(WARN_LEAD "Signaled a PCI Target Abort\n", p->host_no,
3726  -1, -1, -1);
3727  if ( (status1 & DPR) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3728  printk(WARN_LEAD "Data Parity Error has been reported via PCI pin "
3729  "PERR#\n", p->host_no, -1, -1, -1);
3730 
3731  pci_write_config_byte(p->pdev, PCI_STATUS + 1, status1);
3732  if (status1 & (DPR|RMA|RTA))
3733  aic_outb(p, CLRPARERR, CLRINT);
3734 
3735  if ( (aic7xxx_panic_on_abort) && (p->spurious_int > 500) )
3736  aic7xxx_panic_abort(p, NULL);
3737 
3738 }
3739 #endif /* CONFIG_PCI */
3740 
3741 /*+F*************************************************************************
3742  * Function:
3743  * aic7xxx_construct_ppr
3744  *
3745  * Description:
3746  * Build up a Parallel Protocol Request message for use with SCSI-3
3747  * devices.
3748  *-F*************************************************************************/
3749 static void
3750 aic7xxx_construct_ppr(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
3751 {
3752  p->msg_buf[p->msg_index++] = MSG_EXTENDED;
3753  p->msg_buf[p->msg_index++] = MSG_EXT_PPR_LEN;
3754  p->msg_buf[p->msg_index++] = MSG_EXT_PPR;
3755  p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.period;
3756  p->msg_buf[p->msg_index++] = 0;
3757  p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.offset;
3758  p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.width;
3759  p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.options;
3760  p->msg_len += 8;
3761 }
3762 
3763 /*+F*************************************************************************
3764  * Function:
3765  * aic7xxx_construct_sdtr
3766  *
3767  * Description:
3768  * Constucts a synchronous data transfer message in the message
3769  * buffer on the sequencer.
3770  *-F*************************************************************************/
3771 static void
3772 aic7xxx_construct_sdtr(struct aic7xxx_host *p, unsigned char period,
3773  unsigned char offset)
3774 {
3775  p->msg_buf[p->msg_index++] = MSG_EXTENDED;
3776  p->msg_buf[p->msg_index++] = MSG_EXT_SDTR_LEN;
3777  p->msg_buf[p->msg_index++] = MSG_EXT_SDTR;
3778  p->msg_buf[p->msg_index++] = period;
3779  p->msg_buf[p->msg_index++] = offset;
3780  p->msg_len += 5;
3781 }
3782 
3783 /*+F*************************************************************************
3784  * Function:
3785  * aic7xxx_construct_wdtr
3786  *
3787  * Description:
3788  * Constucts a wide data transfer message in the message buffer
3789  * on the sequencer.
3790  *-F*************************************************************************/
3791 static void
3792 aic7xxx_construct_wdtr(struct aic7xxx_host *p, unsigned char bus_width)
3793 {
3794  p->msg_buf[p->msg_index++] = MSG_EXTENDED;
3795  p->msg_buf[p->msg_index++] = MSG_EXT_WDTR_LEN;
3796  p->msg_buf[p->msg_index++] = MSG_EXT_WDTR;
3797  p->msg_buf[p->msg_index++] = bus_width;
3798  p->msg_len += 4;
3799 }
3800 
3801 /*+F*************************************************************************
3802  * Function:
3803  * aic7xxx_calc_residual
3804  *
3805  * Description:
3806  * Calculate the residual data not yet transferred.
3807  *-F*************************************************************************/
3808 static void
3809 aic7xxx_calculate_residual (struct aic7xxx_host *p, struct aic7xxx_scb *scb)
3810 {
3811  struct aic7xxx_hwscb *hscb;
3812  struct scsi_cmnd *cmd;
3813  int actual, i;
3814 
3815  cmd = scb->cmd;
3816  hscb = scb->hscb;
3817 
3818  /*
3819  * Don't destroy valid residual information with
3820  * residual coming from a check sense operation.
3821  */
3822  if (((scb->hscb->control & DISCONNECTED) == 0) &&
3823  (scb->flags & SCB_SENSE) == 0)
3824  {
3825  /*
3826  * We had an underflow. At this time, there's only
3827  * one other driver that bothers to check for this,
3828  * and cmd->underflow seems to be set rather half-
3829  * heartedly in the higher-level SCSI code.
3830  */
3831  actual = scb->sg_length;
3832  for (i=1; i < hscb->residual_SG_segment_count; i++)
3833  {
3834  actual -= scb->sg_list[scb->sg_count - i].length;
3835  }
3836  actual -= (hscb->residual_data_count[2] << 16) |
3837  (hscb->residual_data_count[1] << 8) |
3838  hscb->residual_data_count[0];
3839 
3840  if (actual < cmd->underflow)
3841  {
3842  if (aic7xxx_verbose & VERBOSE_MINOR_ERROR)
3843  {
3844  printk(INFO_LEAD "Underflow - Wanted %u, %s %u, residual SG "
3845  "count %d.\n", p->host_no, CTL_OF_SCB(scb), cmd->underflow,
3846  (rq_data_dir(cmd->request) == WRITE) ? "wrote" : "read", actual,
3848  printk(INFO_LEAD "status 0x%x.\n", p->host_no, CTL_OF_SCB(scb),
3849  hscb->target_status);
3850  }
3851  /*
3852  * In 2.4, only send back the residual information, don't flag this
3853  * as an error. Before 2.4 we had to flag this as an error because
3854  * the mid layer didn't check residual data counts to see if the
3855  * command needs retried.
3856  */
3857  scsi_set_resid(cmd, scb->sg_length - actual);
3858  aic7xxx_status(cmd) = hscb->target_status;
3859  }
3860  }
3861 
3862  /*
3863  * Clean out the residual information in the SCB for the
3864  * next consumer.
3865  */
3866  hscb->residual_data_count[2] = 0;
3867  hscb->residual_data_count[1] = 0;
3868  hscb->residual_data_count[0] = 0;
3869  hscb->residual_SG_segment_count = 0;
3870 }
3871 
3872 /*+F*************************************************************************
3873  * Function:
3874  * aic7xxx_handle_device_reset
3875  *
3876  * Description:
3877  * Interrupt handler for sequencer interrupts (SEQINT).
3878  *-F*************************************************************************/
3879 static void
3880 aic7xxx_handle_device_reset(struct aic7xxx_host *p, int target, int channel)
3881 {
3882  unsigned char tindex = target;
3883 
3884  tindex |= ((channel & 0x01) << 3);
3885 
3886  /*
3887  * Go back to async/narrow transfers and renegotiate.
3888  */
3889  aic_outb(p, 0, TARG_SCSIRATE + tindex);
3890  if (p->features & AHC_ULTRA2)
3891  aic_outb(p, 0, TARG_OFFSET + tindex);
3892  aic7xxx_reset_device(p, target, channel, ALL_LUNS, SCB_LIST_NULL);
3893  if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3894  printk(INFO_LEAD "Bus Device Reset delivered.\n", p->host_no, channel,
3895  target, -1);
3896  aic7xxx_run_done_queue(p, /*complete*/ TRUE);
3897 }
3898 
3899 /*+F*************************************************************************
3900  * Function:
3901  * aic7xxx_handle_seqint
3902  *
3903  * Description:
3904  * Interrupt handler for sequencer interrupts (SEQINT).
3905  *-F*************************************************************************/
3906 static void
3907 aic7xxx_handle_seqint(struct aic7xxx_host *p, unsigned char intstat)
3908 {
3909  struct aic7xxx_scb *scb;
3910  struct aic_dev_data *aic_dev;
3911  unsigned short target_mask;
3912  unsigned char target, lun, tindex;
3913  unsigned char queue_flag = FALSE;
3914  char channel;
3915  int result;
3916 
3917  target = ((aic_inb(p, SAVED_TCL) >> 4) & 0x0f);
3918  if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
3919  channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
3920  else
3921  channel = 0;
3922  tindex = target + (channel << 3);
3923  lun = aic_inb(p, SAVED_TCL) & 0x07;
3924  target_mask = (0x01 << tindex);
3925 
3926  /*
3927  * Go ahead and clear the SEQINT now, that avoids any interrupt race
3928  * conditions later on in case we enable some other interrupt.
3929  */
3930  aic_outb(p, CLRSEQINT, CLRINT);
3931  switch (intstat & SEQINT_MASK)
3932  {
3933  case NO_MATCH:
3934  {
3935  aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP),
3936  SCSISEQ);
3937  printk(WARN_LEAD "No active SCB for reconnecting target - Issuing "
3938  "BUS DEVICE RESET.\n", p->host_no, channel, target, lun);
3939  printk(WARN_LEAD " SAVED_TCL=0x%x, ARG_1=0x%x, SEQADDR=0x%x\n",
3940  p->host_no, channel, target, lun,
3941  aic_inb(p, SAVED_TCL), aic_inb(p, ARG_1),
3942  (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
3943  if (aic7xxx_panic_on_abort)
3944  aic7xxx_panic_abort(p, NULL);
3945  }
3946  break;
3947 
3948  case SEND_REJECT:
3949  {
3950  if (aic7xxx_verbose & VERBOSE_MINOR_ERROR)
3951  printk(INFO_LEAD "Rejecting unknown message (0x%x) received from "
3952  "target, SEQ_FLAGS=0x%x\n", p->host_no, channel, target, lun,
3953  aic_inb(p, ACCUM), aic_inb(p, SEQ_FLAGS));
3954  }
3955  break;
3956 
3957  case NO_IDENT:
3958  {
3959  /*
3960  * The reconnecting target either did not send an identify
3961  * message, or did, but we didn't find an SCB to match and
3962  * before it could respond to our ATN/abort, it hit a dataphase.
3963  * The only safe thing to do is to blow it away with a bus
3964  * reset.
3965  */
3967  printk(INFO_LEAD "Target did not send an IDENTIFY message; "
3968  "LASTPHASE 0x%x, SAVED_TCL 0x%x\n", p->host_no, channel, target,
3969  lun, aic_inb(p, LASTPHASE), aic_inb(p, SAVED_TCL));
3970 
3971  aic7xxx_reset_channel(p, channel, /*initiate reset*/ TRUE);
3972  aic7xxx_run_done_queue(p, TRUE);
3973 
3974  }
3975  break;
3976 
3977  case BAD_PHASE:
3978  if (aic_inb(p, LASTPHASE) == P_BUSFREE)
3979  {
3981  printk(INFO_LEAD "Missed busfree.\n", p->host_no, channel,
3982  target, lun);
3983  restart_sequencer(p);
3984  }
3985  else
3986  {
3988  printk(INFO_LEAD "Unknown scsi bus phase, continuing\n", p->host_no,
3989  channel, target, lun);
3990  }
3991  break;
3992 
3993  case EXTENDED_MSG:
3994  {
3996  p->msg_len = 0;
3997  p->msg_index = 0;
3998 
3999 #ifdef AIC7XXX_VERBOSE_DEBUGGING
4000  if (aic7xxx_verbose > 0xffff)
4001  printk(INFO_LEAD "Enabling REQINITs for MSG_IN\n", p->host_no,
4002  channel, target, lun);
4003 #endif
4004 
4005  /*
4006  * To actually receive the message, simply turn on
4007  * REQINIT interrupts and let our interrupt handler
4008  * do the rest (REQINIT should already be true).
4009  */
4011  aic_outb(p, aic_inb(p, SIMODE1) | ENREQINIT, SIMODE1);
4012 
4013  /*
4014  * We don't want the sequencer unpaused yet so we return early
4015  */
4016  return;
4017  }
4018 
4019  case REJECT_MSG:
4020  {
4021  /*
4022  * What we care about here is if we had an outstanding SDTR
4023  * or WDTR message for this target. If we did, this is a
4024  * signal that the target is refusing negotiation.
4025  */
4026  unsigned char scb_index;
4027  unsigned char last_msg;
4028 
4029  scb_index = aic_inb(p, SCB_TAG);
4030  scb = p->scb_data->scb_array[scb_index];
4031  aic_dev = AIC_DEV(scb->cmd);
4032  last_msg = aic_inb(p, LAST_MSG);
4033 
4034  if ( (last_msg == MSG_IDENTIFYFLAG) &&
4035  (scb->tag_action) &&
4036  !(scb->flags & SCB_MSGOUT_BITS) )
4037  {
4038  if (scb->tag_action == MSG_ORDERED_Q_TAG)
4039  {
4040  /*
4041  * OK...the device seems able to accept tagged commands, but
4042  * not ordered tag commands, only simple tag commands. So, we
4043  * disable ordered tag commands and go on with life just like
4044  * normal.
4045  */
4047  scb->cmd->device->queue_depth);
4049  scb->hscb->control &= ~SCB_TAG_TYPE;
4050  scb->hscb->control |= MSG_SIMPLE_Q_TAG;
4051  aic_outb(p, scb->hscb->control, SCB_CONTROL);
4052  /*
4053  * OK..we set the tag type to simple tag command, now we re-assert
4054  * ATNO and hope this will take us into the identify phase again
4055  * so we can resend the tag type and info to the device.
4056  */
4057  aic_outb(p, MSG_IDENTIFYFLAG, MSG_OUT);
4058  aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
4059  }
4060  else if (scb->tag_action == MSG_SIMPLE_Q_TAG)
4061  {
4062  unsigned char i;
4063  struct aic7xxx_scb *scbp;
4064  int old_verbose;
4065  /*
4066  * Hmmmm....the device is flaking out on tagged commands.
4067  */
4068  scsi_adjust_queue_depth(scb->cmd->device, 0 /* untagged */,
4069  p->host->cmd_per_lun);
4070  aic_dev->max_q_depth = aic_dev->temp_q_depth = 1;
4071  /*
4072  * We set this command up as a bus device reset. However, we have
4073  * to clear the tag type as it's causing us problems. We shouldn't
4074  * have to worry about any other commands being active, since if
4075  * the device is refusing tagged commands, this should be the
4076  * first tagged command sent to the device, however, we do have
4077  * to worry about any other tagged commands that may already be
4078  * in the qinfifo. The easiest way to do this, is to issue a BDR,
4079  * send all the commands back to the mid level code, then let them
4080  * come back and get rebuilt as untagged commands.
4081  */
4082  scb->tag_action = 0;
4083  scb->hscb->control &= ~(TAG_ENB | SCB_TAG_TYPE);
4084  aic_outb(p, scb->hscb->control, SCB_CONTROL);
4085 
4086  old_verbose = aic7xxx_verbose;
4088  for (i=0; i < p->scb_data->numscbs; i++)
4089  {
4090  scbp = p->scb_data->scb_array[i];
4091  if ((scbp->flags & SCB_ACTIVE) && (scbp != scb))
4092  {
4093  if (aic7xxx_match_scb(p, scbp, target, channel, lun, i))
4094  {
4095  aic7xxx_reset_device(p, target, channel, lun, i);
4096  }
4097  }
4098  }
4099  aic7xxx_run_done_queue(p, TRUE);
4100  aic7xxx_verbose = old_verbose;
4101  /*
4102  * Wait until after the for loop to set the busy index since
4103  * aic7xxx_reset_device will clear the busy index during its
4104  * operation.
4105  */
4106  aic7xxx_busy_target(p, scb);
4107  printk(INFO_LEAD "Device is refusing tagged commands, using "
4108  "untagged I/O.\n", p->host_no, channel, target, lun);
4109  aic_outb(p, MSG_IDENTIFYFLAG, MSG_OUT);
4110  aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
4111  }
4112  }
4113  else if (scb->flags & SCB_MSGOUT_PPR)
4114  {
4115  /*
4116  * As per the draft specs, any device capable of supporting any of
4117  * the option values other than 0 are not allowed to reject the
4118  * PPR message. Instead, they must negotiate out what they do
4119  * support instead of rejecting our offering or else they cause
4120  * a parity error during msg_out phase to signal that they don't
4121  * like our settings.
4122  */
4123  aic_dev->needppr = aic_dev->needppr_copy = 0;
4124  aic7xxx_set_width(p, target, channel, lun, MSG_EXT_WDTR_BUS_8_BIT,
4125  (AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE), aic_dev);
4126  aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
4127  AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
4128  aic_dev);
4129  aic_dev->goal.options = aic_dev->dtr_pending = 0;
4130  scb->flags &= ~SCB_MSGOUT_BITS;
4131  if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4132  {
4133  printk(INFO_LEAD "Device is rejecting PPR messages, falling "
4134  "back.\n", p->host_no, channel, target, lun);
4135  }
4136  if ( aic_dev->goal.width )
4137  {
4138  aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
4139  aic_dev->dtr_pending = 1;
4140  scb->flags |= SCB_MSGOUT_WDTR;
4141  }
4142  if ( aic_dev->goal.offset )
4143  {
4144  aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
4145  if( !aic_dev->dtr_pending )
4146  {
4147  aic_dev->dtr_pending = 1;
4148  scb->flags |= SCB_MSGOUT_SDTR;
4149  }
4150  }
4151  if ( aic_dev->dtr_pending )
4152  {
4153  aic_outb(p, HOST_MSG, MSG_OUT);
4154  aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
4155  }
4156  }
4157  else if (scb->flags & SCB_MSGOUT_WDTR)
4158  {
4159  /*
4160  * note 8bit xfers and clear flag
4161  */
4162  aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
4163  scb->flags &= ~SCB_MSGOUT_BITS;
4164  aic7xxx_set_width(p, target, channel, lun, MSG_EXT_WDTR_BUS_8_BIT,
4165  (AHC_TRANS_ACTIVE|AHC_TRANS_GOAL|AHC_TRANS_CUR), aic_dev);
4166  aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
4167  AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
4168  aic_dev);
4169  if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4170  {
4171  printk(INFO_LEAD "Device is rejecting WDTR messages, using "
4172  "narrow transfers.\n", p->host_no, channel, target, lun);
4173  }
4174  aic_dev->needsdtr = aic_dev->needsdtr_copy;
4175  }
4176  else if (scb->flags & SCB_MSGOUT_SDTR)
4177  {
4178  /*
4179  * note asynch xfers and clear flag
4180  */
4181  aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
4182  scb->flags &= ~SCB_MSGOUT_BITS;
4183  aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
4184  (AHC_TRANS_CUR|AHC_TRANS_ACTIVE|AHC_TRANS_GOAL), aic_dev);
4185  if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4186  {
4187  printk(INFO_LEAD "Device is rejecting SDTR messages, using "
4188  "async transfers.\n", p->host_no, channel, target, lun);
4189  }
4190  }
4191  else if (aic7xxx_verbose & VERBOSE_SEQINT)
4192  {
4193  /*
4194  * Otherwise, we ignore it.
4195  */
4196  printk(INFO_LEAD "Received MESSAGE_REJECT for unknown cause. "
4197  "Ignoring.\n", p->host_no, channel, target, lun);
4198  }
4199  }
4200  break;
4201 
4202  case BAD_STATUS:
4203  {
4204  unsigned char scb_index;
4205  struct aic7xxx_hwscb *hscb;
4206  struct scsi_cmnd *cmd;
4207 
4208  /* The sequencer will notify us when a command has an error that
4209  * would be of interest to the kernel. This allows us to leave
4210  * the sequencer running in the common case of command completes
4211  * without error. The sequencer will have DMA'd the SCB back
4212  * up to us, so we can reference the drivers SCB array.
4213  *
4214  * Set the default return value to 0 indicating not to send
4215  * sense. The sense code will change this if needed and this
4216  * reduces code duplication.
4217  */
4218  aic_outb(p, 0, RETURN_1);
4219  scb_index = aic_inb(p, SCB_TAG);
4220  if (scb_index > p->scb_data->numscbs)
4221  {
4222  printk(WARN_LEAD "Invalid SCB during SEQINT 0x%02x, SCB_TAG %d.\n",
4223  p->host_no, channel, target, lun, intstat, scb_index);
4224  break;
4225  }
4226  scb = p->scb_data->scb_array[scb_index];
4227  hscb = scb->hscb;
4228 
4229  if (!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
4230  {
4231  printk(WARN_LEAD "Invalid SCB during SEQINT 0x%x, scb %d, flags 0x%x,"
4232  " cmd 0x%lx.\n", p->host_no, channel, target, lun, intstat,
4233  scb_index, scb->flags, (unsigned long) scb->cmd);
4234  }
4235  else
4236  {
4237  cmd = scb->cmd;
4238  aic_dev = AIC_DEV(scb->cmd);
4239  hscb->target_status = aic_inb(p, SCB_TARGET_STATUS);
4240  aic7xxx_status(cmd) = hscb->target_status;
4241 
4242  cmd->result = hscb->target_status;
4243 
4244  switch (status_byte(hscb->target_status))
4245  {
4246  case GOOD:
4248  printk(INFO_LEAD "Interrupted for status of GOOD???\n",
4249  p->host_no, CTL_OF_SCB(scb));
4250  break;
4251 
4252  case COMMAND_TERMINATED:
4253  case CHECK_CONDITION:
4254  if ( !(scb->flags & SCB_SENSE) )
4255  {
4256  /*
4257  * Send a sense command to the requesting target.
4258  * XXX - revisit this and get rid of the memcopys.
4259  */
4260  memcpy(scb->sense_cmd, &generic_sense[0],
4261  sizeof(generic_sense));
4262 
4263  scb->sense_cmd[1] = (cmd->device->lun << 5);
4264  scb->sense_cmd[4] = SCSI_SENSE_BUFFERSIZE;
4265 
4266  scb->sg_list[0].length =
4268  scb->sg_list[0].address =
4269  cpu_to_le32(pci_map_single(p->pdev, cmd->sense_buffer,
4272 
4273  /*
4274  * XXX - We should allow disconnection, but can't as it
4275  * might allow overlapped tagged commands.
4276  */
4277  /* hscb->control &= DISCENB; */
4278  hscb->control = 0;
4279  hscb->target_status = 0;
4280  hscb->SG_list_pointer =
4281  cpu_to_le32(SCB_DMA_ADDR(scb, scb->sg_list));
4282  hscb->SCSI_cmd_pointer =
4283  cpu_to_le32(SCB_DMA_ADDR(scb, scb->sense_cmd));
4284  hscb->data_count = scb->sg_list[0].length;
4285  hscb->data_pointer = scb->sg_list[0].address;
4286  hscb->SCSI_cmd_length = COMMAND_SIZE(scb->sense_cmd[0]);
4287  hscb->residual_SG_segment_count = 0;
4288  hscb->residual_data_count[0] = 0;
4289  hscb->residual_data_count[1] = 0;
4290  hscb->residual_data_count[2] = 0;
4291 
4292  scb->sg_count = hscb->SG_segment_count = 1;
4294  scb->tag_action = 0;
4295  scb->flags |= SCB_SENSE;
4296  /*
4297  * Ensure the target is busy since this will be an
4298  * an untagged request.
4299  */
4300 #ifdef AIC7XXX_VERBOSE_DEBUGGING
4301  if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4302  {
4303  if (scb->flags & SCB_MSGOUT_BITS)
4304  printk(INFO_LEAD "Requesting SENSE with %s\n", p->host_no,
4305  CTL_OF_SCB(scb), (scb->flags & SCB_MSGOUT_SDTR) ?
4306  "SDTR" : "WDTR");
4307  else
4308  printk(INFO_LEAD "Requesting SENSE, no MSG\n", p->host_no,
4309  CTL_OF_SCB(scb));
4310  }
4311 #endif
4312  aic7xxx_busy_target(p, scb);
4313  aic_outb(p, SEND_SENSE, RETURN_1);
4314  aic7xxx_error(cmd) = DID_OK;
4315  break;
4316  } /* first time sense, no errors */
4317  printk(INFO_LEAD "CHECK_CONDITION on REQUEST_SENSE, returning "
4318  "an error.\n", p->host_no, CTL_OF_SCB(scb));
4319  aic7xxx_error(cmd) = DID_ERROR;
4320  scb->flags &= ~SCB_SENSE;
4321  break;
4322 
4323  case QUEUE_FULL:
4324  queue_flag = TRUE; /* Mark that this is a QUEUE_FULL and */
4325  case BUSY: /* drop through to here */
4326  {
4327  struct aic7xxx_scb *next_scbp, *prev_scbp;
4328  unsigned char active_hscb, next_hscb, prev_hscb, scb_index;
4329  /*
4330  * We have to look three places for queued commands:
4331  * 1: p->waiting_scbs queue
4332  * 2: QINFIFO
4333  * 3: WAITING_SCBS list on card (for commands that are started
4334  * but haven't yet made it to the device)
4335  *
4336  * Of special note here is that commands on 2 or 3 above will
4337  * have already been marked as active, while commands on 1 will
4338  * not. The aic7xxx_done() function will want to unmark them
4339  * from active, so any commands we pull off of 1 need to
4340  * up the active count.
4341  */
4342  next_scbp = p->waiting_scbs.head;
4343  while ( next_scbp != NULL )
4344  {
4345  prev_scbp = next_scbp;
4346  next_scbp = next_scbp->q_next;
4347  if ( aic7xxx_match_scb(p, prev_scbp, target, channel, lun,
4348  SCB_LIST_NULL) )
4349  {
4350  scbq_remove(&p->waiting_scbs, prev_scbp);
4352  p->activescbs++;
4353  aic_dev->active_cmds++;
4354  }
4355  }
4356  aic7xxx_search_qinfifo(p, target, channel, lun,
4358  FALSE, NULL);
4359  next_scbp = NULL;
4360  active_hscb = aic_inb(p, SCBPTR);
4361  prev_hscb = next_hscb = scb_index = SCB_LIST_NULL;
4362  next_hscb = aic_inb(p, WAITING_SCBH);
4363  while (next_hscb != SCB_LIST_NULL)
4364  {
4365  aic_outb(p, next_hscb, SCBPTR);
4366  scb_index = aic_inb(p, SCB_TAG);
4367  if (scb_index < p->scb_data->numscbs)
4368  {
4369  next_scbp = p->scb_data->scb_array[scb_index];
4370  if (aic7xxx_match_scb(p, next_scbp, target, channel, lun,
4371  SCB_LIST_NULL) )
4372  {
4373  next_scbp->flags = SCB_QUEUED_FOR_DONE | SCB_QUEUE_FULL;
4374  next_hscb = aic_inb(p, SCB_NEXT);
4375  aic_outb(p, 0, SCB_CONTROL);
4376  aic_outb(p, SCB_LIST_NULL, SCB_TAG);
4377  aic7xxx_add_curscb_to_free_list(p);
4378  if (prev_hscb == SCB_LIST_NULL)
4379  {
4380  /* We were first on the list,
4381  * so we kill the selection
4382  * hardware. Let the sequencer
4383  * re-init the hardware itself
4384  */
4385  aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
4386  aic_outb(p, CLRSELTIMEO, CLRSINT1);
4387  aic_outb(p, next_hscb, WAITING_SCBH);
4388  }
4389  else
4390  {
4391  aic_outb(p, prev_hscb, SCBPTR);
4392  aic_outb(p, next_hscb, SCB_NEXT);
4393  }
4394  }
4395  else
4396  {
4397  prev_hscb = next_hscb;
4398  next_hscb = aic_inb(p, SCB_NEXT);
4399  }
4400  } /* scb_index >= p->scb_data->numscbs */
4401  }
4402  aic_outb(p, active_hscb, SCBPTR);
4403  aic7xxx_run_done_queue(p, FALSE);
4404 
4405 #ifdef AIC7XXX_VERBOSE_DEBUGGING
4406  if( (aic7xxx_verbose & VERBOSE_MINOR_ERROR) ||
4407  (aic7xxx_verbose > 0xffff) )
4408  {
4409  if (queue_flag)
4410  printk(INFO_LEAD "Queue full received; queue depth %d, "
4411  "active %d\n", p->host_no, CTL_OF_SCB(scb),
4412  aic_dev->max_q_depth, aic_dev->active_cmds);
4413  else
4414  printk(INFO_LEAD "Target busy\n", p->host_no, CTL_OF_SCB(scb));
4415  }
4416 #endif
4417  if (queue_flag)
4418  {
4419  int diff;
4420  result = scsi_track_queue_full(cmd->device,
4421  aic_dev->active_cmds);
4422  if ( result < 0 )
4423  {
4424  if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4425  printk(INFO_LEAD "Tagged Command Queueing disabled.\n",
4426  p->host_no, CTL_OF_SCB(scb));
4427  diff = aic_dev->max_q_depth - p->host->cmd_per_lun;
4428  aic_dev->temp_q_depth = 1;
4429  aic_dev->max_q_depth = 1;
4430  }
4431  else if ( result > 0 )
4432  {
4433  if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4434  printk(INFO_LEAD "Queue depth reduced to %d\n", p->host_no,
4435  CTL_OF_SCB(scb), result);
4436  diff = aic_dev->max_q_depth - result;
4437  aic_dev->max_q_depth = result;
4438  /* temp_q_depth could have been dropped to 1 for an untagged
4439  * command that might be coming up */
4440  if(aic_dev->temp_q_depth > result)
4441  aic_dev->temp_q_depth = result;
4442  }
4443  /* We should free up the no unused SCB entries. But, that's
4444  * a difficult thing to do because we use a direct indexed
4445  * array, so we can't just take any entries and free them,
4446  * we *have* to free the ones at the end of the array, and
4447  * they very well could be in use right now, which means
4448  * in order to do this right, we have to add a delayed
4449  * freeing mechanism tied into the scb_free() code area.
4450  * We'll add that later.
4451  */
4452  }
4453  break;
4454  }
4455 
4456  default:
4457  if (aic7xxx_verbose & VERBOSE_SEQINT)
4458  printk(INFO_LEAD "Unexpected target status 0x%x.\n", p->host_no,
4459  CTL_OF_SCB(scb), scb->hscb->target_status);
4460  if (!aic7xxx_error(cmd))
4461  {
4463  }
4464  break;
4465  } /* end switch */
4466  } /* end else of */
4467  }
4468  break;
4469 
4470  case AWAITING_MSG:
4471  {
4472  unsigned char scb_index, msg_out;
4473 
4474  scb_index = aic_inb(p, SCB_TAG);
4475  msg_out = aic_inb(p, MSG_OUT);
4476  scb = p->scb_data->scb_array[scb_index];
4477  aic_dev = AIC_DEV(scb->cmd);
4478  p->msg_index = p->msg_len = 0;
4479  /*
4480  * This SCB had a MK_MESSAGE set in its control byte informing
4481  * the sequencer that we wanted to send a special message to
4482  * this target.
4483  */
4484 
4485  if ( !(scb->flags & SCB_DEVICE_RESET) &&
4486  (msg_out == MSG_IDENTIFYFLAG) &&
4487  (scb->hscb->control & TAG_ENB) )
4488  {
4489  p->msg_buf[p->msg_index++] = scb->tag_action;
4490  p->msg_buf[p->msg_index++] = scb->hscb->tag;
4491  p->msg_len += 2;
4492  }
4493 
4494  if (scb->flags & SCB_DEVICE_RESET)
4495  {
4496  p->msg_buf[p->msg_index++] = MSG_BUS_DEV_RESET;
4497  p->msg_len++;
4498  if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
4499  printk(INFO_LEAD "Bus device reset mailed.\n",
4500  p->host_no, CTL_OF_SCB(scb));
4501  }
4502  else if (scb->flags & SCB_ABORT)
4503  {
4504  if (scb->tag_action)
4505  {
4506  p->msg_buf[p->msg_index++] = MSG_ABORT_TAG;
4507  }
4508  else
4509  {
4510  p->msg_buf[p->msg_index++] = MSG_ABORT;
4511  }
4512  p->msg_len++;
4514  printk(INFO_LEAD "Abort message mailed.\n", p->host_no,
4515  CTL_OF_SCB(scb));
4516  }
4517  else if (scb->flags & SCB_MSGOUT_PPR)
4518  {
4519  if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4520  {
4521  printk(INFO_LEAD "Sending PPR (%d/%d/%d/%d) message.\n",
4522  p->host_no, CTL_OF_SCB(scb),
4523  aic_dev->goal.period,
4524  aic_dev->goal.offset,
4525  aic_dev->goal.width,
4526  aic_dev->goal.options);
4527  }
4528  aic7xxx_construct_ppr(p, scb);
4529  }
4530  else if (scb->flags & SCB_MSGOUT_WDTR)
4531  {
4532  if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4533  {
4534  printk(INFO_LEAD "Sending WDTR message.\n", p->host_no,
4535  CTL_OF_SCB(scb));
4536  }
4537  aic7xxx_construct_wdtr(p, aic_dev->goal.width);
4538  }
4539  else if (scb->flags & SCB_MSGOUT_SDTR)
4540  {
4541  unsigned int max_sync, period;
4542  unsigned char options = 0;
4543  /*
4544  * Now that the device is selected, use the bits in SBLKCTL and
4545  * SSTAT2 to determine the max sync rate for this device.
4546  */
4547  if (p->features & AHC_ULTRA2)
4548  {
4549  if ( (aic_inb(p, SBLKCTL) & ENAB40) &&
4550  !(aic_inb(p, SSTAT2) & EXP_ACTIVE) )
4551  {
4552  max_sync = AHC_SYNCRATE_ULTRA2;
4553  }
4554  else
4555  {
4556  max_sync = AHC_SYNCRATE_ULTRA;
4557  }
4558  }
4559  else if (p->features & AHC_ULTRA)
4560  {
4561  max_sync = AHC_SYNCRATE_ULTRA;
4562  }
4563  else
4564  {
4565  max_sync = AHC_SYNCRATE_FAST;
4566  }
4567  period = aic_dev->goal.period;
4568  aic7xxx_find_syncrate(p, &period, max_sync, &options);
4569  if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4570  {
4571  printk(INFO_LEAD "Sending SDTR %d/%d message.\n", p->host_no,
4572  CTL_OF_SCB(scb), period,
4573  aic_dev->goal.offset);
4574  }
4575  aic7xxx_construct_sdtr(p, period, aic_dev->goal.offset);
4576  }
4577  else
4578  {
4579  panic("aic7xxx: AWAITING_MSG for an SCB that does "
4580  "not have a waiting message.\n");
4581  }
4582  /*
4583  * We've set everything up to send our message, now to actually do
4584  * so we need to enable reqinit interrupts and let the interrupt
4585  * handler do the rest. We don't want to unpause the sequencer yet
4586  * though so we'll return early. We also have to make sure that
4587  * we clear the SEQINT *BEFORE* we set the REQINIT handler active
4588  * or else it's possible on VLB cards to lose the first REQINIT
4589  * interrupt. Edge triggered EISA cards could also lose this
4590  * interrupt, although PCI and level triggered cards should not
4591  * have this problem since they continually interrupt the kernel
4592  * until we take care of the situation.
4593  */
4594  scb->flags |= SCB_MSGOUT_SENT;
4595  p->msg_index = 0;
4598  aic_outb(p, aic_inb(p, SIMODE1) | ENREQINIT, SIMODE1);
4599  return;
4600  }
4601  break;
4602 
4603  case DATA_OVERRUN:
4604  {
4605  unsigned char scb_index = aic_inb(p, SCB_TAG);
4606  unsigned char lastphase = aic_inb(p, LASTPHASE);
4607  unsigned int i;
4608 
4609  scb = (p->scb_data->scb_array[scb_index]);
4610  /*
4611  * XXX - What do we really want to do on an overrun? The
4612  * mid-level SCSI code should handle this, but for now,
4613  * we'll just indicate that the command should retried.
4614  * If we retrieved sense info on this target, then the
4615  * base SENSE info should have been saved prior to the
4616  * overrun error. In that case, we return DID_OK and let
4617  * the mid level code pick up on the sense info. Otherwise
4618  * we return DID_ERROR so the command will get retried.
4619  */
4620  if ( !(scb->flags & SCB_SENSE) )
4621  {
4622  printk(WARN_LEAD "Data overrun detected in %s phase, tag %d;\n",
4623  p->host_no, CTL_OF_SCB(scb),
4624  (lastphase == P_DATAIN) ? "Data-In" : "Data-Out", scb->hscb->tag);
4625  printk(KERN_WARNING " %s seen Data Phase. Length=%d, NumSGs=%d.\n",
4626  (aic_inb(p, SEQ_FLAGS) & DPHASE) ? "Have" : "Haven't",
4627  scb->sg_length, scb->sg_count);
4628  printk(KERN_WARNING " Raw SCSI Command: 0x");
4629  for (i = 0; i < scb->hscb->SCSI_cmd_length; i++)
4630  {
4631  printk("%02x ", scb->cmd->cmnd[i]);
4632  }
4633  printk("\n");
4634  if(aic7xxx_verbose > 0xffff)
4635  {
4636  for (i = 0; i < scb->sg_count; i++)
4637  {
4638  printk(KERN_WARNING " sg[%d] - Addr 0x%x : Length %d\n",
4639  i,
4640  le32_to_cpu(scb->sg_list[i].address),
4641  le32_to_cpu(scb->sg_list[i].length) );
4642  }
4643  }
4644  aic7xxx_error(scb->cmd) = DID_ERROR;
4645  }
4646  else
4647  printk(INFO_LEAD "Data Overrun during SEND_SENSE operation.\n",
4648  p->host_no, CTL_OF_SCB(scb));
4649  }
4650  break;
4651 
4652  case WIDE_RESIDUE:
4653  {
4654  unsigned char resid_sgcnt, index;
4655  unsigned char scb_index = aic_inb(p, SCB_TAG);
4656  unsigned int cur_addr, resid_dcnt;
4657  unsigned int native_addr, native_length, sg_addr;
4658  int i;
4659 
4660  if(scb_index > p->scb_data->numscbs)
4661  {
4662  printk(WARN_LEAD "invalid scb_index during WIDE_RESIDUE.\n",
4663  p->host_no, -1, -1, -1);
4664  /*
4665  * XXX: Add error handling here
4666  */
4667  break;
4668  }
4669  scb = p->scb_data->scb_array[scb_index];
4670  if(!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
4671  {
4672  printk(WARN_LEAD "invalid scb during WIDE_RESIDUE flags:0x%x "
4673  "scb->cmd:0x%lx\n", p->host_no, CTL_OF_SCB(scb),
4674  scb->flags, (unsigned long)scb->cmd);
4675  break;
4676  }
4677  if(aic7xxx_verbose & VERBOSE_MINOR_ERROR)
4678  printk(INFO_LEAD "Got WIDE_RESIDUE message, patching up data "
4679  "pointer.\n", p->host_no, CTL_OF_SCB(scb));
4680 
4681  /*
4682  * We have a valid scb to use on this WIDE_RESIDUE message, so
4683  * we need to walk the sg list looking for this particular sg
4684  * segment, then see if we happen to be at the very beginning of
4685  * the segment. If we are, then we have to back things up to
4686  * the previous segment. If not, then we simply need to remove
4687  * one byte from this segments address and add one to the byte
4688  * count.
4689  */
4690  cur_addr = aic_inb(p, SHADDR) | (aic_inb(p, SHADDR + 1) << 8) |
4691  (aic_inb(p, SHADDR + 2) << 16) | (aic_inb(p, SHADDR + 3) << 24);
4692  sg_addr = aic_inb(p, SG_COUNT + 1) | (aic_inb(p, SG_COUNT + 2) << 8) |
4693  (aic_inb(p, SG_COUNT + 3) << 16) | (aic_inb(p, SG_COUNT + 4) << 24);
4694  resid_sgcnt = aic_inb(p, SCB_RESID_SGCNT);
4695  resid_dcnt = aic_inb(p, SCB_RESID_DCNT) |
4696  (aic_inb(p, SCB_RESID_DCNT + 1) << 8) |
4697  (aic_inb(p, SCB_RESID_DCNT + 2) << 16);
4698  index = scb->sg_count - ((resid_sgcnt) ? resid_sgcnt : 1);
4699  native_addr = le32_to_cpu(scb->sg_list[index].address);
4700  native_length = le32_to_cpu(scb->sg_list[index].length);
4701  /*
4702  * If resid_dcnt == native_length, then we just loaded this SG
4703  * segment and we need to back it up one...
4704  */
4705  if(resid_dcnt == native_length)
4706  {
4707  if(index == 0)
4708  {
4709  /*
4710  * Oops, this isn't right, we can't back up to before the
4711  * beginning. This must be a bogus message, ignore it.
4712  */
4713  break;
4714  }
4715  resid_dcnt = 1;
4716  resid_sgcnt += 1;
4717  native_addr = le32_to_cpu(scb->sg_list[index - 1].address);
4718  native_length = le32_to_cpu(scb->sg_list[index - 1].length);
4719  cur_addr = native_addr + (native_length - 1);
4720  sg_addr -= sizeof(struct hw_scatterlist);
4721  }
4722  else
4723  {
4724  /*
4725  * resid_dcnt != native_length, so we are in the middle of a SG
4726  * element. Back it up one byte and leave the rest alone.
4727  */
4728  resid_dcnt += 1;
4729  cur_addr -= 1;
4730  }
4731 
4732  /*
4733  * Output the new addresses and counts to the right places on the
4734  * card.
4735  */
4736  aic_outb(p, resid_sgcnt, SG_COUNT);
4737  aic_outb(p, resid_sgcnt, SCB_RESID_SGCNT);
4738  aic_outb(p, sg_addr & 0xff, SG_COUNT + 1);
4739  aic_outb(p, (sg_addr >> 8) & 0xff, SG_COUNT + 2);
4740  aic_outb(p, (sg_addr >> 16) & 0xff, SG_COUNT + 3);
4741  aic_outb(p, (sg_addr >> 24) & 0xff, SG_COUNT + 4);
4742  aic_outb(p, resid_dcnt & 0xff, SCB_RESID_DCNT);
4743  aic_outb(p, (resid_dcnt >> 8) & 0xff, SCB_RESID_DCNT + 1);
4744  aic_outb(p, (resid_dcnt >> 16) & 0xff, SCB_RESID_DCNT + 2);
4745 
4746  /*
4747  * The sequencer actually wants to find the new address
4748  * in the SHADDR register set. On the Ultra2 and later controllers
4749  * this register set is readonly. In order to get the right number
4750  * into the register, you actually have to enter it in HADDR and then
4751  * use the PRELOADEN bit of DFCNTRL to drop it through from the
4752  * HADDR register to the SHADDR register. On non-Ultra2 controllers,
4753  * we simply write it direct.
4754  */
4755  if(p->features & AHC_ULTRA2)
4756  {
4757  /*
4758  * We might as well be accurate and drop both the resid_dcnt and
4759  * cur_addr into HCNT and HADDR and have both of them drop
4760  * through to the shadow layer together.
4761  */
4762  aic_outb(p, resid_dcnt & 0xff, HCNT);
4763  aic_outb(p, (resid_dcnt >> 8) & 0xff, HCNT + 1);
4764  aic_outb(p, (resid_dcnt >> 16) & 0xff, HCNT + 2);
4765  aic_outb(p, cur_addr & 0xff, HADDR);
4766  aic_outb(p, (cur_addr >> 8) & 0xff, HADDR + 1);
4767  aic_outb(p, (cur_addr >> 16) & 0xff, HADDR + 2);
4768  aic_outb(p, (cur_addr >> 24) & 0xff, HADDR + 3);
4769  aic_outb(p, aic_inb(p, DMAPARAMS) | PRELOADEN, DFCNTRL);
4770  udelay(1);
4771  aic_outb(p, aic_inb(p, DMAPARAMS) & ~(SCSIEN|HDMAEN), DFCNTRL);
4772  i=0;
4773  while(((aic_inb(p, DFCNTRL) & (SCSIEN|HDMAEN)) != 0) && (i++ < 1000))
4774  {
4775  udelay(1);
4776  }
4777  }
4778  else
4779  {
4780  aic_outb(p, cur_addr & 0xff, SHADDR);
4781  aic_outb(p, (cur_addr >> 8) & 0xff, SHADDR + 1);
4782  aic_outb(p, (cur_addr >> 16) & 0xff, SHADDR + 2);
4783  aic_outb(p, (cur_addr >> 24) & 0xff, SHADDR + 3);
4784  }
4785  }
4786  break;
4787 
4788  case SEQ_SG_FIXUP:
4789  {
4790  unsigned char scb_index, tmp;
4791  int sg_addr, sg_length;
4792 
4793  scb_index = aic_inb(p, SCB_TAG);
4794 
4795  if(scb_index > p->scb_data->numscbs)
4796  {
4797  printk(WARN_LEAD "invalid scb_index during SEQ_SG_FIXUP.\n",
4798  p->host_no, -1, -1, -1);
4799  printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
4800  "0x%x\n", p->host_no, -1, -1, -1,
4801  aic_inb(p, SCSISIGI),
4802  aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
4803  aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
4804  printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n",
4805  p->host_no, -1, -1, -1, aic_inb(p, SG_CACHEPTR),
4806  aic_inb(p, SSTAT2), aic_inb(p, STCNT + 2) << 16 |
4807  aic_inb(p, STCNT + 1) << 8 | aic_inb(p, STCNT));
4808  /*
4809  * XXX: Add error handling here
4810  */
4811  break;
4812  }
4813  scb = p->scb_data->scb_array[scb_index];
4814  if(!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
4815  {
4816  printk(WARN_LEAD "invalid scb during SEQ_SG_FIXUP flags:0x%x "
4817  "scb->cmd:0x%p\n", p->host_no, CTL_OF_SCB(scb),
4818  scb->flags, scb->cmd);
4819  printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
4820  "0x%x\n", p->host_no, CTL_OF_SCB(scb),
4821  aic_inb(p, SCSISIGI),
4822  aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
4823  aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
4824  printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n",
4825  p->host_no, CTL_OF_SCB(scb), aic_inb(p, SG_CACHEPTR),
4826  aic_inb(p, SSTAT2), aic_inb(p, STCNT + 2) << 16 |
4827  aic_inb(p, STCNT + 1) << 8 | aic_inb(p, STCNT));
4828  break;
4829  }
4830  if(aic7xxx_verbose & VERBOSE_MINOR_ERROR)
4831  printk(INFO_LEAD "Fixing up SG address for sequencer.\n", p->host_no,
4832  CTL_OF_SCB(scb));
4833  /*
4834  * Advance the SG pointer to the next element in the list
4835  */
4836  tmp = aic_inb(p, SG_NEXT);
4837  tmp += SG_SIZEOF;
4838  aic_outb(p, tmp, SG_NEXT);
4839  if( tmp < SG_SIZEOF )
4840  aic_outb(p, aic_inb(p, SG_NEXT + 1) + 1, SG_NEXT + 1);
4841  tmp = aic_inb(p, SG_COUNT) - 1;
4842  aic_outb(p, tmp, SG_COUNT);
4843  sg_addr = le32_to_cpu(scb->sg_list[scb->sg_count - tmp].address);
4844  sg_length = le32_to_cpu(scb->sg_list[scb->sg_count - tmp].length);
4845  /*
4846  * Now stuff the element we just advanced past down onto the
4847  * card so it can be stored in the residual area.
4848  */
4849  aic_outb(p, sg_addr & 0xff, HADDR);
4850  aic_outb(p, (sg_addr >> 8) & 0xff, HADDR + 1);
4851  aic_outb(p, (sg_addr >> 16) & 0xff, HADDR + 2);
4852  aic_outb(p, (sg_addr >> 24) & 0xff, HADDR + 3);
4853  aic_outb(p, sg_length & 0xff, HCNT);
4854  aic_outb(p, (sg_length >> 8) & 0xff, HCNT + 1);
4855  aic_outb(p, (sg_length >> 16) & 0xff, HCNT + 2);
4856  aic_outb(p, (tmp << 2) | ((tmp == 1) ? LAST_SEG : 0), SG_CACHEPTR);
4857  aic_outb(p, aic_inb(p, DMAPARAMS), DFCNTRL);
4858  while(aic_inb(p, SSTAT0) & SDONE) udelay(1);
4859  while(aic_inb(p, DFCNTRL) & (HDMAEN|SCSIEN)) aic_outb(p, 0, DFCNTRL);
4860  }
4861  break;
4862 
4863 #ifdef AIC7XXX_NOT_YET
4864  case TRACEPOINT2:
4865  {
4866  printk(INFO_LEAD "Tracepoint #2 reached.\n", p->host_no,
4867  channel, target, lun);
4868  }
4869  break;
4870 
4871  /* XXX Fill these in later */
4872  case MSG_BUFFER_BUSY:
4873  printk("aic7xxx: Message buffer busy.\n");
4874  break;
4875  case MSGIN_PHASEMIS:
4876  printk("aic7xxx: Message-in phasemis.\n");
4877  break;
4878 #endif
4879 
4880  default: /* unknown */
4881  printk(WARN_LEAD "Unknown SEQINT, INTSTAT 0x%x, SCSISIGI 0x%x.\n",
4882  p->host_no, channel, target, lun, intstat,
4883  aic_inb(p, SCSISIGI));
4884  break;
4885  }
4886 
4887  /*
4888  * Clear the sequencer interrupt and unpause the sequencer.
4889  */
4890  unpause_sequencer(p, /* unpause always */ TRUE);
4891 }
4892 
4893 /*+F*************************************************************************
4894  * Function:
4895  * aic7xxx_parse_msg
4896  *
4897  * Description:
4898  * Parses incoming messages into actions on behalf of
4899  * aic7xxx_handle_reqinit
4900  *_F*************************************************************************/
4901 static int
4902 aic7xxx_parse_msg(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
4903 {
4904  int reject, reply, done;
4905  unsigned char target_scsirate, tindex;
4906  unsigned short target_mask;
4907  unsigned char target, channel, lun;
4908  unsigned char bus_width, new_bus_width;
4909  unsigned char trans_options, new_trans_options;
4910  unsigned int period, new_period, offset, new_offset, maxsync;
4911  struct aic7xxx_syncrate *syncrate;
4912  struct aic_dev_data *aic_dev;
4913 
4914  target = scb->cmd->device->id;
4915  channel = scb->cmd->device->channel;
4916  lun = scb->cmd->device->lun;
4917  reply = reject = done = FALSE;
4918  tindex = TARGET_INDEX(scb->cmd);
4919  aic_dev = AIC_DEV(scb->cmd);
4920  target_scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
4921  target_mask = (0x01 << tindex);
4922 
4923  /*
4924  * Parse as much of the message as is available,
4925  * rejecting it if we don't support it. When
4926  * the entire message is available and has been
4927  * handled, return TRUE indicating that we have
4928  * parsed an entire message.
4929  */
4930 
4931  if (p->msg_buf[0] != MSG_EXTENDED)
4932  {
4933  reject = TRUE;
4934  }
4935 
4936  /*
4937  * Even if we are an Ultra3 card, don't allow Ultra3 sync rates when
4938  * using the SDTR messages. We need the PPR messages to enable the
4939  * higher speeds that include things like Dual Edge clocking.
4940  */
4941  if (p->features & AHC_ULTRA2)
4942  {
4943  if ( (aic_inb(p, SBLKCTL) & ENAB40) &&
4944  !(aic_inb(p, SSTAT2) & EXP_ACTIVE) )
4945  {
4946  if (p->features & AHC_ULTRA3)
4947  maxsync = AHC_SYNCRATE_ULTRA3;
4948  else
4949  maxsync = AHC_SYNCRATE_ULTRA2;
4950  }
4951  else
4952  {
4953  maxsync = AHC_SYNCRATE_ULTRA;
4954  }
4955  }
4956  else if (p->features & AHC_ULTRA)
4957  {
4958  maxsync = AHC_SYNCRATE_ULTRA;
4959  }
4960  else
4961  {
4962  maxsync = AHC_SYNCRATE_FAST;
4963  }
4964 
4965  /*
4966  * Just accept the length byte outright and perform
4967  * more checking once we know the message type.
4968  */
4969 
4970  if ( !reject && (p->msg_len > 2) )
4971  {
4972  switch(p->msg_buf[2])
4973  {
4974  case MSG_EXT_SDTR:
4975  {
4976 
4977  if (p->msg_buf[1] != MSG_EXT_SDTR_LEN)
4978  {
4979  reject = TRUE;
4980  break;
4981  }
4982 
4983  if (p->msg_len < (MSG_EXT_SDTR_LEN + 2))
4984  {
4985  break;
4986  }
4987 
4988  period = new_period = p->msg_buf[3];
4989  offset = new_offset = p->msg_buf[4];
4990  trans_options = new_trans_options = 0;
4991  bus_width = new_bus_width = target_scsirate & WIDEXFER;
4992 
4993  /*
4994  * If our current max syncrate is in the Ultra3 range, bump it back
4995  * down to Ultra2 since we can't negotiate DT transfers using SDTR
4996  */
4997  if(maxsync == AHC_SYNCRATE_ULTRA3)
4998  maxsync = AHC_SYNCRATE_ULTRA2;
4999 
5000  /*
5001  * We might have a device that is starting negotiation with us
5002  * before we can start up negotiation with it....be prepared to
5003  * have a device ask for a higher speed then we want to give it
5004  * in that case
5005  */
5006  if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_SDTR)) !=
5008  {
5009  if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
5010  {
5011  /*
5012  * We shouldn't get here unless this is a narrow drive, wide
5013  * devices should trigger this same section of code in the WDTR
5014  * handler first instead.
5015  */
5016  aic_dev->goal.width = MSG_EXT_WDTR_BUS_8_BIT;
5017  aic_dev->goal.options = 0;
5018  if(p->user[tindex].offset)
5019  {
5020  aic_dev->needsdtr_copy = 1;
5021  aic_dev->goal.period = max_t(unsigned char, 10,p->user[tindex].period);
5022  if(p->features & AHC_ULTRA2)
5023  {
5024  aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
5025  }
5026  else
5027  {
5028  aic_dev->goal.offset = MAX_OFFSET_8BIT;
5029  }
5030  }
5031  else
5032  {
5033  aic_dev->needsdtr_copy = 0;
5034  aic_dev->goal.period = 255;
5035  aic_dev->goal.offset = 0;
5036  }
5038  }
5039  else if (aic_dev->needsdtr_copy == 0)
5040  {
5041  /*
5042  * This is a preemptive message from the target, we've already
5043  * scanned this target and set our options for it, and we
5044  * don't need a SDTR with this target (for whatever reason),
5045  * so reject this incoming SDTR
5046  */
5047  reject = TRUE;
5048  break;
5049  }
5050 
5051  /* The device is sending this message first and we have to reply */
5052  reply = TRUE;
5053 
5054  if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5055  {
5056  printk(INFO_LEAD "Received pre-emptive SDTR message from "
5057  "target.\n", p->host_no, CTL_OF_SCB(scb));
5058  }
5059  /*
5060  * Validate the values the device passed to us against our SEEPROM
5061  * settings. We don't have to do this if we aren't replying since
5062  * the device isn't allowed to send values greater than the ones
5063  * we first sent to it.
5064  */
5065  new_period = max_t(unsigned int, period, aic_dev->goal.period);
5066  new_offset = min_t(unsigned int, offset, aic_dev->goal.offset);
5067  }
5068 
5069  /*
5070  * Use our new_period, new_offset, bus_width, and card options
5071  * to determine the actual syncrate settings
5072  */
5073  syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
5074  &trans_options);
5075  aic7xxx_validate_offset(p, syncrate, &new_offset, bus_width);
5076 
5077  /*
5078  * Did we drop to async? If so, send a reply regardless of whether
5079  * or not we initiated this negotiation.
5080  */
5081  if ((new_offset == 0) && (new_offset != offset))
5082  {
5083  aic_dev->needsdtr_copy = 0;
5084  reply = TRUE;
5085  }
5086 
5087  /*
5088  * Did we start this, if not, or if we went too low and had to
5089  * go async, then send an SDTR back to the target
5090  */
5091  if(reply)
5092  {
5093  /* when sending a reply, make sure that the goal settings are
5094  * updated along with current and active since the code that
5095  * will actually build the message for the sequencer uses the
5096  * goal settings as its guidelines.
5097  */
5098  aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5099  new_offset, trans_options,
5100  AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5101  aic_dev);
5102  scb->flags &= ~SCB_MSGOUT_BITS;
5103  scb->flags |= SCB_MSGOUT_SDTR;
5104  aic_outb(p, HOST_MSG, MSG_OUT);
5105  aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5106  }
5107  else
5108  {
5109  aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5110  new_offset, trans_options,
5111  AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5112  aic_dev->needsdtr = 0;
5113  }
5114  done = TRUE;
5115  break;
5116  }
5117  case MSG_EXT_WDTR:
5118  {
5119 
5120  if (p->msg_buf[1] != MSG_EXT_WDTR_LEN)
5121  {
5122  reject = TRUE;
5123  break;
5124  }
5125 
5126  if (p->msg_len < (MSG_EXT_WDTR_LEN + 2))
5127  {
5128  break;
5129  }
5130 
5131  bus_width = new_bus_width = p->msg_buf[3];
5132 
5133  if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_WDTR)) ==
5135  {
5136  switch(bus_width)
5137  {
5138  default:
5139  {
5140  reject = TRUE;
5141  if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
5142  ((aic_dev->flags & DEVICE_PRINT_DTR) ||
5143  (aic7xxx_verbose > 0xffff)) )
5144  {
5145  printk(INFO_LEAD "Requesting %d bit transfers, rejecting.\n",
5146  p->host_no, CTL_OF_SCB(scb), 8 * (0x01 << bus_width));
5147  }
5148  } /* We fall through on purpose */
5150  {
5151  aic_dev->goal.width = MSG_EXT_WDTR_BUS_8_BIT;
5152  aic_dev->needwdtr_copy &= ~target_mask;
5153  break;
5154  }
5156  {
5157  break;
5158  }
5159  }
5160  aic_dev->needwdtr = 0;
5161  aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5162  AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5163  }
5164  else
5165  {
5166  if ( !(aic_dev->flags & DEVICE_DTR_SCANNED) )
5167  {
5168  /*
5169  * Well, we now know the WDTR and SYNC caps of this device since
5170  * it contacted us first, mark it as such and copy the user stuff
5171  * over to the goal stuff.
5172  */
5173  if( (p->features & AHC_WIDE) && p->user[tindex].width )
5174  {
5175  aic_dev->goal.width = MSG_EXT_WDTR_BUS_16_BIT;
5176  aic_dev->needwdtr_copy = 1;
5177  }
5178 
5179  /*
5180  * Devices that support DT transfers don't start WDTR requests
5181  */
5182  aic_dev->goal.options = 0;
5183 
5184  if(p->user[tindex].offset)
5185  {
5186  aic_dev->needsdtr_copy = 1;
5187  aic_dev->goal.period = max_t(unsigned char, 10, p->user[tindex].period);
5188  if(p->features & AHC_ULTRA2)
5189  {
5190  aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
5191  }
5192  else if( aic_dev->goal.width )
5193  {
5194  aic_dev->goal.offset = MAX_OFFSET_16BIT;
5195  }
5196  else
5197  {
5198  aic_dev->goal.offset = MAX_OFFSET_8BIT;
5199  }
5200  } else {
5201  aic_dev->needsdtr_copy = 0;
5202  aic_dev->goal.period = 255;
5203  aic_dev->goal.offset = 0;
5204  }
5205 
5207  }
5208  else if (aic_dev->needwdtr_copy == 0)
5209  {
5210  /*
5211  * This is a preemptive message from the target, we've already
5212  * scanned this target and set our options for it, and we
5213  * don't need a WDTR with this target (for whatever reason),
5214  * so reject this incoming WDTR
5215  */
5216  reject = TRUE;
5217  break;
5218  }
5219 
5220  /* The device is sending this message first and we have to reply */
5221  reply = TRUE;
5222 
5223  if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5224  {
5225  printk(INFO_LEAD "Received pre-emptive WDTR message from "
5226  "target.\n", p->host_no, CTL_OF_SCB(scb));
5227  }
5228  switch(bus_width)
5229  {
5231  {
5232  if ( (p->features & AHC_WIDE) &&
5233  (aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT) )
5234  {
5235  new_bus_width = MSG_EXT_WDTR_BUS_16_BIT;
5236  break;
5237  }
5238  } /* Fall through if we aren't a wide card */
5239  default:
5241  {
5242  aic_dev->needwdtr_copy = 0;
5243  new_bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5244  break;
5245  }
5246  }
5247  scb->flags &= ~SCB_MSGOUT_BITS;
5248  scb->flags |= SCB_MSGOUT_WDTR;
5249  aic_dev->needwdtr = 0;
5250  if(aic_dev->dtr_pending == 0)
5251  {
5252  /* there is no other command with SCB_DTR_SCB already set that will
5253  * trigger the release of the dtr_pending bit. Both set the bit
5254  * and set scb->flags |= SCB_DTR_SCB
5255  */
5256  aic_dev->dtr_pending = 1;
5257  scb->flags |= SCB_DTR_SCB;
5258  }
5259  aic_outb(p, HOST_MSG, MSG_OUT);
5260  aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5261  /* when sending a reply, make sure that the goal settings are
5262  * updated along with current and active since the code that
5263  * will actually build the message for the sequencer uses the
5264  * goal settings as its guidelines.
5265  */
5266  aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5267  AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5268  aic_dev);
5269  }
5270 
5271  /*
5272  * By virtue of the SCSI spec, a WDTR message negates any existing
5273  * SDTR negotiations. So, even if needsdtr isn't marked for this
5274  * device, we still have to do a new SDTR message if the device
5275  * supports SDTR at all. Therefore, we check needsdtr_copy instead
5276  * of needstr.
5277  */
5278  aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
5279  AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
5280  aic_dev);
5281  aic_dev->needsdtr = aic_dev->needsdtr_copy;
5282  done = TRUE;
5283  break;
5284  }
5285  case MSG_EXT_PPR:
5286  {
5287 
5288  if (p->msg_buf[1] != MSG_EXT_PPR_LEN)
5289  {
5290  reject = TRUE;
5291  break;
5292  }
5293 
5294  if (p->msg_len < (MSG_EXT_PPR_LEN + 2))
5295  {
5296  break;
5297  }
5298 
5299  period = new_period = p->msg_buf[3];
5300  offset = new_offset = p->msg_buf[5];
5301  bus_width = new_bus_width = p->msg_buf[6];
5302  trans_options = new_trans_options = p->msg_buf[7] & 0xf;
5303 
5304  if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5305  {
5306  printk(INFO_LEAD "Parsing PPR message (%d/%d/%d/%d)\n",
5307  p->host_no, CTL_OF_SCB(scb), period, offset, bus_width,
5308  trans_options);
5309  }
5310 
5311  /*
5312  * We might have a device that is starting negotiation with us
5313  * before we can start up negotiation with it....be prepared to
5314  * have a device ask for a higher speed then we want to give it
5315  * in that case
5316  */
5317  if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_PPR)) !=
5319  {
5320  /* Have we scanned the device yet? */
5321  if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
5322  {
5323  /* The device is electing to use PPR messages, so we will too until
5324  * we know better */
5325  aic_dev->needppr = aic_dev->needppr_copy = 1;
5326  aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
5327  aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
5328 
5329  /* We know the device is SCSI-3 compliant due to PPR */
5330  aic_dev->flags |= DEVICE_SCSI_3;
5331 
5332  /*
5333  * Not only is the device starting this up, but it also hasn't
5334  * been scanned yet, so this would likely be our TUR or our
5335  * INQUIRY command at scan time, so we need to use the
5336  * settings from the SEEPROM if they existed. Of course, even
5337  * if we didn't find a SEEPROM, we stuffed default values into
5338  * the user settings anyway, so use those in all cases.
5339  */
5340  aic_dev->goal.width = p->user[tindex].width;
5341  if(p->user[tindex].offset)
5342  {
5343  aic_dev->goal.period = p->user[tindex].period;
5344  aic_dev->goal.options = p->user[tindex].options;
5345  if(p->features & AHC_ULTRA2)
5346  {
5347  aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
5348  }
5349  else if( aic_dev->goal.width &&
5350  (bus_width == MSG_EXT_WDTR_BUS_16_BIT) &&
5351  p->features & AHC_WIDE )
5352  {
5353  aic_dev->goal.offset = MAX_OFFSET_16BIT;
5354  }
5355  else
5356  {
5357  aic_dev->goal.offset = MAX_OFFSET_8BIT;
5358  }
5359  }
5360  else
5361  {
5362  aic_dev->goal.period = 255;
5363  aic_dev->goal.offset = 0;
5364  aic_dev->goal.options = 0;
5365  }
5367  }
5368  else if (aic_dev->needppr_copy == 0)
5369  {
5370  /*
5371  * This is a preemptive message from the target, we've already
5372  * scanned this target and set our options for it, and we
5373  * don't need a PPR with this target (for whatever reason),
5374  * so reject this incoming PPR
5375  */
5376  reject = TRUE;
5377  break;
5378  }
5379 
5380  /* The device is sending this message first and we have to reply */
5381  reply = TRUE;
5382 
5383  if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5384  {
5385  printk(INFO_LEAD "Received pre-emptive PPR message from "
5386  "target.\n", p->host_no, CTL_OF_SCB(scb));
5387  }
5388 
5389  }
5390 
5391  switch(bus_width)
5392  {
5394  {
5395  if ( (aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT) &&
5396  p->features & AHC_WIDE)
5397  {
5398  break;
5399  }
5400  }
5401  default:
5402  {
5403  if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
5404  ((aic_dev->flags & DEVICE_PRINT_DTR) ||
5405  (aic7xxx_verbose > 0xffff)) )
5406  {
5407  reply = TRUE;
5408  printk(INFO_LEAD "Requesting %d bit transfers, rejecting.\n",
5409  p->host_no, CTL_OF_SCB(scb), 8 * (0x01 << bus_width));
5410  }
5411  } /* We fall through on purpose */
5413  {
5414  /*
5415  * According to the spec, if we aren't wide, we also can't be
5416  * Dual Edge so clear the options byte
5417  */
5418  new_trans_options = 0;
5419  new_bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5420  break;
5421  }
5422  }
5423 
5424  if(reply)
5425  {
5426  /* when sending a reply, make sure that the goal settings are
5427  * updated along with current and active since the code that
5428  * will actually build the message for the sequencer uses the
5429  * goal settings as its guidelines.
5430  */
5431  aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5432  AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5433  aic_dev);
5434  syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
5435  &new_trans_options);
5436  aic7xxx_validate_offset(p, syncrate, &new_offset, new_bus_width);
5437  aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5438  new_offset, new_trans_options,
5439  AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5440  aic_dev);
5441  }
5442  else
5443  {
5444  aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5445  AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5446  syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
5447  &new_trans_options);
5448  aic7xxx_validate_offset(p, syncrate, &new_offset, new_bus_width);
5449  aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5450  new_offset, new_trans_options,
5451  AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5452  }
5453 
5454  /*
5455  * As it turns out, if we don't *have* to have PPR messages, then
5456  * configure ourselves not to use them since that makes some
5457  * external drive chassis work (those chassis can't parse PPR
5458  * messages and they mangle the SCSI bus until you send a WDTR
5459  * and SDTR that they can understand).
5460  */
5461  if(new_trans_options == 0)
5462  {
5463  aic_dev->needppr = aic_dev->needppr_copy = 0;
5464  if(new_offset)
5465  {
5466  aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
5467  }
5468  if (new_bus_width)
5469  {
5470  aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
5471  }
5472  }
5473 
5474  if((new_offset == 0) && (offset != 0))
5475  {
5476  /*
5477  * Oops, the syncrate went to low for this card and we fell off
5478  * to async (should never happen with a device that uses PPR
5479  * messages, but have to be complete)
5480  */
5481  reply = TRUE;
5482  }
5483 
5484  if(reply)
5485  {
5486  scb->flags &= ~SCB_MSGOUT_BITS;
5487  scb->flags |= SCB_MSGOUT_PPR;
5488  aic_outb(p, HOST_MSG, MSG_OUT);
5489  aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5490  }
5491  else
5492  {
5493  aic_dev->needppr = 0;
5494  }
5495  done = TRUE;
5496  break;
5497  }
5498  default:
5499  {
5500  reject = TRUE;
5501  break;
5502  }
5503  } /* end of switch(p->msg_type) */
5504  } /* end of if (!reject && (p->msg_len > 2)) */
5505 
5506  if (!reply && reject)
5507  {
5508  aic_outb(p, MSG_MESSAGE_REJECT, MSG_OUT);
5509  aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5510  done = TRUE;
5511  }
5512  return(done);
5513 }
5514 
5515 
5516 /*+F*************************************************************************
5517  * Function:
5518  * aic7xxx_handle_reqinit
5519  *
5520  * Description:
5521  * Interrupt handler for REQINIT interrupts (used to transfer messages to
5522  * and from devices).
5523  *_F*************************************************************************/
5524 static void
5525 aic7xxx_handle_reqinit(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
5526 {
5527  unsigned char lastbyte;
5528  unsigned char phasemis;
5529  int done = FALSE;
5530 
5531  switch(p->msg_type)
5532  {
5534  {
5535  if (p->msg_len == 0)
5536  panic("aic7xxx: REQINIT with no active message!\n");
5537 
5538  lastbyte = (p->msg_index == (p->msg_len - 1));
5539  phasemis = ( aic_inb(p, SCSISIGI) & PHASE_MASK) != P_MESGOUT;
5540 
5541  if (lastbyte || phasemis)
5542  {
5543  /* Time to end the message */
5544  p->msg_len = 0;
5545  p->msg_type = MSG_TYPE_NONE;
5546  /*
5547  * NOTE-TO-MYSELF: If you clear the REQINIT after you
5548  * disable REQINITs, then cases of REJECT_MSG stop working
5549  * and hang the bus
5550  */
5551  aic_outb(p, aic_inb(p, SIMODE1) & ~ENREQINIT, SIMODE1);
5552  aic_outb(p, CLRSCSIINT, CLRINT);
5554 
5555  if (phasemis == 0)
5556  {
5557  aic_outb(p, p->msg_buf[p->msg_index], SINDEX);
5558  aic_outb(p, 0, RETURN_1);
5559 #ifdef AIC7XXX_VERBOSE_DEBUGGING
5560  if (aic7xxx_verbose > 0xffff)
5561  printk(INFO_LEAD "Completed sending of REQINIT message.\n",
5562  p->host_no, CTL_OF_SCB(scb));
5563 #endif
5564  }
5565  else
5566  {
5567  aic_outb(p, MSGOUT_PHASEMIS, RETURN_1);
5568 #ifdef AIC7XXX_VERBOSE_DEBUGGING
5569  if (aic7xxx_verbose > 0xffff)
5570  printk(INFO_LEAD "PHASEMIS while sending REQINIT message.\n",
5571  p->host_no, CTL_OF_SCB(scb));
5572 #endif
5573  }
5574  unpause_sequencer(p, TRUE);
5575  }
5576  else
5577  {
5578  /*
5579  * Present the byte on the bus (clearing REQINIT) but don't
5580  * unpause the sequencer.
5581  */
5582  aic_outb(p, CLRREQINIT, CLRSINT1);
5583  aic_outb(p, CLRSCSIINT, CLRINT);
5584  aic_outb(p, p->msg_buf[p->msg_index++], SCSIDATL);
5585  }
5586  break;
5587  }
5589  {
5590  phasemis = ( aic_inb(p, SCSISIGI) & PHASE_MASK ) != P_MESGIN;
5591 
5592  if (phasemis == 0)
5593  {
5594  p->msg_len++;
5595  /* Pull the byte in without acking it */
5596  p->msg_buf[p->msg_index] = aic_inb(p, SCSIBUSL);
5597  done = aic7xxx_parse_msg(p, scb);
5598  /* Ack the byte */
5599  aic_outb(p, CLRREQINIT, CLRSINT1);
5600  aic_outb(p, CLRSCSIINT, CLRINT);
5601  aic_inb(p, SCSIDATL);
5602  p->msg_index++;
5603  }
5604  if (phasemis || done)
5605  {
5606 #ifdef AIC7XXX_VERBOSE_DEBUGGING
5607  if (aic7xxx_verbose > 0xffff)
5608  {
5609  if (phasemis)
5610  printk(INFO_LEAD "PHASEMIS while receiving REQINIT message.\n",
5611  p->host_no, CTL_OF_SCB(scb));
5612  else
5613  printk(INFO_LEAD "Completed receipt of REQINIT message.\n",
5614  p->host_no, CTL_OF_SCB(scb));
5615  }
5616 #endif
5617  /* Time to end our message session */
5618  p->msg_len = 0;
5619  p->msg_type = MSG_TYPE_NONE;
5620  aic_outb(p, aic_inb(p, SIMODE1) & ~ENREQINIT, SIMODE1);
5621  aic_outb(p, CLRSCSIINT, CLRINT);
5623  unpause_sequencer(p, TRUE);
5624  }
5625  break;
5626  }
5627  default:
5628  {
5629  panic("aic7xxx: Unknown REQINIT message type.\n");
5630  break;
5631  }
5632  } /* End of switch(p->msg_type) */
5633 }
5634 
5635 /*+F*************************************************************************
5636  * Function:
5637  * aic7xxx_handle_scsiint
5638  *
5639  * Description:
5640  * Interrupt handler for SCSI interrupts (SCSIINT).
5641  *-F*************************************************************************/
5642 static void
5643 aic7xxx_handle_scsiint(struct aic7xxx_host *p, unsigned char intstat)
5644 {
5645  unsigned char scb_index;
5646  unsigned char status;
5647  struct aic7xxx_scb *scb;
5648  struct aic_dev_data *aic_dev;
5649 
5650  scb_index = aic_inb(p, SCB_TAG);
5651  status = aic_inb(p, SSTAT1);
5652 
5653  if (scb_index < p->scb_data->numscbs)
5654  {
5655  scb = p->scb_data->scb_array[scb_index];
5656  if ((scb->flags & SCB_ACTIVE) == 0)
5657  {
5658  scb = NULL;
5659  }
5660  }
5661  else
5662  {
5663  scb = NULL;
5664  }
5665 
5666 
5667  if ((status & SCSIRSTI) != 0)
5668  {
5669  int channel;
5670 
5671  if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
5672  channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
5673  else
5674  channel = 0;
5675 
5677  printk(WARN_LEAD "Someone else reset the channel!!\n",
5678  p->host_no, channel, -1, -1);
5679  if (aic7xxx_panic_on_abort)
5680  aic7xxx_panic_abort(p, NULL);
5681  /*
5682  * Go through and abort all commands for the channel, but do not
5683  * reset the channel again.
5684  */
5685  aic7xxx_reset_channel(p, channel, /* Initiate Reset */ FALSE);
5686  aic7xxx_run_done_queue(p, TRUE);
5687  scb = NULL;
5688  }
5689  else if ( ((status & BUSFREE) != 0) && ((status & SELTO) == 0) )
5690  {
5691  /*
5692  * First look at what phase we were last in. If it's message-out,
5693  * chances are pretty good that the bus free was in response to
5694  * one of our abort requests.
5695  */
5696  unsigned char lastphase = aic_inb(p, LASTPHASE);
5697  unsigned char saved_tcl = aic_inb(p, SAVED_TCL);
5698  unsigned char target = (saved_tcl >> 4) & 0x0F;
5699  int channel;
5700  int printerror = TRUE;
5701 
5702  if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
5703  channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
5704  else
5705  channel = 0;
5706 
5707  aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP),
5708  SCSISEQ);
5709  if (lastphase == P_MESGOUT)
5710  {
5711  unsigned char message;
5712 
5713  message = aic_inb(p, SINDEX);
5714 
5715  if ((message == MSG_ABORT) || (message == MSG_ABORT_TAG))
5716  {
5717  if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
5718  printk(INFO_LEAD "SCB %d abort delivered.\n", p->host_no,
5719  CTL_OF_SCB(scb), scb->hscb->tag);
5720  aic7xxx_reset_device(p, target, channel, ALL_LUNS,
5721  (message == MSG_ABORT) ? SCB_LIST_NULL : scb->hscb->tag );
5722  aic7xxx_run_done_queue(p, TRUE);
5723  scb = NULL;
5724  printerror = 0;
5725  }
5726  else if (message == MSG_BUS_DEV_RESET)
5727  {
5728  aic7xxx_handle_device_reset(p, target, channel);
5729  scb = NULL;
5730  printerror = 0;
5731  }
5732  }
5733  if ( (scb != NULL) && (scb->flags & SCB_DTR_SCB) )
5734  {
5735  /*
5736  * Hmmm...error during a negotiation command. Either we have a
5737  * borken bus, or the device doesn't like our negotiation message.
5738  * Since we check the INQUIRY data of a device before sending it
5739  * negotiation messages, assume the bus is borken for whatever
5740  * reason. Complete the command.
5741  */
5742  printerror = 0;
5743  aic7xxx_reset_device(p, target, channel, ALL_LUNS, scb->hscb->tag);
5744  aic7xxx_run_done_queue(p, TRUE);
5745  scb = NULL;
5746  }
5747  if (printerror != 0)
5748  {
5749  if (scb != NULL)
5750  {
5751  unsigned char tag;
5752 
5753  if ((scb->hscb->control & TAG_ENB) != 0)
5754  {
5755  tag = scb->hscb->tag;
5756  }
5757  else
5758  {
5759  tag = SCB_LIST_NULL;
5760  }
5761  aic7xxx_reset_device(p, target, channel, ALL_LUNS, tag);
5762  aic7xxx_run_done_queue(p, TRUE);
5763  }
5764  else
5765  {
5766  aic7xxx_reset_device(p, target, channel, ALL_LUNS, SCB_LIST_NULL);
5767  aic7xxx_run_done_queue(p, TRUE);
5768  }
5769  printk(INFO_LEAD "Unexpected busfree, LASTPHASE = 0x%x, "
5770  "SEQADDR = 0x%x\n", p->host_no, channel, target, -1, lastphase,
5771  (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
5772  scb = NULL;
5773  }
5774  aic_outb(p, MSG_NOOP, MSG_OUT);
5775  aic_outb(p, aic_inb(p, SIMODE1) & ~(ENBUSFREE|ENREQINIT),
5776  SIMODE1);
5778  aic_outb(p, CLRBUSFREE, CLRSINT1);
5779  aic_outb(p, CLRSCSIINT, CLRINT);
5780  restart_sequencer(p);
5781  unpause_sequencer(p, TRUE);
5782  }
5783  else if ((status & SELTO) != 0)
5784  {
5785  unsigned char scbptr;
5786  unsigned char nextscb;
5787  struct scsi_cmnd *cmd;
5788 
5789  scbptr = aic_inb(p, WAITING_SCBH);
5790  if (scbptr > p->scb_data->maxhscbs)
5791  {
5792  /*
5793  * I'm still trying to track down exactly how this happens, but until
5794  * I find it, this code will make sure we aren't passing bogus values
5795  * into the SCBPTR register, even if that register will just wrap
5796  * things around, we still don't like having out of range variables.
5797  *
5798  * NOTE: Don't check the aic7xxx_verbose variable, I want this message
5799  * to always be displayed.
5800  */
5801  printk(INFO_LEAD "Invalid WAITING_SCBH value %d, improvising.\n",
5802  p->host_no, -1, -1, -1, scbptr);
5803  if (p->scb_data->maxhscbs > 4)
5804  scbptr &= (p->scb_data->maxhscbs - 1);
5805  else
5806  scbptr &= 0x03;
5807  }
5808  aic_outb(p, scbptr, SCBPTR);
5809  scb_index = aic_inb(p, SCB_TAG);
5810 
5811  scb = NULL;
5812  if (scb_index < p->scb_data->numscbs)
5813  {
5814  scb = p->scb_data->scb_array[scb_index];
5815  if ((scb->flags & SCB_ACTIVE) == 0)
5816  {
5817  scb = NULL;
5818  }
5819  }
5820  if (scb == NULL)
5821  {
5822  printk(WARN_LEAD "Referenced SCB %d not valid during SELTO.\n",
5823  p->host_no, -1, -1, -1, scb_index);
5824  printk(KERN_WARNING " SCSISEQ = 0x%x SEQADDR = 0x%x SSTAT0 = 0x%x "
5825  "SSTAT1 = 0x%x\n", aic_inb(p, SCSISEQ),
5826  aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
5827  aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
5828  if (aic7xxx_panic_on_abort)
5829  aic7xxx_panic_abort(p, NULL);
5830  }
5831  else
5832  {
5833  cmd = scb->cmd;
5834  cmd->result = (DID_TIME_OUT << 16);
5835 
5836  /*
5837  * Clear out this hardware SCB
5838  */
5839  aic_outb(p, 0, SCB_CONTROL);
5840 
5841  /*
5842  * Clear out a few values in the card that are in an undetermined
5843  * state.
5844  */
5845  aic_outb(p, MSG_NOOP, MSG_OUT);
5846 
5847  /*
5848  * Shift the waiting for selection queue forward
5849  */
5850  nextscb = aic_inb(p, SCB_NEXT);
5851  aic_outb(p, nextscb, WAITING_SCBH);
5852 
5853  /*
5854  * Put this SCB back on the free list.
5855  */
5856  aic7xxx_add_curscb_to_free_list(p);
5857 #ifdef AIC7XXX_VERBOSE_DEBUGGING
5858  if (aic7xxx_verbose > 0xffff)
5859  printk(INFO_LEAD "Selection Timeout.\n", p->host_no, CTL_OF_SCB(scb));
5860 #endif
5861  if (scb->flags & SCB_QUEUED_ABORT)
5862  {
5863  /*
5864  * We know that this particular SCB had to be the queued abort since
5865  * the disconnected SCB would have gotten a reconnect instead.
5866  * What we need to do then is to let the command timeout again so
5867  * we get a reset since this abort just failed.
5868  */
5869  cmd->result = 0;
5870  scb = NULL;
5871  }
5872  }
5873  /*
5874  * Keep the sequencer from trying to restart any selections
5875  */
5876  aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
5877  /*
5878  * Make sure the data bits on the bus are released
5879  * Don't do this on 7770 chipsets, it makes them give us
5880  * a BRKADDRINT and kills the card.
5881  */
5882  if( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI )
5883  aic_outb(p, 0, SCSIBUSL);
5884 
5885  /*
5886  * Delay for the selection timeout delay period then stop the selection
5887  */
5888  udelay(301);
5889  aic_outb(p, CLRSELINGO, CLRSINT0);
5890  /*
5891  * Clear out all the interrupt status bits
5892  */
5893  aic_outb(p, aic_inb(p, SIMODE1) & ~(ENREQINIT|ENBUSFREE), SIMODE1);
5895  aic_outb(p, CLRSELTIMEO | CLRBUSFREE, CLRSINT1);
5896  aic_outb(p, CLRSCSIINT, CLRINT);
5897  /*
5898  * Restarting the sequencer will stop the selection and make sure devices
5899  * are allowed to reselect in.
5900  */
5901  restart_sequencer(p);
5902  unpause_sequencer(p, TRUE);
5903  }
5904  else if (scb == NULL)
5905  {
5906  printk(WARN_LEAD "aic7xxx_isr - referenced scb not valid "
5907  "during scsiint 0x%x scb(%d)\n"
5908  " SIMODE0 0x%x, SIMODE1 0x%x, SSTAT0 0x%x, SEQADDR 0x%x\n",
5909  p->host_no, -1, -1, -1, status, scb_index, aic_inb(p, SIMODE0),
5910  aic_inb(p, SIMODE1), aic_inb(p, SSTAT0),
5911  (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
5912  /*
5913  * Turn off the interrupt and set status to zero, so that it
5914  * falls through the rest of the SCSIINT code.
5915  */
5916  aic_outb(p, status, CLRSINT1);
5917  aic_outb(p, CLRSCSIINT, CLRINT);
5918  unpause_sequencer(p, /* unpause always */ TRUE);
5919  scb = NULL;
5920  }
5921  else if (status & SCSIPERR)
5922  {
5923  /*
5924  * Determine the bus phase and queue an appropriate message.
5925  */
5926  char *phase;
5927  struct scsi_cmnd *cmd;
5928  unsigned char mesg_out = MSG_NOOP;
5929  unsigned char lastphase = aic_inb(p, LASTPHASE);
5930  unsigned char sstat2 = aic_inb(p, SSTAT2);
5931 
5932  cmd = scb->cmd;
5933  switch (lastphase)
5934  {
5935  case P_DATAOUT:
5936  phase = "Data-Out";
5937  break;
5938  case P_DATAIN:
5939  phase = "Data-In";
5940  mesg_out = MSG_INITIATOR_DET_ERR;
5941  break;
5942  case P_COMMAND:
5943  phase = "Command";
5944  break;
5945  case P_MESGOUT:
5946  phase = "Message-Out";
5947  break;
5948  case P_STATUS:
5949  phase = "Status";
5950  mesg_out = MSG_INITIATOR_DET_ERR;
5951  break;
5952  case P_MESGIN:
5953  phase = "Message-In";
5954  mesg_out = MSG_PARITY_ERROR;
5955  break;
5956  default:
5957  phase = "unknown";
5958  break;
5959  }
5960 
5961  /*
5962  * A parity error has occurred during a data
5963  * transfer phase. Flag it and continue.
5964  */
5965  if( (p->features & AHC_ULTRA3) &&
5966  (aic_inb(p, SCSIRATE) & AHC_SYNCRATE_CRC) &&
5967  (lastphase == P_DATAIN) )
5968  {
5969  printk(WARN_LEAD "CRC error during %s phase.\n",
5970  p->host_no, CTL_OF_SCB(scb), phase);
5971  if(sstat2 & CRCVALERR)
5972  {
5973  printk(WARN_LEAD " CRC error in intermediate CRC packet.\n",
5974  p->host_no, CTL_OF_SCB(scb));
5975  }
5976  if(sstat2 & CRCENDERR)
5977  {
5978  printk(WARN_LEAD " CRC error in ending CRC packet.\n",
5979  p->host_no, CTL_OF_SCB(scb));
5980  }
5981  if(sstat2 & CRCREQERR)
5982  {
5983  printk(WARN_LEAD " Target incorrectly requested a CRC packet.\n",
5984  p->host_no, CTL_OF_SCB(scb));
5985  }
5986  if(sstat2 & DUAL_EDGE_ERROR)
5987  {
5988  printk(WARN_LEAD " Dual Edge transmission error.\n",
5989  p->host_no, CTL_OF_SCB(scb));
5990  }
5991  }
5992  else if( (lastphase == P_MESGOUT) &&
5993  (scb->flags & SCB_MSGOUT_PPR) )
5994  {
5995  /*
5996  * As per the draft specs, any device capable of supporting any of
5997  * the option values other than 0 are not allowed to reject the
5998  * PPR message. Instead, they must negotiate out what they do
5999  * support instead of rejecting our offering or else they cause
6000  * a parity error during msg_out phase to signal that they don't
6001  * like our settings.
6002  */
6003  aic_dev = AIC_DEV(scb->cmd);
6004  aic_dev->needppr = aic_dev->needppr_copy = 0;
6005  aic7xxx_set_width(p, scb->cmd->device->id, scb->cmd->device->channel, scb->cmd->device->lun,
6007  (AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE),
6008  aic_dev);
6009  aic7xxx_set_syncrate(p, NULL, scb->cmd->device->id, scb->cmd->device->channel, 0, 0,
6010  0, AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
6011  aic_dev);
6012  aic_dev->goal.options = 0;
6013  scb->flags &= ~SCB_MSGOUT_BITS;
6014  if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6015  {
6016  printk(INFO_LEAD "parity error during PPR message, reverting "
6017  "to WDTR/SDTR\n", p->host_no, CTL_OF_SCB(scb));
6018  }
6019  if ( aic_dev->goal.width )
6020  {
6021  aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
6022  }
6023  if ( aic_dev->goal.offset )
6024  {
6025  if( aic_dev->goal.period <= 9 )
6026  {
6027  aic_dev->goal.period = 10;
6028  }
6029  aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
6030  }
6031  scb = NULL;
6032  }
6033 
6034  /*
6035  * We've set the hardware to assert ATN if we get a parity
6036  * error on "in" phases, so all we need to do is stuff the
6037  * message buffer with the appropriate message. "In" phases
6038  * have set mesg_out to something other than MSG_NOP.
6039  */
6040  if (mesg_out != MSG_NOOP)
6041  {
6042  aic_outb(p, mesg_out, MSG_OUT);
6043  aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
6044  scb = NULL;
6045  }
6046  aic_outb(p, CLRSCSIPERR, CLRSINT1);
6047  aic_outb(p, CLRSCSIINT, CLRINT);
6048  unpause_sequencer(p, /* unpause_always */ TRUE);
6049  }
6050  else if ( (status & REQINIT) &&
6051  (p->flags & AHC_HANDLING_REQINITS) )
6052  {
6053 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6054  if (aic7xxx_verbose > 0xffff)
6055  printk(INFO_LEAD "Handling REQINIT, SSTAT1=0x%x.\n", p->host_no,
6056  CTL_OF_SCB(scb), aic_inb(p, SSTAT1));
6057 #endif
6058  aic7xxx_handle_reqinit(p, scb);
6059  return;
6060  }
6061  else
6062  {
6063  /*
6064  * We don't know what's going on. Turn off the
6065  * interrupt source and try to continue.
6066  */
6068  printk(INFO_LEAD "Unknown SCSIINT status, SSTAT1(0x%x).\n",
6069  p->host_no, -1, -1, -1, status);
6070  aic_outb(p, status, CLRSINT1);
6071  aic_outb(p, CLRSCSIINT, CLRINT);
6072  unpause_sequencer(p, /* unpause always */ TRUE);
6073  scb = NULL;
6074  }
6075  if (scb != NULL)
6076  {
6077  aic7xxx_done(p, scb);
6078  }
6079 }
6080 
6081 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6082 static void
6083 aic7xxx_check_scbs(struct aic7xxx_host *p, char *buffer)
6084 {
6085  unsigned char saved_scbptr, free_scbh, dis_scbh, wait_scbh, temp;
6086  int i, bogus, lost;
6087  static unsigned char scb_status[AIC7XXX_MAXSCB];
6088 
6089 #define SCB_NO_LIST 0
6090 #define SCB_FREE_LIST 1
6091 #define SCB_WAITING_LIST 2
6092 #define SCB_DISCONNECTED_LIST 4
6093 #define SCB_CURRENTLY_ACTIVE 8
6094 
6095  /*
6096  * Note, these checks will fail on a regular basis once the machine moves
6097  * beyond the bus scan phase. The problem is race conditions concerning
6098  * the scbs and where they are linked in. When you have 30 or so commands
6099  * outstanding on the bus, and run this twice with every interrupt, the
6100  * chances get pretty good that you'll catch the sequencer with an SCB
6101  * only partially linked in. Therefore, once we pass the scan phase
6102  * of the bus, we really should disable this function.
6103  */
6104  bogus = FALSE;
6105  memset(&scb_status[0], 0, sizeof(scb_status));
6106  pause_sequencer(p);
6107  saved_scbptr = aic_inb(p, SCBPTR);
6108  if (saved_scbptr >= p->scb_data->maxhscbs)
6109  {
6110  printk("Bogus SCBPTR %d\n", saved_scbptr);
6111  bogus = TRUE;
6112  }
6113  scb_status[saved_scbptr] = SCB_CURRENTLY_ACTIVE;
6114  free_scbh = aic_inb(p, FREE_SCBH);
6115  if ( (free_scbh != SCB_LIST_NULL) &&
6116  (free_scbh >= p->scb_data->maxhscbs) )
6117  {
6118  printk("Bogus FREE_SCBH %d\n", free_scbh);
6119  bogus = TRUE;
6120  }
6121  else
6122  {
6123  temp = free_scbh;
6124  while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
6125  {
6126  if(scb_status[temp] & 0x07)
6127  {
6128  printk("HSCB %d on multiple lists, status 0x%02x", temp,
6129  scb_status[temp] | SCB_FREE_LIST);
6130  bogus = TRUE;
6131  }
6132  scb_status[temp] |= SCB_FREE_LIST;
6133  aic_outb(p, temp, SCBPTR);
6134  temp = aic_inb(p, SCB_NEXT);
6135  }
6136  }
6137 
6138  dis_scbh = aic_inb(p, DISCONNECTED_SCBH);
6139  if ( (dis_scbh != SCB_LIST_NULL) &&
6140  (dis_scbh >= p->scb_data->maxhscbs) )
6141  {
6142  printk("Bogus DISCONNECTED_SCBH %d\n", dis_scbh);
6143  bogus = TRUE;
6144  }
6145  else
6146  {
6147  temp = dis_scbh;
6148  while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
6149  {
6150  if(scb_status[temp] & 0x07)
6151  {
6152  printk("HSCB %d on multiple lists, status 0x%02x", temp,
6153  scb_status[temp] | SCB_DISCONNECTED_LIST);
6154  bogus = TRUE;
6155  }
6156  scb_status[temp] |= SCB_DISCONNECTED_LIST;
6157  aic_outb(p, temp, SCBPTR);
6158  temp = aic_inb(p, SCB_NEXT);
6159  }
6160  }
6161 
6162  wait_scbh = aic_inb(p, WAITING_SCBH);
6163  if ( (wait_scbh != SCB_LIST_NULL) &&
6164  (wait_scbh >= p->scb_data->maxhscbs) )
6165  {
6166  printk("Bogus WAITING_SCBH %d\n", wait_scbh);
6167  bogus = TRUE;
6168  }
6169  else
6170  {
6171  temp = wait_scbh;
6172  while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
6173  {
6174  if(scb_status[temp] & 0x07)
6175  {
6176  printk("HSCB %d on multiple lists, status 0x%02x", temp,
6177  scb_status[temp] | SCB_WAITING_LIST);
6178  bogus = TRUE;
6179  }
6180  scb_status[temp] |= SCB_WAITING_LIST;
6181  aic_outb(p, temp, SCBPTR);
6182  temp = aic_inb(p, SCB_NEXT);
6183  }
6184  }
6185 
6186  lost=0;
6187  for(i=0; i < p->scb_data->maxhscbs; i++)
6188  {
6189  aic_outb(p, i, SCBPTR);
6190  temp = aic_inb(p, SCB_NEXT);
6191  if ( ((temp != SCB_LIST_NULL) &&
6192  (temp >= p->scb_data->maxhscbs)) )
6193  {
6194  printk("HSCB %d bad, SCB_NEXT invalid(%d).\n", i, temp);
6195  bogus = TRUE;
6196  }
6197  if ( temp == i )
6198  {
6199  printk("HSCB %d bad, SCB_NEXT points to self.\n", i);
6200  bogus = TRUE;
6201  }
6202  if (scb_status[i] == 0)
6203  lost++;
6204  if (lost > 1)
6205  {
6206  printk("Too many lost scbs.\n");
6207  bogus=TRUE;
6208  }
6209  }
6210  aic_outb(p, saved_scbptr, SCBPTR);
6211  unpause_sequencer(p, FALSE);
6212  if (bogus)
6213  {
6214  printk("Bogus parameters found in card SCB array structures.\n");
6215  printk("%s\n", buffer);
6216  aic7xxx_panic_abort(p, NULL);
6217  }
6218  return;
6219 }
6220 #endif
6221 
6222 
6223 /*+F*************************************************************************
6224  * Function:
6225  * aic7xxx_handle_command_completion_intr
6226  *
6227  * Description:
6228  * SCSI command completion interrupt handler.
6229  *-F*************************************************************************/
6230 static void
6231 aic7xxx_handle_command_completion_intr(struct aic7xxx_host *p)
6232 {
6233  struct aic7xxx_scb *scb = NULL;
6234  struct aic_dev_data *aic_dev;
6235  struct scsi_cmnd *cmd;
6236  unsigned char scb_index, tindex;
6237 
6238 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6239  if( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) )
6240  printk(INFO_LEAD "Command Complete Int.\n", p->host_no, -1, -1, -1);
6241 #endif
6242 
6243  /*
6244  * Read the INTSTAT location after clearing the CMDINT bit. This forces
6245  * any posted PCI writes to flush to memory. Gerard Roudier suggested
6246  * this fix to the possible race of clearing the CMDINT bit but not
6247  * having all command bytes flushed onto the qoutfifo.
6248  */
6249  aic_outb(p, CLRCMDINT, CLRINT);
6250  aic_inb(p, INTSTAT);
6251  /*
6252  * The sequencer will continue running when it
6253  * issues this interrupt. There may be >1 commands
6254  * finished, so loop until we've processed them all.
6255  */
6256 
6257  while (p->qoutfifo[p->qoutfifonext] != SCB_LIST_NULL)
6258  {
6259  scb_index = p->qoutfifo[p->qoutfifonext];
6260  p->qoutfifo[p->qoutfifonext++] = SCB_LIST_NULL;
6261  if ( scb_index >= p->scb_data->numscbs )
6262  {
6263  printk(WARN_LEAD "CMDCMPLT with invalid SCB index %d\n", p->host_no,
6264  -1, -1, -1, scb_index);
6265  continue;
6266  }
6267  scb = p->scb_data->scb_array[scb_index];
6268  if (!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
6269  {
6270  printk(WARN_LEAD "CMDCMPLT without command for SCB %d, SCB flags "
6271  "0x%x, cmd 0x%lx\n", p->host_no, -1, -1, -1, scb_index, scb->flags,
6272  (unsigned long) scb->cmd);
6273  continue;
6274  }
6275  tindex = TARGET_INDEX(scb->cmd);
6276  aic_dev = AIC_DEV(scb->cmd);
6277  if (scb->flags & SCB_QUEUED_ABORT)
6278  {
6279  pause_sequencer(p);
6280  if ( ((aic_inb(p, LASTPHASE) & PHASE_MASK) != P_BUSFREE) &&
6281  (aic_inb(p, SCB_TAG) == scb->hscb->tag) )
6282  {
6283  unpause_sequencer(p, FALSE);
6284  continue;
6285  }
6286  aic7xxx_reset_device(p, scb->cmd->device->id, scb->cmd->device->channel,
6287  scb->cmd->device->lun, scb->hscb->tag);
6290  unpause_sequencer(p, FALSE);
6291  }
6292  else if (scb->flags & SCB_ABORT)
6293  {
6294  /*
6295  * We started to abort this, but it completed on us, let it
6296  * through as successful
6297  */
6298  scb->flags &= ~(SCB_ABORT|SCB_RESET);
6299  }
6300  else if (scb->flags & SCB_SENSE)
6301  {
6302  char *buffer = &scb->cmd->sense_buffer[0];
6303 
6304  if (buffer[12] == 0x47 || buffer[12] == 0x54)
6305  {
6306  /*
6307  * Signal that we need to re-negotiate things.
6308  */
6309  aic_dev->needppr = aic_dev->needppr_copy;
6310  aic_dev->needsdtr = aic_dev->needsdtr_copy;
6311  aic_dev->needwdtr = aic_dev->needwdtr_copy;
6312  }
6313  }
6314  cmd = scb->cmd;
6315  if (scb->hscb->residual_SG_segment_count != 0)
6316  {
6317  aic7xxx_calculate_residual(p, scb);
6318  }
6319  cmd->result |= (aic7xxx_error(cmd) << 16);
6320  aic7xxx_done(p, scb);
6321  }
6322 }
6323 
6324 /*+F*************************************************************************
6325  * Function:
6326  * aic7xxx_isr
6327  *
6328  * Description:
6329  * SCSI controller interrupt handler.
6330  *-F*************************************************************************/
6331 static void
6332 aic7xxx_isr(void *dev_id)
6333 {
6334  struct aic7xxx_host *p;
6335  unsigned char intstat;
6336 
6337  p = dev_id;
6338 
6339  /*
6340  * Just a few sanity checks. Make sure that we have an int pending.
6341  * Also, if PCI, then we are going to check for a PCI bus error status
6342  * should we get too many spurious interrupts.
6343  */
6344  if (!((intstat = aic_inb(p, INTSTAT)) & INT_PEND))
6345  {
6346 #ifdef CONFIG_PCI
6347  if ( (p->chip & AHC_PCI) && (p->spurious_int > 500) &&
6348  !(p->flags & AHC_HANDLING_REQINITS) )
6349  {
6350  if ( aic_inb(p, ERROR) & PCIERRSTAT )
6351  {
6352  aic7xxx_pci_intr(p);
6353  }
6354  p->spurious_int = 0;
6355  }
6356  else if ( !(p->flags & AHC_HANDLING_REQINITS) )
6357  {
6358  p->spurious_int++;
6359  }
6360 #endif
6361  return;
6362  }
6363 
6364  p->spurious_int = 0;
6365 
6366  /*
6367  * Keep track of interrupts for /proc/scsi
6368  */
6369  p->isr_count++;
6370 
6371 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6372  if ( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) &&
6373  (aic7xxx_panic_on_abort) && (p->flags & AHC_PAGESCBS) )
6374  aic7xxx_check_scbs(p, "Bogus settings at start of interrupt.");
6375 #endif
6376 
6377  /*
6378  * Handle all the interrupt sources - especially for SCSI
6379  * interrupts, we won't get a second chance at them.
6380  */
6381  if (intstat & CMDCMPLT)
6382  {
6383  aic7xxx_handle_command_completion_intr(p);
6384  }
6385 
6386  if (intstat & BRKADRINT)
6387  {
6388  int i;
6389  unsigned char errno = aic_inb(p, ERROR);
6390 
6391  printk(KERN_ERR "(scsi%d) BRKADRINT error(0x%x):\n", p->host_no, errno);
6392  for (i = 0; i < ARRAY_SIZE(hard_error); i++)
6393  {
6394  if (errno & hard_error[i].errno)
6395  {
6396  printk(KERN_ERR " %s\n", hard_error[i].errmesg);
6397  }
6398  }
6399  printk(KERN_ERR "(scsi%d) SEQADDR=0x%x\n", p->host_no,
6400  (((aic_inb(p, SEQADDR1) << 8) & 0x100) | aic_inb(p, SEQADDR0)));
6401  if (aic7xxx_panic_on_abort)
6402  aic7xxx_panic_abort(p, NULL);
6403 #ifdef CONFIG_PCI
6404  if (errno & PCIERRSTAT)
6405  aic7xxx_pci_intr(p);
6406 #endif
6407  if (errno & (SQPARERR | ILLOPCODE | ILLSADDR))
6408  {
6409  panic("aic7xxx: unrecoverable BRKADRINT.\n");
6410  }
6411  if (errno & ILLHADDR)
6412  {
6413  printk(KERN_ERR "(scsi%d) BUG! Driver accessed chip without first "
6414  "pausing controller!\n", p->host_no);
6415  }
6416 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6417  if (errno & DPARERR)
6418  {
6419  if (aic_inb(p, DMAPARAMS) & DIRECTION)
6420  printk("(scsi%d) while DMAing SCB from host to card.\n", p->host_no);
6421  else
6422  printk("(scsi%d) while DMAing SCB from card to host.\n", p->host_no);
6423  }
6424 #endif
6425  aic_outb(p, CLRPARERR | CLRBRKADRINT, CLRINT);
6426  unpause_sequencer(p, FALSE);
6427  }
6428 
6429  if (intstat & SEQINT)
6430  {
6431  /*
6432  * Read the CCSCBCTL register to work around a bug in the Ultra2 cards
6433  */
6434  if(p->features & AHC_ULTRA2)
6435  {
6436  aic_inb(p, CCSCBCTL);
6437  }
6438  aic7xxx_handle_seqint(p, intstat);
6439  }
6440 
6441  if (intstat & SCSIINT)
6442  {
6443  aic7xxx_handle_scsiint(p, intstat);
6444  }
6445 
6446 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6447  if ( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) &&
6448  (aic7xxx_panic_on_abort) && (p->flags & AHC_PAGESCBS) )
6449  aic7xxx_check_scbs(p, "Bogus settings at end of interrupt.");
6450 #endif
6451 
6452 }
6453 
6454 /*+F*************************************************************************
6455  * Function:
6456  * do_aic7xxx_isr
6457  *
6458  * Description:
6459  * This is a gross hack to solve a problem in linux kernels 2.1.85 and
6460  * above. Please, children, do not try this at home, and if you ever see
6461  * anything like it, please inform the Gross Hack Police immediately
6462  *-F*************************************************************************/
6463 static irqreturn_t
6464 do_aic7xxx_isr(int irq, void *dev_id)
6465 {
6466  unsigned long cpu_flags;
6467  struct aic7xxx_host *p;
6468 
6469  p = dev_id;
6470  if(!p)
6471  return IRQ_NONE;
6472  spin_lock_irqsave(p->host->host_lock, cpu_flags);
6473  p->flags |= AHC_IN_ISR;
6474  do
6475  {
6476  aic7xxx_isr(dev_id);
6477  } while ( (aic_inb(p, INTSTAT) & INT_PEND) );
6478  aic7xxx_done_cmds_complete(p);
6479  aic7xxx_run_waiting_queues(p);
6480  p->flags &= ~AHC_IN_ISR;
6481  spin_unlock_irqrestore(p->host->host_lock, cpu_flags);
6482 
6483  return IRQ_HANDLED;
6484 }
6485 
6486 /*+F*************************************************************************
6487  * Function:
6488  * aic7xxx_init_transinfo
6489  *
6490  * Description:
6491  * Set up the initial aic_dev values from the BIOS settings and from
6492  * INQUIRY results
6493  *-F*************************************************************************/
6494 static void
6495 aic7xxx_init_transinfo(struct aic7xxx_host *p, struct aic_dev_data *aic_dev)
6496 {
6497  struct scsi_device *sdpnt = aic_dev->SDptr;
6498  unsigned char tindex;
6499 
6500  tindex = sdpnt->id | (sdpnt->channel << 3);
6501  if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
6502  {
6503  aic_dev->flags |= DEVICE_DTR_SCANNED;
6504 
6505  if ( sdpnt->wdtr && (p->features & AHC_WIDE) )
6506  {
6507  aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
6508  aic_dev->goal.width = p->user[tindex].width;
6509  }
6510  else
6511  {
6512  aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
6513  pause_sequencer(p);
6514  aic7xxx_set_width(p, sdpnt->id, sdpnt->channel, sdpnt->lun,
6515  MSG_EXT_WDTR_BUS_8_BIT, (AHC_TRANS_ACTIVE |
6516  AHC_TRANS_GOAL |
6517  AHC_TRANS_CUR), aic_dev );
6518  unpause_sequencer(p, FALSE);
6519  }
6520  if ( sdpnt->sdtr && p->user[tindex].offset )
6521  {
6522  aic_dev->goal.period = p->user[tindex].period;
6523  aic_dev->goal.options = p->user[tindex].options;
6524  if (p->features & AHC_ULTRA2)
6525  aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
6526  else if (aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT)
6527  aic_dev->goal.offset = MAX_OFFSET_16BIT;
6528  else
6529  aic_dev->goal.offset = MAX_OFFSET_8BIT;
6530  if ( sdpnt->ppr && p->user[tindex].period <= 9 &&
6531  p->user[tindex].options )
6532  {
6533  aic_dev->needppr = aic_dev->needppr_copy = 1;
6534  aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
6535  aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
6536  aic_dev->flags |= DEVICE_SCSI_3;
6537  }
6538  else
6539  {
6540  aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
6541  aic_dev->goal.period = max_t(unsigned char, 10, aic_dev->goal.period);
6542  aic_dev->goal.options = 0;
6543  }
6544  }
6545  else
6546  {
6547  aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
6548  aic_dev->goal.period = 255;
6549  aic_dev->goal.offset = 0;
6550  aic_dev->goal.options = 0;
6551  }
6552  aic_dev->flags |= DEVICE_PRINT_DTR;
6553  }
6554 }
6555 
6556 /*+F*************************************************************************
6557  * Function:
6558  * aic7xxx_slave_alloc
6559  *
6560  * Description:
6561  * Set up the initial aic_dev struct pointers
6562  *-F*************************************************************************/
6563 static int
6564 aic7xxx_slave_alloc(struct scsi_device *SDptr)
6565 {
6566  struct aic7xxx_host *p = (struct aic7xxx_host *)SDptr->host->hostdata;
6567  struct aic_dev_data *aic_dev;
6568 
6569  aic_dev = kmalloc(sizeof(struct aic_dev_data), GFP_KERNEL);
6570  if(!aic_dev)
6571  return 1;
6572  /*
6573  * Check to see if channel was scanned.
6574  */
6575 
6576  if (!(p->flags & AHC_A_SCANNED) && (SDptr->channel == 0))
6577  {
6579  printk(INFO_LEAD "Scanning channel for devices.\n",
6580  p->host_no, 0, -1, -1);
6581  p->flags |= AHC_A_SCANNED;
6582  }
6583  else
6584  {
6585  if (!(p->flags & AHC_B_SCANNED) && (SDptr->channel == 1))
6586  {
6588  printk(INFO_LEAD "Scanning channel for devices.\n",
6589  p->host_no, 1, -1, -1);
6590  p->flags |= AHC_B_SCANNED;
6591  }
6592  }
6593 
6594  memset(aic_dev, 0, sizeof(struct aic_dev_data));
6595  SDptr->hostdata = aic_dev;
6596  aic_dev->SDptr = SDptr;
6597  aic_dev->max_q_depth = 1;
6598  aic_dev->temp_q_depth = 1;
6599  scbq_init(&aic_dev->delayed_scbs);
6600  INIT_LIST_HEAD(&aic_dev->list);
6601  list_add_tail(&aic_dev->list, &p->aic_devs);
6602  return 0;
6603 }
6604 
6605 /*+F*************************************************************************
6606  * Function:
6607  * aic7xxx_device_queue_depth
6608  *
6609  * Description:
6610  * Determines the queue depth for a given device. There are two ways
6611  * a queue depth can be obtained for a tagged queueing device. One
6612  * way is the default queue depth which is determined by whether
6613  * aic7xxx_default_queue_depth. The other is by the aic7xxx_tag_info
6614  * array.
6615  *
6616  * If tagged queueing isn't supported on the device, then we set the
6617  * depth to p->host->hostt->cmd_per_lun for internal driver queueing.
6618  * as the default queue depth. Otherwise, we use either 4 or 8 as the
6619  * default queue depth (dependent on the number of hardware SCBs).
6620  * The other way we determine queue depth is through the use of the
6621  * aic7xxx_tag_info array which is enabled by defining
6622  * AIC7XXX_TAGGED_QUEUEING_BY_DEVICE. This array can be initialized
6623  * with queue depths for individual devices. It also allows tagged
6624  * queueing to be [en|dis]abled for a specific adapter.
6625  *-F*************************************************************************/
6626 static void
6627 aic7xxx_device_queue_depth(struct aic7xxx_host *p, struct scsi_device *device)
6628 {
6629  int tag_enabled = FALSE;
6630  struct aic_dev_data *aic_dev = device->hostdata;
6631  unsigned char tindex;
6632 
6633  tindex = device->id | (device->channel << 3);
6634 
6635  if (device->simple_tags)
6636  return; // We've already enabled this device
6637 
6638  if (device->tagged_supported)
6639  {
6640  tag_enabled = TRUE;
6641 
6642  if (!(p->discenable & (1 << tindex)))
6643  {
6644  if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6645  printk(INFO_LEAD "Disconnection disabled, unable to "
6646  "enable tagged queueing.\n",
6647  p->host_no, device->channel, device->id, device->lun);
6648  tag_enabled = FALSE;
6649  }
6650  else
6651  {
6652  if (p->instance >= ARRAY_SIZE(aic7xxx_tag_info))
6653  {
6654  static int print_warning = TRUE;
6655  if(print_warning)
6656  {
6657  printk(KERN_INFO "aic7xxx: WARNING, insufficient tag_info instances for"
6658  " installed controllers.\n");
6659  printk(KERN_INFO "aic7xxx: Please update the aic7xxx_tag_info array in"
6660  " the aic7xxx.c source file.\n");
6661  print_warning = FALSE;
6662  }
6663  aic_dev->max_q_depth = aic_dev->temp_q_depth =
6664  aic7xxx_default_queue_depth;
6665  }
6666  else
6667  {
6668 
6669  if (aic7xxx_tag_info[p->instance].tag_commands[tindex] == 255)
6670  {
6671  tag_enabled = FALSE;
6672  }
6673  else if (aic7xxx_tag_info[p->instance].tag_commands[tindex] == 0)
6674  {
6675  aic_dev->max_q_depth = aic_dev->temp_q_depth =
6676  aic7xxx_default_queue_depth;
6677  }
6678  else
6679  {
6680  aic_dev->max_q_depth = aic_dev->temp_q_depth =
6681  aic7xxx_tag_info[p->instance].tag_commands[tindex];
6682  }
6683  }
6684  }
6685  }
6686  if (tag_enabled)
6687  {
6688  if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6689  {
6690  printk(INFO_LEAD "Tagged queuing enabled, queue depth %d.\n",
6691  p->host_no, device->channel, device->id,
6692  device->lun, aic_dev->max_q_depth);
6693  }
6695  }
6696  else
6697  {
6698  if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6699  {
6700  printk(INFO_LEAD "Tagged queuing disabled, queue depth %d.\n",
6701  p->host_no, device->channel, device->id,
6702  device->lun, device->host->cmd_per_lun);
6703  }
6704  scsi_adjust_queue_depth(device, 0, device->host->cmd_per_lun);
6705  }
6706  return;
6707 }
6708 
6709 /*+F*************************************************************************
6710  * Function:
6711  * aic7xxx_slave_destroy
6712  *
6713  * Description:
6714  * prepare for this device to go away
6715  *-F*************************************************************************/
6716 static void
6717 aic7xxx_slave_destroy(struct scsi_device *SDptr)
6718 {
6719  struct aic_dev_data *aic_dev = SDptr->hostdata;
6720 
6721  list_del(&aic_dev->list);
6722  SDptr->hostdata = NULL;
6723  kfree(aic_dev);
6724  return;
6725 }
6726 
6727 /*+F*************************************************************************
6728  * Function:
6729  * aic7xxx_slave_configure
6730  *
6731  * Description:
6732  * Configure the device we are attaching to the controller. This is
6733  * where we get to do things like scan the INQUIRY data, set queue
6734  * depths, allocate command structs, etc.
6735  *-F*************************************************************************/
6736 static int
6737 aic7xxx_slave_configure(struct scsi_device *SDptr)
6738 {
6739  struct aic7xxx_host *p = (struct aic7xxx_host *) SDptr->host->hostdata;
6740  struct aic_dev_data *aic_dev;
6741  int scbnum;
6742 
6743  aic_dev = (struct aic_dev_data *)SDptr->hostdata;
6744 
6745  aic7xxx_init_transinfo(p, aic_dev);
6746  aic7xxx_device_queue_depth(p, SDptr);
6747  if(list_empty(&aic_dev->list))
6748  list_add_tail(&aic_dev->list, &p->aic_devs);
6749 
6750  scbnum = 0;
6751  list_for_each_entry(aic_dev, &p->aic_devs, list) {
6752  scbnum += aic_dev->max_q_depth;
6753  }
6754  while (scbnum > p->scb_data->numscbs)
6755  {
6756  /*
6757  * Pre-allocate the needed SCBs to get around the possibility of having
6758  * to allocate some when memory is more or less exhausted and we need
6759  * the SCB in order to perform a swap operation (possible deadlock)
6760  */
6761  if ( aic7xxx_allocate_scb(p) == 0 )
6762  break;
6763  }
6764 
6765 
6766  return(0);
6767 }
6768 
6769 /*+F*************************************************************************
6770  * Function:
6771  * aic7xxx_probe
6772  *
6773  * Description:
6774  * Probing for EISA boards: it looks like the first two bytes
6775  * are a manufacturer code - three characters, five bits each:
6776  *
6777  * BYTE 0 BYTE 1 BYTE 2 BYTE 3
6778  * ?1111122 22233333 PPPPPPPP RRRRRRRR
6779  *
6780  * The characters are baselined off ASCII '@', so add that value
6781  * to each to get the real ASCII code for it. The next two bytes
6782  * appear to be a product and revision number, probably vendor-
6783  * specific. This is what is being searched for at each port,
6784  * and what should probably correspond to the ID= field in the
6785  * ECU's .cfg file for the card - if your card is not detected,
6786  * make sure your signature is listed in the array.
6787  *
6788  * The fourth byte's lowest bit seems to be an enabled/disabled
6789  * flag (rest of the bits are reserved?).
6790  *
6791  * NOTE: This function is only needed on Intel and Alpha platforms,
6792  * the other platforms we support don't have EISA/VLB busses. So,
6793  * we #ifdef this entire function to avoid compiler warnings about
6794  * an unused function.
6795  *-F*************************************************************************/
6796 #if defined(__i386__) || defined(__alpha__)
6797 static int
6798 aic7xxx_probe(int slot, int base, ahc_flag_type *flags)
6799 {
6800  int i;
6801  unsigned char buf[4];
6802 
6803  static struct {
6804  int n;
6805  unsigned char signature[sizeof(buf)];
6806  ahc_chip type;
6807  int bios_disabled;
6808  } AIC7xxx[] = {
6809  { 4, { 0x04, 0x90, 0x77, 0x70 },
6810  AHC_AIC7770|AHC_EISA, FALSE }, /* mb 7770 */
6811  { 4, { 0x04, 0x90, 0x77, 0x71 },
6812  AHC_AIC7770|AHC_EISA, FALSE }, /* host adapter 274x */
6813  { 4, { 0x04, 0x90, 0x77, 0x56 },
6814  AHC_AIC7770|AHC_VL, FALSE }, /* 284x BIOS enabled */
6815  { 4, { 0x04, 0x90, 0x77, 0x57 },
6816  AHC_AIC7770|AHC_VL, TRUE } /* 284x BIOS disabled */
6817  };
6818 
6819  /*
6820  * The VL-bus cards need to be primed by
6821  * writing before a signature check.
6822  */
6823  for (i = 0; i < sizeof(buf); i++)
6824  {
6825  outb(0x80 + i, base);
6826  buf[i] = inb(base + i);
6827  }
6828 
6829  for (i = 0; i < ARRAY_SIZE(AIC7xxx); i++)
6830  {
6831  /*
6832  * Signature match on enabled card?
6833  */
6834  if (!memcmp(buf, AIC7xxx[i].signature, AIC7xxx[i].n))
6835  {
6836  if (inb(base + 4) & 1)
6837  {
6838  if (AIC7xxx[i].bios_disabled)
6839  {
6840  *flags |= AHC_USEDEFAULTS;
6841  }
6842  else
6843  {
6844  *flags |= AHC_BIOS_ENABLED;
6845  }
6846  return (i);
6847  }
6848 
6849  printk("aic7xxx: <Adaptec 7770 SCSI Host Adapter> "
6850  "disabled at slot %d, ignored.\n", slot);
6851  }
6852  }
6853 
6854  return (-1);
6855 }
6856 #endif /* (__i386__) || (__alpha__) */
6857 
6858 
6859 /*+F*************************************************************************
6860  * Function:
6861  * read_2840_seeprom
6862  *
6863  * Description:
6864  * Reads the 2840 serial EEPROM and returns 1 if successful and 0 if
6865  * not successful.
6866  *
6867  * See read_seeprom (for the 2940) for the instruction set of the 93C46
6868  * chip.
6869  *
6870  * The 2840 interface to the 93C46 serial EEPROM is through the
6871  * STATUS_2840 and SEECTL_2840 registers. The CS_2840, CK_2840, and
6872  * DO_2840 bits of the SEECTL_2840 register are connected to the chip
6873  * select, clock, and data out lines respectively of the serial EEPROM.
6874  * The DI_2840 bit of the STATUS_2840 is connected to the data in line
6875  * of the serial EEPROM. The EEPROM_TF bit of STATUS_2840 register is
6876  * useful in that it gives us an 800 nsec timer. After a read from the
6877  * SEECTL_2840 register the timing flag is cleared and goes high 800 nsec
6878  * later.
6879  *-F*************************************************************************/
6880 static int
6881 read_284x_seeprom(struct aic7xxx_host *p, struct seeprom_config *sc)
6882 {
6883  int i = 0, k = 0;
6884  unsigned char temp;
6885  unsigned short checksum = 0;
6886  unsigned short *seeprom = (unsigned short *) sc;
6887  struct seeprom_cmd {
6888  unsigned char len;
6889  unsigned char bits[3];
6890  };
6891  struct seeprom_cmd seeprom_read = {3, {1, 1, 0}};
6892 
6893 #define CLOCK_PULSE(p) \
6894  while ((aic_inb(p, STATUS_2840) & EEPROM_TF) == 0) \
6895  { \
6896  ; /* Do nothing */ \
6897  } \
6898  (void) aic_inb(p, SEECTL_2840);
6899 
6900  /*
6901  * Read the first 32 registers of the seeprom. For the 2840,
6902  * the 93C46 SEEPROM is a 1024-bit device with 64 16-bit registers
6903  * but only the first 32 are used by Adaptec BIOS. The loop
6904  * will range from 0 to 31.
6905  */
6906  for (k = 0; k < (sizeof(*sc) / 2); k++)
6907  {
6908  /*
6909  * Send chip select for one clock cycle.
6910  */
6911  aic_outb(p, CK_2840 | CS_2840, SEECTL_2840);
6912  CLOCK_PULSE(p);
6913 
6914  /*
6915  * Now we're ready to send the read command followed by the
6916  * address of the 16-bit register we want to read.
6917  */
6918  for (i = 0; i < seeprom_read.len; i++)
6919  {
6920  temp = CS_2840 | seeprom_read.bits[i];
6921  aic_outb(p, temp, SEECTL_2840);
6922  CLOCK_PULSE(p);
6923  temp = temp ^ CK_2840;
6924  aic_outb(p, temp, SEECTL_2840);
6925  CLOCK_PULSE(p);
6926  }
6927  /*
6928  * Send the 6 bit address (MSB first, LSB last).
6929  */
6930  for (i = 5; i >= 0; i--)
6931  {
6932  temp = k;
6933  temp = (temp >> i) & 1; /* Mask out all but lower bit. */
6934  temp = CS_2840 | temp;
6935  aic_outb(p, temp, SEECTL_2840);
6936  CLOCK_PULSE(p);
6937  temp = temp ^ CK_2840;
6938  aic_outb(p, temp, SEECTL_2840);
6939  CLOCK_PULSE(p);
6940  }
6941 
6942  /*
6943  * Now read the 16 bit register. An initial 0 precedes the
6944  * register contents which begins with bit 15 (MSB) and ends
6945  * with bit 0 (LSB). The initial 0 will be shifted off the
6946  * top of our word as we let the loop run from 0 to 16.
6947  */
6948  for (i = 0; i <= 16; i++)
6949  {
6950  temp = CS_2840;
6951  aic_outb(p, temp, SEECTL_2840);
6952  CLOCK_PULSE(p);
6953  temp = temp ^ CK_2840;
6954  seeprom[k] = (seeprom[k] << 1) | (aic_inb(p, STATUS_2840) & DI_2840);
6955  aic_outb(p, temp, SEECTL_2840);
6956  CLOCK_PULSE(p);
6957  }
6958  /*
6959  * The serial EEPROM has a checksum in the last word. Keep a
6960  * running checksum for all words read except for the last
6961  * word. We'll verify the checksum after all words have been
6962  * read.
6963  */
6964  if (k < (sizeof(*sc) / 2) - 1)
6965  {
6966  checksum = checksum + seeprom[k];
6967  }
6968 
6969  /*
6970  * Reset the chip select for the next command cycle.
6971  */
6972  aic_outb(p, 0, SEECTL_2840);
6973  CLOCK_PULSE(p);
6974  aic_outb(p, CK_2840, SEECTL_2840);
6975  CLOCK_PULSE(p);
6976  aic_outb(p, 0, SEECTL_2840);
6977  CLOCK_PULSE(p);
6978  }
6979 
6980 #if 0
6981  printk("Computed checksum 0x%x, checksum read 0x%x\n", checksum, sc->checksum);
6982  printk("Serial EEPROM:");
6983  for (k = 0; k < (sizeof(*sc) / 2); k++)
6984  {
6985  if (((k % 8) == 0) && (k != 0))
6986  {
6987  printk("\n ");
6988  }
6989  printk(" 0x%x", seeprom[k]);
6990  }
6991  printk("\n");
6992 #endif
6993 
6994  if (checksum != sc->checksum)
6995  {
6996  printk("aic7xxx: SEEPROM checksum error, ignoring SEEPROM settings.\n");
6997  return (0);
6998  }
6999 
7000  return (1);
7001 #undef CLOCK_PULSE
7002 }
7003 
7004 #define CLOCK_PULSE(p) \
7005  do { \
7006  int limit = 0; \
7007  do { \
7008  mb(); \
7009  pause_sequencer(p); /* This is just to generate some PCI */ \
7010  /* traffic so the PCI read is flushed */ \
7011  /* it shouldn't be needed, but some */ \
7012  /* chipsets do indeed appear to need */ \
7013  /* something to force PCI reads to get */ \
7014  /* flushed */ \
7015  udelay(1); /* Do nothing */ \
7016  } while (((aic_inb(p, SEECTL) & SEERDY) == 0) && (++limit < 1000)); \
7017  } while(0)
7018 
7019 /*+F*************************************************************************
7020  * Function:
7021  * acquire_seeprom
7022  *
7023  * Description:
7024  * Acquires access to the memory port on PCI controllers.
7025  *-F*************************************************************************/
7026 static int
7027 acquire_seeprom(struct aic7xxx_host *p)
7028 {
7029 
7030  /*
7031  * Request access of the memory port. When access is
7032  * granted, SEERDY will go high. We use a 1 second
7033  * timeout which should be near 1 second more than
7034  * is needed. Reason: after the 7870 chip reset, there
7035  * should be no contention.
7036  */
7037  aic_outb(p, SEEMS, SEECTL);
7038  CLOCK_PULSE(p);
7039  if ((aic_inb(p, SEECTL) & SEERDY) == 0)
7040  {
7041  aic_outb(p, 0, SEECTL);
7042  return (0);
7043  }
7044  return (1);
7045 }
7046 
7047 /*+F*************************************************************************
7048  * Function:
7049  * release_seeprom
7050  *
7051  * Description:
7052  * Releases access to the memory port on PCI controllers.
7053  *-F*************************************************************************/
7054 static void
7055 release_seeprom(struct aic7xxx_host *p)
7056 {
7057  /*
7058  * Make sure the SEEPROM is ready before we release it.
7059  */
7060  CLOCK_PULSE(p);
7061  aic_outb(p, 0, SEECTL);
7062 }
7063 
7064 /*+F*************************************************************************
7065  * Function:
7066  * read_seeprom
7067  *
7068  * Description:
7069  * Reads the serial EEPROM and returns 1 if successful and 0 if
7070  * not successful.
7071  *
7072  * The instruction set of the 93C46/56/66 chips is as follows:
7073  *
7074  * Start OP
7075  * Function Bit Code Address Data Description
7076  * -------------------------------------------------------------------
7077  * READ 1 10 A5 - A0 Reads data stored in memory,
7078  * starting at specified address
7079  * EWEN 1 00 11XXXX Write enable must precede
7080  * all programming modes
7081  * ERASE 1 11 A5 - A0 Erase register A5A4A3A2A1A0
7082  * WRITE 1 01 A5 - A0 D15 - D0 Writes register
7083  * ERAL 1 00 10XXXX Erase all registers
7084  * WRAL 1 00 01XXXX D15 - D0 Writes to all registers
7085  * EWDS 1 00 00XXXX Disables all programming
7086  * instructions
7087  * *Note: A value of X for address is a don't care condition.
7088  * *Note: The 93C56 and 93C66 have 8 address bits.
7089  *
7090  *
7091  * The 93C46 has a four wire interface: clock, chip select, data in, and
7092  * data out. In order to perform one of the above functions, you need
7093  * to enable the chip select for a clock period (typically a minimum of
7094  * 1 usec, with the clock high and low a minimum of 750 and 250 nsec
7095  * respectively. While the chip select remains high, you can clock in
7096  * the instructions (above) starting with the start bit, followed by the
7097  * OP code, Address, and Data (if needed). For the READ instruction, the
7098  * requested 16-bit register contents is read from the data out line but
7099  * is preceded by an initial zero (leading 0, followed by 16-bits, MSB
7100  * first). The clock cycling from low to high initiates the next data
7101  * bit to be sent from the chip.
7102  *
7103  * The 78xx interface to the 93C46 serial EEPROM is through the SEECTL
7104  * register. After successful arbitration for the memory port, the
7105  * SEECS bit of the SEECTL register is connected to the chip select.
7106  * The SEECK, SEEDO, and SEEDI are connected to the clock, data out,
7107  * and data in lines respectively. The SEERDY bit of SEECTL is useful
7108  * in that it gives us an 800 nsec timer. After a write to the SEECTL
7109  * register, the SEERDY goes high 800 nsec later. The one exception
7110  * to this is when we first request access to the memory port. The
7111  * SEERDY goes high to signify that access has been granted and, for
7112  * this case, has no implied timing.
7113  *-F*************************************************************************/
7114 static int
7115 read_seeprom(struct aic7xxx_host *p, int offset,
7116  unsigned short *scarray, unsigned int len, seeprom_chip_type chip)
7117 {
7118  int i = 0, k;
7119  unsigned char temp;
7120  unsigned short checksum = 0;
7121  struct seeprom_cmd {
7122  unsigned char len;
7123  unsigned char bits[3];
7124  };
7125  struct seeprom_cmd seeprom_read = {3, {1, 1, 0}};
7126 
7127  /*
7128  * Request access of the memory port.
7129  */
7130  if (acquire_seeprom(p) == 0)
7131  {
7132  return (0);
7133  }
7134 
7135  /*
7136  * Read 'len' registers of the seeprom. For the 7870, the 93C46
7137  * SEEPROM is a 1024-bit device with 64 16-bit registers but only
7138  * the first 32 are used by Adaptec BIOS. Some adapters use the
7139  * 93C56 SEEPROM which is a 2048-bit device. The loop will range
7140  * from 0 to 'len' - 1.
7141  */
7142  for (k = 0; k < len; k++)
7143  {
7144  /*
7145  * Send chip select for one clock cycle.
7146  */
7147  aic_outb(p, SEEMS | SEECK | SEECS, SEECTL);
7148  CLOCK_PULSE(p);
7149 
7150  /*
7151  * Now we're ready to send the read command followed by the
7152  * address of the 16-bit register we want to read.
7153  */
7154  for (i = 0; i < seeprom_read.len; i++)
7155  {
7156  temp = SEEMS | SEECS | (seeprom_read.bits[i] << 1);
7157  aic_outb(p, temp, SEECTL);
7158  CLOCK_PULSE(p);
7159  temp = temp ^ SEECK;
7160  aic_outb(p, temp, SEECTL);
7161  CLOCK_PULSE(p);
7162  }
7163  /*
7164  * Send the 6 or 8 bit address (MSB first, LSB last).
7165  */
7166  for (i = ((int) chip - 1); i >= 0; i--)
7167  {
7168  temp = k + offset;
7169  temp = (temp >> i) & 1; /* Mask out all but lower bit. */
7170  temp = SEEMS | SEECS | (temp << 1);
7171  aic_outb(p, temp, SEECTL);
7172  CLOCK_PULSE(p);
7173  temp = temp ^ SEECK;
7174  aic_outb(p, temp, SEECTL);
7175  CLOCK_PULSE(p);
7176  }
7177 
7178  /*
7179  * Now read the 16 bit register. An initial 0 precedes the
7180  * register contents which begins with bit 15 (MSB) and ends
7181  * with bit 0 (LSB). The initial 0 will be shifted off the
7182  * top of our word as we let the loop run from 0 to 16.
7183  */
7184  for (i = 0; i <= 16; i++)
7185  {
7186  temp = SEEMS | SEECS;
7187  aic_outb(p, temp, SEECTL);
7188  CLOCK_PULSE(p);
7189  temp = temp ^ SEECK;
7190  scarray[k] = (scarray[k] << 1) | (aic_inb(p, SEECTL) & SEEDI);
7191  aic_outb(p, temp, SEECTL);
7192  CLOCK_PULSE(p);
7193  }
7194 
7195  /*
7196  * The serial EEPROM should have a checksum in the last word.
7197  * Keep a running checksum for all words read except for the
7198  * last word. We'll verify the checksum after all words have
7199  * been read.
7200  */
7201  if (k < (len - 1))
7202  {
7203  checksum = checksum + scarray[k];
7204  }
7205 
7206  /*
7207  * Reset the chip select for the next command cycle.
7208  */
7209  aic_outb(p, SEEMS, SEECTL);
7210  CLOCK_PULSE(p);
7211  aic_outb(p, SEEMS | SEECK, SEECTL);
7212  CLOCK_PULSE(p);
7213  aic_outb(p, SEEMS, SEECTL);
7214  CLOCK_PULSE(p);
7215  }
7216 
7217  /*
7218  * Release access to the memory port and the serial EEPROM.
7219  */
7220  release_seeprom(p);
7221 
7222 #if 0
7223  printk("Computed checksum 0x%x, checksum read 0x%x\n",
7224  checksum, scarray[len - 1]);
7225  printk("Serial EEPROM:");
7226  for (k = 0; k < len; k++)
7227  {
7228  if (((k % 8) == 0) && (k != 0))
7229  {
7230  printk("\n ");
7231  }
7232  printk(" 0x%x", scarray[k]);
7233  }
7234  printk("\n");
7235 #endif
7236  if ( (checksum != scarray[len - 1]) || (checksum == 0) )
7237  {
7238  return (0);
7239  }
7240 
7241  return (1);
7242 }
7243 
7244 /*+F*************************************************************************
7245  * Function:
7246  * read_brdctl
7247  *
7248  * Description:
7249  * Reads the BRDCTL register.
7250  *-F*************************************************************************/
7251 static unsigned char
7252 read_brdctl(struct aic7xxx_host *p)
7253 {
7254  unsigned char brdctl, value;
7255 
7256  /*
7257  * Make sure the SEEPROM is ready before we access it
7258  */
7259  CLOCK_PULSE(p);
7260  if (p->features & AHC_ULTRA2)
7261  {
7262  brdctl = BRDRW_ULTRA2;
7263  aic_outb(p, brdctl, BRDCTL);
7264  CLOCK_PULSE(p);
7265  value = aic_inb(p, BRDCTL);
7266  CLOCK_PULSE(p);
7267  return(value);
7268  }
7269  brdctl = BRDRW;
7270  if ( !((p->chip & AHC_CHIPID_MASK) == AHC_AIC7895) ||
7271  (p->flags & AHC_CHNLB) )
7272  {
7273  brdctl |= BRDCS;
7274  }
7275  aic_outb(p, brdctl, BRDCTL);
7276  CLOCK_PULSE(p);
7277  value = aic_inb(p, BRDCTL);
7278  CLOCK_PULSE(p);
7279  aic_outb(p, 0, BRDCTL);
7280  CLOCK_PULSE(p);
7281  return (value);
7282 }
7283 
7284 /*+F*************************************************************************
7285  * Function:
7286  * write_brdctl
7287  *
7288  * Description:
7289  * Writes a value to the BRDCTL register.
7290  *-F*************************************************************************/
7291 static void
7292 write_brdctl(struct aic7xxx_host *p, unsigned char value)
7293 {
7294  unsigned char brdctl;
7295 
7296  /*
7297  * Make sure the SEEPROM is ready before we access it
7298  */
7299  CLOCK_PULSE(p);
7300  if (p->features & AHC_ULTRA2)
7301  {
7302  brdctl = value;
7303  aic_outb(p, brdctl, BRDCTL);
7304  CLOCK_PULSE(p);
7305  brdctl |= BRDSTB_ULTRA2;
7306  aic_outb(p, brdctl, BRDCTL);
7307  CLOCK_PULSE(p);
7308  brdctl &= ~BRDSTB_ULTRA2;
7309  aic_outb(p, brdctl, BRDCTL);
7310  CLOCK_PULSE(p);
7311  read_brdctl(p);
7312  CLOCK_PULSE(p);
7313  }
7314  else
7315  {
7316  brdctl = BRDSTB;
7317  if ( !((p->chip & AHC_CHIPID_MASK) == AHC_AIC7895) ||
7318  (p->flags & AHC_CHNLB) )
7319  {
7320  brdctl |= BRDCS;
7321  }
7322  brdctl = BRDSTB | BRDCS;
7323  aic_outb(p, brdctl, BRDCTL);
7324  CLOCK_PULSE(p);
7325  brdctl |= value;
7326  aic_outb(p, brdctl, BRDCTL);
7327  CLOCK_PULSE(p);
7328  brdctl &= ~BRDSTB;
7329  aic_outb(p, brdctl, BRDCTL);
7330  CLOCK_PULSE(p);
7331  brdctl &= ~BRDCS;
7332  aic_outb(p, brdctl, BRDCTL);
7333  CLOCK_PULSE(p);
7334  }
7335 }
7336 
7337 /*+F*************************************************************************
7338  * Function:
7339  * aic785x_cable_detect
7340  *
7341  * Description:
7342  * Detect the cables that are present on aic785x class controller chips
7343  *-F*************************************************************************/
7344 static void
7345 aic785x_cable_detect(struct aic7xxx_host *p, int *int_50,
7346  int *ext_present, int *eeprom)
7347 {
7348  unsigned char brdctl;
7349 
7350  aic_outb(p, BRDRW | BRDCS, BRDCTL);
7351  CLOCK_PULSE(p);
7352  aic_outb(p, 0, BRDCTL);
7353  CLOCK_PULSE(p);
7354  brdctl = aic_inb(p, BRDCTL);
7355  CLOCK_PULSE(p);
7356  *int_50 = !(brdctl & BRDDAT5);
7357  *ext_present = !(brdctl & BRDDAT6);
7358  *eeprom = (aic_inb(p, SPIOCAP) & EEPROM);
7359 }
7360 
7361 #undef CLOCK_PULSE
7362 
7363 /*+F*************************************************************************
7364  * Function:
7365  * aic2940_uwpro_cable_detect
7366  *
7367  * Description:
7368  * Detect the cables that are present on the 2940-UWPro cards
7369  *
7370  * NOTE: This function assumes the SEEPROM will have already been acquired
7371  * prior to invocation of this function.
7372  *-F*************************************************************************/
7373 static void
7374 aic2940_uwpro_wide_cable_detect(struct aic7xxx_host *p, int *int_68,
7375  int *ext_68, int *eeprom)
7376 {
7377  unsigned char brdctl;
7378 
7379  /*
7380  * First read the status of our cables. Set the rom bank to
7381  * 0 since the bank setting serves as a multiplexor for the
7382  * cable detection logic. BRDDAT5 controls the bank switch.
7383  */
7384  write_brdctl(p, 0);
7385 
7386  /*
7387  * Now we read the state of the internal 68 connector. BRDDAT6
7388  * is don't care, BRDDAT7 is internal 68. The cable is
7389  * present if the bit is 0
7390  */
7391  brdctl = read_brdctl(p);
7392  *int_68 = !(brdctl & BRDDAT7);
7393 
7394  /*
7395  * Set the bank bit in brdctl and then read the external cable state
7396  * and the EEPROM status
7397  */
7398  write_brdctl(p, BRDDAT5);
7399  brdctl = read_brdctl(p);
7400 
7401  *ext_68 = !(brdctl & BRDDAT6);
7402  *eeprom = !(brdctl & BRDDAT7);
7403 
7404  /*
7405  * We're done, the calling function will release the SEEPROM for us
7406  */
7407 }
7408 
7409 /*+F*************************************************************************
7410  * Function:
7411  * aic787x_cable_detect
7412  *
7413  * Description:
7414  * Detect the cables that are present on aic787x class controller chips
7415  *
7416  * NOTE: This function assumes the SEEPROM will have already been acquired
7417  * prior to invocation of this function.
7418  *-F*************************************************************************/
7419 static void
7420 aic787x_cable_detect(struct aic7xxx_host *p, int *int_50, int *int_68,
7421  int *ext_present, int *eeprom)
7422 {
7423  unsigned char brdctl;
7424 
7425  /*
7426  * First read the status of our cables. Set the rom bank to
7427  * 0 since the bank setting serves as a multiplexor for the
7428  * cable detection logic. BRDDAT5 controls the bank switch.
7429  */
7430  write_brdctl(p, 0);
7431 
7432  /*
7433  * Now we read the state of the two internal connectors. BRDDAT6
7434  * is internal 50, BRDDAT7 is internal 68. For each, the cable is
7435  * present if the bit is 0
7436  */
7437  brdctl = read_brdctl(p);
7438  *int_50 = !(brdctl & BRDDAT6);
7439  *int_68 = !(brdctl & BRDDAT7);
7440 
7441  /*
7442  * Set the bank bit in brdctl and then read the external cable state
7443  * and the EEPROM status
7444  */
7445  write_brdctl(p, BRDDAT5);
7446  brdctl = read_brdctl(p);
7447 
7448  *ext_present = !(brdctl & BRDDAT6);
7449  *eeprom = !(brdctl & BRDDAT7);
7450 
7451  /*
7452  * We're done, the calling function will release the SEEPROM for us
7453  */
7454 }
7455 
7456 /*+F*************************************************************************
7457  * Function:
7458  * aic787x_ultra2_term_detect
7459  *
7460  * Description:
7461  * Detect the termination settings present on ultra2 class controllers
7462  *
7463  * NOTE: This function assumes the SEEPROM will have already been acquired
7464  * prior to invocation of this function.
7465  *-F*************************************************************************/
7466 static void
7467 aic7xxx_ultra2_term_detect(struct aic7xxx_host *p, int *enableSE_low,
7468  int *enableSE_high, int *enableLVD_low,
7469  int *enableLVD_high, int *eprom_present)
7470 {
7471  unsigned char brdctl;
7472 
7473  brdctl = read_brdctl(p);
7474 
7475  *eprom_present = (brdctl & BRDDAT7);
7476  *enableSE_high = (brdctl & BRDDAT6);
7477  *enableSE_low = (brdctl & BRDDAT5);
7478  *enableLVD_high = (brdctl & BRDDAT4);
7479  *enableLVD_low = (brdctl & BRDDAT3);
7480 }
7481 
7482 /*+F*************************************************************************
7483  * Function:
7484  * configure_termination
7485  *
7486  * Description:
7487  * Configures the termination settings on PCI adapters that have
7488  * SEEPROMs available.
7489  *-F*************************************************************************/
7490 static void
7491 configure_termination(struct aic7xxx_host *p)
7492 {
7493  int internal50_present = 0;
7494  int internal68_present = 0;
7495  int external_present = 0;
7496  int eprom_present = 0;
7497  int enableSE_low = 0;
7498  int enableSE_high = 0;
7499  int enableLVD_low = 0;
7500  int enableLVD_high = 0;
7501  unsigned char brddat = 0;
7502  unsigned char max_target = 0;
7503  unsigned char sxfrctl1 = aic_inb(p, SXFRCTL1);
7504 
7505  if (acquire_seeprom(p))
7506  {
7507  if (p->features & (AHC_WIDE|AHC_TWIN))
7508  max_target = 16;
7509  else
7510  max_target = 8;
7511  aic_outb(p, SEEMS | SEECS, SEECTL);
7512  sxfrctl1 &= ~STPWEN;
7513  /*
7514  * The termination/cable detection logic is split into three distinct
7515  * groups. Ultra2 and later controllers, 2940UW-Pro controllers, and
7516  * older 7850, 7860, 7870, 7880, and 7895 controllers. Each has its
7517  * own unique way of detecting their cables and writing the results
7518  * back to the card.
7519  */
7520  if (p->features & AHC_ULTRA2)
7521  {
7522  /*
7523  * As long as user hasn't overridden term settings, always check the
7524  * cable detection logic
7525  */
7526  if (aic7xxx_override_term == -1)
7527  {
7528  aic7xxx_ultra2_term_detect(p, &enableSE_low, &enableSE_high,
7529  &enableLVD_low, &enableLVD_high,
7530  &eprom_present);
7531  }
7532 
7533  /*
7534  * If the user is overriding settings, then they have been preserved
7535  * to here as fake adapter_control entries. Parse them and allow
7536  * them to override the detected settings (if we even did detection).
7537  */
7538  if (!(p->adapter_control & CFSEAUTOTERM))
7539  {
7540  enableSE_low = (p->adapter_control & CFSTERM);
7541  enableSE_high = (p->adapter_control & CFWSTERM);
7542  }
7543  if (!(p->adapter_control & CFAUTOTERM))
7544  {
7545  enableLVD_low = enableLVD_high = (p->adapter_control & CFLVDSTERM);
7546  }
7547 
7548  /*
7549  * Now take those settings that we have and translate them into the
7550  * values that must be written into the registers.
7551  *
7552  * Flash Enable = BRDDAT7
7553  * Secondary High Term Enable = BRDDAT6
7554  * Secondary Low Term Enable = BRDDAT5
7555  * LVD/Primary High Term Enable = BRDDAT4
7556  * LVD/Primary Low Term Enable = STPWEN bit in SXFRCTL1
7557  */
7558  if (enableLVD_low != 0)
7559  {
7560  sxfrctl1 |= STPWEN;
7561  p->flags |= AHC_TERM_ENB_LVD;
7563  printk(KERN_INFO "(scsi%d) LVD/Primary Low byte termination "
7564  "Enabled\n", p->host_no);
7565  }
7566 
7567  if (enableLVD_high != 0)
7568  {
7569  brddat |= BRDDAT4;
7571  printk(KERN_INFO "(scsi%d) LVD/Primary High byte termination "
7572  "Enabled\n", p->host_no);
7573  }
7574 
7575  if (enableSE_low != 0)
7576  {
7577  brddat |= BRDDAT5;
7579  printk(KERN_INFO "(scsi%d) Secondary Low byte termination "
7580  "Enabled\n", p->host_no);
7581  }
7582 
7583  if (enableSE_high != 0)
7584  {
7585  brddat |= BRDDAT6;
7587  printk(KERN_INFO "(scsi%d) Secondary High byte termination "
7588  "Enabled\n", p->host_no);
7589  }
7590  }
7591  else if (p->features & AHC_NEW_AUTOTERM)
7592  {
7593  /*
7594  * The 50 pin connector termination is controlled by STPWEN in the
7595  * SXFRCTL1 register. Since the Adaptec docs typically say the
7596  * controller is not allowed to be in the middle of a cable and
7597  * this is the only connection on that stub of the bus, there is
7598  * no need to even check for narrow termination, it's simply
7599  * always on.
7600  */
7601  sxfrctl1 |= STPWEN;
7603  printk(KERN_INFO "(scsi%d) Narrow channel termination Enabled\n",
7604  p->host_no);
7605 
7606  if (p->adapter_control & CFAUTOTERM)
7607  {
7608  aic2940_uwpro_wide_cable_detect(p, &internal68_present,
7609  &external_present,
7610  &eprom_present);
7611  printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Int-68 %s, "
7612  "Ext-68 %s)\n", p->host_no,
7613  "Don't Care",
7614  internal68_present ? "YES" : "NO",
7615  external_present ? "YES" : "NO");
7616  if (aic7xxx_verbose & VERBOSE_PROBE2)
7617  printk(KERN_INFO "(scsi%d) EEPROM %s present.\n", p->host_no,
7618  eprom_present ? "is" : "is not");
7619  if (internal68_present && external_present)
7620  {
7621  brddat = 0;
7622  p->flags &= ~AHC_TERM_ENB_SE_HIGH;
7623  if (aic7xxx_verbose & VERBOSE_PROBE2)
7624  printk(KERN_INFO "(scsi%d) Wide channel termination Disabled\n",
7625  p->host_no);
7626  }
7627  else
7628  {
7629  brddat = BRDDAT6;
7631  if (aic7xxx_verbose & VERBOSE_PROBE2)
7632  printk(KERN_INFO "(scsi%d) Wide channel termination Enabled\n",
7633  p->host_no);
7634  }
7635  }
7636  else
7637  {
7638  /*
7639  * The termination of the Wide channel is done more like normal
7640  * though, and the setting of this termination is done by writing
7641  * either a 0 or 1 to BRDDAT6 of the BRDDAT register
7642  */
7643  if (p->adapter_control & CFWSTERM)
7644  {
7645  brddat = BRDDAT6;
7647  if (aic7xxx_verbose & VERBOSE_PROBE2)
7648  printk(KERN_INFO "(scsi%d) Wide channel termination Enabled\n",
7649  p->host_no);
7650  }
7651  else
7652  {
7653  brddat = 0;
7654  }
7655  }
7656  }
7657  else
7658  {
7659  if (p->adapter_control & CFAUTOTERM)
7660  {
7661  if (p->flags & AHC_MOTHERBOARD)
7662  {
7663  printk(KERN_INFO "(scsi%d) Warning - detected auto-termination\n",
7664  p->host_no);
7665  printk(KERN_INFO "(scsi%d) Please verify driver detected settings "
7666  "are correct.\n", p->host_no);
7667  printk(KERN_INFO "(scsi%d) If not, then please properly set the "
7668  "device termination\n", p->host_no);
7669  printk(KERN_INFO "(scsi%d) in the Adaptec SCSI BIOS by hitting "
7670  "CTRL-A when prompted\n", p->host_no);
7671  printk(KERN_INFO "(scsi%d) during machine bootup.\n", p->host_no);
7672  }
7673  /* Configure auto termination. */
7674 
7675  if ( (p->chip & AHC_CHIPID_MASK) >= AHC_AIC7870 )
7676  {
7677  aic787x_cable_detect(p, &internal50_present, &internal68_present,
7678  &external_present, &eprom_present);
7679  }
7680  else
7681  {
7682  aic785x_cable_detect(p, &internal50_present, &external_present,
7683  &eprom_present);
7684  }
7685 
7686  if (max_target <= 8)
7687  internal68_present = 0;
7688 
7689  if (max_target > 8)
7690  {
7691  printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Int-68 %s, "
7692  "Ext-68 %s)\n", p->host_no,
7693  internal50_present ? "YES" : "NO",
7694  internal68_present ? "YES" : "NO",
7695  external_present ? "YES" : "NO");
7696  }
7697  else
7698  {
7699  printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Ext-50 %s)\n",
7700  p->host_no,
7701  internal50_present ? "YES" : "NO",
7702  external_present ? "YES" : "NO");
7703  }
7704  if (aic7xxx_verbose & VERBOSE_PROBE2)
7705  printk(KERN_INFO "(scsi%d) EEPROM %s present.\n", p->host_no,
7706  eprom_present ? "is" : "is not");
7707 
7708  /*
7709  * Now set the termination based on what we found. BRDDAT6
7710  * controls wide termination enable.
7711  * Flash Enable = BRDDAT7
7712  * SE High Term Enable = BRDDAT6
7713  */
7714  if (internal50_present && internal68_present && external_present)
7715  {
7716  printk(KERN_INFO "(scsi%d) Illegal cable configuration!! Only two\n",
7717  p->host_no);
7718  printk(KERN_INFO "(scsi%d) connectors on the SCSI controller may be "
7719  "in use at a time!\n", p->host_no);
7720  /*
7721  * Force termination (low and high byte) on. This is safer than
7722  * leaving it completely off, especially since this message comes
7723  * most often from motherboard controllers that don't even have 3
7724  * connectors, but instead are failing the cable detection.
7725  */
7726  internal50_present = external_present = 0;
7727  enableSE_high = enableSE_low = 1;
7728  }
7729 
7730  if ((max_target > 8) &&
7731  ((external_present == 0) || (internal68_present == 0)) )
7732  {
7733  brddat |= BRDDAT6;
7735  if (aic7xxx_verbose & VERBOSE_PROBE2)
7736  printk(KERN_INFO "(scsi%d) SE High byte termination Enabled\n",
7737  p->host_no);
7738  }
7739 
7740  if ( ((internal50_present ? 1 : 0) +
7741  (internal68_present ? 1 : 0) +
7742  (external_present ? 1 : 0)) <= 1 )
7743  {
7744  sxfrctl1 |= STPWEN;
7745  p->flags |= AHC_TERM_ENB_SE_LOW;
7746  if (aic7xxx_verbose & VERBOSE_PROBE2)
7747  printk(KERN_INFO "(scsi%d) SE Low byte termination Enabled\n",
7748  p->host_no);
7749  }
7750  }
7751  else /* p->adapter_control & CFAUTOTERM */
7752  {
7753  if (p->adapter_control & CFSTERM)
7754  {
7755  sxfrctl1 |= STPWEN;
7756  if (aic7xxx_verbose & VERBOSE_PROBE2)
7757  printk(KERN_INFO "(scsi%d) SE Low byte termination Enabled\n",
7758  p->host_no);
7759  }
7760 
7761  if (p->adapter_control & CFWSTERM)
7762  {
7763  brddat |= BRDDAT6;
7764  if (aic7xxx_verbose & VERBOSE_PROBE2)
7765  printk(KERN_INFO "(scsi%d) SE High byte termination Enabled\n",
7766  p->host_no);
7767  }
7768  }
7769  }
7770 
7771  aic_outb(p, sxfrctl1, SXFRCTL1);
7772  write_brdctl(p, brddat);
7773  release_seeprom(p);
7774  }
7775 }
7776 
7777 /*+F*************************************************************************
7778  * Function:
7779  * detect_maxscb
7780  *
7781  * Description:
7782  * Detects the maximum number of SCBs for the controller and returns
7783  * the count and a mask in p (p->maxscbs, p->qcntmask).
7784  *-F*************************************************************************/
7785 static void
7786 detect_maxscb(struct aic7xxx_host *p)
7787 {
7788  int i;
7789 
7790  /*
7791  * It's possible that we've already done this for multichannel
7792  * adapters.
7793  */
7794  if (p->scb_data->maxhscbs == 0)
7795  {
7796  /*
7797  * We haven't initialized the SCB settings yet. Walk the SCBs to
7798  * determince how many there are.
7799  */
7800  aic_outb(p, 0, FREE_SCBH);
7801 
7802  for (i = 0; i < AIC7XXX_MAXSCB; i++)
7803  {
7804  aic_outb(p, i, SCBPTR);
7805  aic_outb(p, i, SCB_CONTROL);
7806  if (aic_inb(p, SCB_CONTROL) != i)
7807  break;
7808  aic_outb(p, 0, SCBPTR);
7809  if (aic_inb(p, SCB_CONTROL) != 0)
7810  break;
7811 
7812  aic_outb(p, i, SCBPTR);
7813  aic_outb(p, 0, SCB_CONTROL); /* Clear the control byte. */
7814  aic_outb(p, i + 1, SCB_NEXT); /* Set the next pointer. */
7815  aic_outb(p, SCB_LIST_NULL, SCB_TAG); /* Make the tag invalid. */
7816  aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS); /* no busy untagged */
7817  aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+1);/* targets active yet */
7818  aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+2);
7819  aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+3);
7820  }
7821 
7822  /* Make sure the last SCB terminates the free list. */
7823  aic_outb(p, i - 1, SCBPTR);
7824  aic_outb(p, SCB_LIST_NULL, SCB_NEXT);
7825 
7826  /* Ensure we clear the first (0) SCBs control byte. */
7827  aic_outb(p, 0, SCBPTR);
7828  aic_outb(p, 0, SCB_CONTROL);
7829 
7830  p->scb_data->maxhscbs = i;
7831  /*
7832  * Use direct indexing instead for speed
7833  */
7834  if ( i == AIC7XXX_MAXSCB )
7835  p->flags &= ~AHC_PAGESCBS;
7836  }
7837 
7838 }
7839 
7840 /*+F*************************************************************************
7841  * Function:
7842  * aic7xxx_register
7843  *
7844  * Description:
7845  * Register a Adaptec aic7xxx chip SCSI controller with the kernel.
7846  *-F*************************************************************************/
7847 static int
7848 aic7xxx_register(struct scsi_host_template *template, struct aic7xxx_host *p,
7849  int reset_delay)
7850 {
7851  int i, result;
7852  int max_targets;
7853  int found = 1;
7854  unsigned char term, scsi_conf;
7855  struct Scsi_Host *host;
7856 
7857  host = p->host;
7858 
7860  host->can_queue = AIC7XXX_MAXSCB;
7861  host->cmd_per_lun = 3;
7862  host->sg_tablesize = AIC7XXX_MAX_SG;
7863  host->this_id = p->scsi_id;
7864  host->io_port = p->base;
7865  host->n_io_port = 0xFF;
7866  host->base = p->mbase;
7867  host->irq = p->irq;
7868  if (p->features & AHC_WIDE)
7869  {
7870  host->max_id = 16;
7871  }
7872  if (p->features & AHC_TWIN)
7873  {
7874  host->max_channel = 1;
7875  }
7876 
7877  p->host = host;
7878  p->host_no = host->host_no;
7879  host->unique_id = p->instance;
7880  p->isr_count = 0;
7881  p->next = NULL;
7882  p->completeq.head = NULL;
7883  p->completeq.tail = NULL;
7884  scbq_init(&p->scb_data->free_scbs);
7885  scbq_init(&p->waiting_scbs);
7886  INIT_LIST_HEAD(&p->aic_devs);
7887 
7888  /*
7889  * We currently have no commands of any type
7890  */
7891  p->qinfifonext = 0;
7892  p->qoutfifonext = 0;
7893 
7894  printk(KERN_INFO "(scsi%d) <%s> found at ", p->host_no,
7895  board_names[p->board_name_index]);
7896  switch(p->chip)
7897  {
7898  case (AHC_AIC7770|AHC_EISA):
7899  printk("EISA slot %d\n", p->pci_device_fn);
7900  break;
7901  case (AHC_AIC7770|AHC_VL):
7902  printk("VLB slot %d\n", p->pci_device_fn);
7903  break;
7904  default:
7905  printk("PCI %d/%d/%d\n", p->pci_bus, PCI_SLOT(p->pci_device_fn),
7906  PCI_FUNC(p->pci_device_fn));
7907  break;
7908  }
7909  if (p->features & AHC_TWIN)
7910  {
7911  printk(KERN_INFO "(scsi%d) Twin Channel, A SCSI ID %d, B SCSI ID %d, ",
7912  p->host_no, p->scsi_id, p->scsi_id_b);
7913  }
7914  else
7915  {
7916  char *channel;
7917 
7918  channel = "";
7919 
7920  if ((p->flags & AHC_MULTI_CHANNEL) != 0)
7921  {
7922  channel = " A";
7923 
7924  if ( (p->flags & (AHC_CHNLB|AHC_CHNLC)) != 0 )
7925  {
7926  channel = (p->flags & AHC_CHNLB) ? " B" : " C";
7927  }
7928  }
7929  if (p->features & AHC_WIDE)
7930  {
7931  printk(KERN_INFO "(scsi%d) Wide ", p->host_no);
7932  }
7933  else
7934  {
7935  printk(KERN_INFO "(scsi%d) Narrow ", p->host_no);
7936  }
7937  printk("Channel%s, SCSI ID=%d, ", channel, p->scsi_id);
7938  }
7939  aic_outb(p, 0, SEQ_FLAGS);
7940 
7941  detect_maxscb(p);
7942 
7943  printk("%d/%d SCBs\n", p->scb_data->maxhscbs, p->scb_data->maxscbs);
7944  if (aic7xxx_verbose & VERBOSE_PROBE2)
7945  {
7946  printk(KERN_INFO "(scsi%d) BIOS %sabled, IO Port 0x%lx, IRQ %d\n",
7947  p->host_no, (p->flags & AHC_BIOS_ENABLED) ? "en" : "dis",
7948  p->base, p->irq);
7949  printk(KERN_INFO "(scsi%d) IO Memory at 0x%lx, MMAP Memory at %p\n",
7950  p->host_no, p->mbase, p->maddr);
7951  }
7952 
7953 #ifdef CONFIG_PCI
7954  /*
7955  * Now that we know our instance number, we can set the flags we need to
7956  * force termination if need be.
7957  */
7958  if (aic7xxx_stpwlev != -1)
7959  {
7960  /*
7961  * This option only applies to PCI controllers.
7962  */
7963  if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI)
7964  {
7965  unsigned char devconfig;
7966 
7967  pci_read_config_byte(p->pdev, DEVCONFIG, &devconfig);
7968  if ( (aic7xxx_stpwlev >> p->instance) & 0x01 )
7969  {
7970  devconfig |= STPWLEVEL;
7971  if (aic7xxx_verbose & VERBOSE_PROBE2)
7972  printk("(scsi%d) Force setting STPWLEVEL bit\n", p->host_no);
7973  }
7974  else
7975  {
7976  devconfig &= ~STPWLEVEL;
7977  if (aic7xxx_verbose & VERBOSE_PROBE2)
7978  printk("(scsi%d) Force clearing STPWLEVEL bit\n", p->host_no);
7979  }
7980  pci_write_config_byte(p->pdev, DEVCONFIG, devconfig);
7981  }
7982  }
7983 #endif
7984 
7985  /*
7986  * That took care of devconfig and stpwlev, now for the actual termination
7987  * settings.
7988  */
7989  if (aic7xxx_override_term != -1)
7990  {
7991  /*
7992  * Again, this only applies to PCI controllers. We don't have problems
7993  * with the termination on 274x controllers to the best of my knowledge.
7994  */
7995  if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI)
7996  {
7997  unsigned char term_override;
7998 
7999  term_override = ( (aic7xxx_override_term >> (p->instance * 4)) & 0x0f);
8000  p->adapter_control &=
8002  if ( (p->features & AHC_ULTRA2) && (term_override & 0x0c) )
8003  {
8005  }
8006  if (term_override & 0x02)
8007  {
8008  p->adapter_control |= CFWSTERM;
8009  }
8010  if (term_override & 0x01)
8011  {
8012  p->adapter_control |= CFSTERM;
8013  }
8014  }
8015  }
8016 
8017  if ( (p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1) )
8018  {
8019  if (p->features & AHC_SPIOCAP)
8020  {
8021  if ( aic_inb(p, SPIOCAP) & SSPIOCPS )
8022  /*
8023  * Update the settings in sxfrctl1 to match the termination
8024  * settings.
8025  */
8026  configure_termination(p);
8027  }
8028  else if ((p->chip & AHC_CHIPID_MASK) >= AHC_AIC7870)
8029  {
8030  configure_termination(p);
8031  }
8032  }
8033 
8034  /*
8035  * Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1, for both channels
8036  */
8037  if (p->features & AHC_TWIN)
8038  {
8039  /* Select channel B */
8040  aic_outb(p, aic_inb(p, SBLKCTL) | SELBUSB, SBLKCTL);
8041 
8042  if ((p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1))
8043  term = (aic_inb(p, SXFRCTL1) & STPWEN);
8044  else
8045  term = ((p->flags & AHC_TERM_ENB_B) ? STPWEN : 0);
8046 
8047  aic_outb(p, p->scsi_id_b, SCSIID);
8048  scsi_conf = aic_inb(p, SCSICONF + 1);
8049  aic_outb(p, DFON | SPIOEN, SXFRCTL0);
8050  aic_outb(p, (scsi_conf & ENSPCHK) | aic7xxx_seltime | term |
8052  aic_outb(p, 0, SIMODE0);
8053  aic_outb(p, ENSELTIMO | ENSCSIRST | ENSCSIPERR, SIMODE1);
8054  aic_outb(p, 0, SCSIRATE);
8055 
8056  /* Select channel A */
8057  aic_outb(p, aic_inb(p, SBLKCTL) & ~SELBUSB, SBLKCTL);
8058  }
8059 
8060  if (p->features & AHC_ULTRA2)
8061  {
8062  aic_outb(p, p->scsi_id, SCSIID_ULTRA2);
8063  }
8064  else
8065  {
8066  aic_outb(p, p->scsi_id, SCSIID);
8067  }
8068  if ((p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1))
8069  term = (aic_inb(p, SXFRCTL1) & STPWEN);
8070  else
8071  term = ((p->flags & (AHC_TERM_ENB_A|AHC_TERM_ENB_LVD)) ? STPWEN : 0);
8072  scsi_conf = aic_inb(p, SCSICONF);
8073  aic_outb(p, DFON | SPIOEN, SXFRCTL0);
8074  aic_outb(p, (scsi_conf & ENSPCHK) | aic7xxx_seltime | term |
8076  aic_outb(p, 0, SIMODE0);
8077  /*
8078  * If we are a cardbus adapter then don't enable SCSI reset detection.
8079  * We shouldn't likely be sharing SCSI busses with someone else, and
8080  * if we don't have a cable currently plugged into the controller then
8081  * we won't have a power source for the SCSI termination, which means
8082  * we'll see infinite incoming bus resets.
8083  */
8084  if(p->flags & AHC_NO_STPWEN)
8085  aic_outb(p, ENSELTIMO | ENSCSIPERR, SIMODE1);
8086  else
8087  aic_outb(p, ENSELTIMO | ENSCSIRST | ENSCSIPERR, SIMODE1);
8088  aic_outb(p, 0, SCSIRATE);
8089  if ( p->features & AHC_ULTRA2)
8090  aic_outb(p, 0, SCSIOFFSET);
8091 
8092  /*
8093  * Look at the information that board initialization or the board
8094  * BIOS has left us. In the lower four bits of each target's
8095  * scratch space any value other than 0 indicates that we should
8096  * initiate synchronous transfers. If it's zero, the user or the
8097  * BIOS has decided to disable synchronous negotiation to that
8098  * target so we don't activate the needsdtr flag.
8099  */
8100  if ((p->features & (AHC_TWIN|AHC_WIDE)) == 0)
8101  {
8102  max_targets = 8;
8103  }
8104  else
8105  {
8106  max_targets = 16;
8107  }
8108 
8109  if (!(aic7xxx_no_reset))
8110  {
8111  /*
8112  * If we reset the bus, then clear the transfer settings, else leave
8113  * them be.
8114  */
8115  aic_outb(p, 0, ULTRA_ENB);
8116  aic_outb(p, 0, ULTRA_ENB + 1);
8117  p->ultraenb = 0;
8118  }
8119 
8120  /*
8121  * Allocate enough hardware scbs to handle the maximum number of
8122  * concurrent transactions we can have. We have to make sure that
8123  * the allocated memory is contiguous memory. The Linux kmalloc
8124  * routine should only allocate contiguous memory, but note that
8125  * this could be a problem if kmalloc() is changed.
8126  */
8127  {
8128  size_t array_size;
8129  unsigned int hscb_physaddr;
8130 
8131  array_size = p->scb_data->maxscbs * sizeof(struct aic7xxx_hwscb);
8132  if (p->scb_data->hscbs == NULL)
8133  {
8134  /* pci_alloc_consistent enforces the alignment already and
8135  * clears the area as well.
8136  */
8137  p->scb_data->hscbs = pci_alloc_consistent(p->pdev, array_size,
8138  &p->scb_data->hscbs_dma);
8139  /* We have to use pci_free_consistent, not kfree */
8141  p->scb_data->hscbs_dma_len = array_size;
8142  }
8143  if (p->scb_data->hscbs == NULL)
8144  {
8145  printk("(scsi%d) Unable to allocate hardware SCB array; "
8146  "failing detection.\n", p->host_no);
8147  aic_outb(p, 0, SIMODE1);
8148  p->irq = 0;
8149  return(0);
8150  }
8151 
8152  hscb_physaddr = p->scb_data->hscbs_dma;
8153  aic_outb(p, hscb_physaddr & 0xFF, HSCB_ADDR);
8154  aic_outb(p, (hscb_physaddr >> 8) & 0xFF, HSCB_ADDR + 1);
8155  aic_outb(p, (hscb_physaddr >> 16) & 0xFF, HSCB_ADDR + 2);
8156  aic_outb(p, (hscb_physaddr >> 24) & 0xFF, HSCB_ADDR + 3);
8157 
8158  /* Set up the fifo areas at the same time */
8159  p->untagged_scbs = pci_alloc_consistent(p->pdev, 3*256, &p->fifo_dma);
8160  if (p->untagged_scbs == NULL)
8161  {
8162  printk("(scsi%d) Unable to allocate hardware FIFO arrays; "
8163  "failing detection.\n", p->host_no);
8164  p->irq = 0;
8165  return(0);
8166  }
8167 
8168  p->qoutfifo = p->untagged_scbs + 256;
8169  p->qinfifo = p->qoutfifo + 256;
8170  for (i = 0; i < 256; i++)
8171  {
8173  p->qinfifo[i] = SCB_LIST_NULL;
8174  p->qoutfifo[i] = SCB_LIST_NULL;
8175  }
8176 
8177  hscb_physaddr = p->fifo_dma;
8178  aic_outb(p, hscb_physaddr & 0xFF, SCBID_ADDR);
8179  aic_outb(p, (hscb_physaddr >> 8) & 0xFF, SCBID_ADDR + 1);
8180  aic_outb(p, (hscb_physaddr >> 16) & 0xFF, SCBID_ADDR + 2);
8181  aic_outb(p, (hscb_physaddr >> 24) & 0xFF, SCBID_ADDR + 3);
8182  }
8183 
8184  /* The Q-FIFOs we just set up are all empty */
8185  aic_outb(p, 0, QINPOS);
8186  aic_outb(p, 0, KERNEL_QINPOS);
8187  aic_outb(p, 0, QOUTPOS);
8188 
8189  if(p->features & AHC_QUEUE_REGS)
8190  {
8191  aic_outb(p, SCB_QSIZE_256, QOFF_CTLSTA);
8192  aic_outb(p, 0, SDSCB_QOFF);
8193  aic_outb(p, 0, SNSCB_QOFF);
8194  aic_outb(p, 0, HNSCB_QOFF);
8195  }
8196 
8197  /*
8198  * We don't have any waiting selections or disconnected SCBs.
8199  */
8200  aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
8201  aic_outb(p, SCB_LIST_NULL, DISCONNECTED_SCBH);
8202 
8203  /*
8204  * Message out buffer starts empty
8205  */
8206  aic_outb(p, MSG_NOOP, MSG_OUT);
8207  aic_outb(p, MSG_NOOP, LAST_MSG);
8208 
8209  /*
8210  * Set all the other asundry items that haven't been set yet.
8211  * This includes just dumping init values to a lot of registers simply
8212  * to make sure they've been touched and are ready for use parity wise
8213  * speaking.
8214  */
8215  aic_outb(p, 0, TMODE_CMDADDR);
8216  aic_outb(p, 0, TMODE_CMDADDR + 1);
8217  aic_outb(p, 0, TMODE_CMDADDR + 2);
8218  aic_outb(p, 0, TMODE_CMDADDR + 3);
8219  aic_outb(p, 0, TMODE_CMDADDR_NEXT);
8220 
8221  /*
8222  * Link us into the list of valid hosts
8223  */
8224  p->next = first_aic7xxx;
8225  first_aic7xxx = p;
8226 
8227  /*
8228  * Allocate the first set of scbs for this controller. This is to stream-
8229  * line code elsewhere in the driver. If we have to check for the existence
8230  * of scbs in certain code sections, it slows things down. However, as
8231  * soon as we register the IRQ for this card, we could get an interrupt that
8232  * includes possibly the SCSI_RSTI interrupt. If we catch that interrupt
8233  * then we are likely to segfault if we don't have at least one chunk of
8234  * SCBs allocated or add checks all through the reset code to make sure
8235  * that the SCBs have been allocated which is an invalid running condition
8236  * and therefore I think it's preferable to simply pre-allocate the first
8237  * chunk of SCBs.
8238  */
8239  aic7xxx_allocate_scb(p);
8240 
8241  /*
8242  * Load the sequencer program, then re-enable the board -
8243  * resetting the AIC-7770 disables it, leaving the lights
8244  * on with nobody home.
8245  */
8246  aic7xxx_loadseq(p);
8247 
8248  /*
8249  * Make sure the AUTOFLUSHDIS bit is *not* set in the SBLKCTL register
8250  */
8251  aic_outb(p, aic_inb(p, SBLKCTL) & ~AUTOFLUSHDIS, SBLKCTL);
8252 
8253  if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
8254  {
8255  aic_outb(p, ENABLE, BCTL); /* Enable the boards BUS drivers. */
8256  }
8257 
8258  if ( !(aic7xxx_no_reset) )
8259  {
8260  if (p->features & AHC_TWIN)
8261  {
8262  if (aic7xxx_verbose & VERBOSE_PROBE2)
8263  printk(KERN_INFO "(scsi%d) Resetting channel B\n", p->host_no);
8264  aic_outb(p, aic_inb(p, SBLKCTL) | SELBUSB, SBLKCTL);
8265  aic7xxx_reset_current_bus(p);
8266  aic_outb(p, aic_inb(p, SBLKCTL) & ~SELBUSB, SBLKCTL);
8267  }
8268  /* Reset SCSI bus A. */
8269  if (aic7xxx_verbose & VERBOSE_PROBE2)
8270  { /* In case we are a 3940, 3985, or 7895, print the right channel */
8271  char *channel = "";
8272  if (p->flags & AHC_MULTI_CHANNEL)
8273  {
8274  channel = " A";
8275  if (p->flags & (AHC_CHNLB|AHC_CHNLC))
8276  channel = (p->flags & AHC_CHNLB) ? " B" : " C";
8277  }
8278  printk(KERN_INFO "(scsi%d) Resetting channel%s\n", p->host_no, channel);
8279  }
8280 
8281  aic7xxx_reset_current_bus(p);
8282 
8283  }
8284  else
8285  {
8286  if (!reset_delay)
8287  {
8288  printk(KERN_INFO "(scsi%d) Not resetting SCSI bus. Note: Don't use "
8289  "the no_reset\n", p->host_no);
8290  printk(KERN_INFO "(scsi%d) option unless you have a verifiable need "
8291  "for it.\n", p->host_no);
8292  }
8293  }
8294 
8295  /*
8296  * Register IRQ with the kernel. Only allow sharing IRQs with
8297  * PCI devices.
8298  */
8299  if (!(p->chip & AHC_PCI))
8300  {
8301  result = (request_irq(p->irq, do_aic7xxx_isr, 0, "aic7xxx", p));
8302  }
8303  else
8304  {
8305  result = (request_irq(p->irq, do_aic7xxx_isr, IRQF_SHARED,
8306  "aic7xxx", p));
8307  if (result < 0)
8308  {
8309  result = (request_irq(p->irq, do_aic7xxx_isr, IRQF_DISABLED | IRQF_SHARED,
8310  "aic7xxx", p));
8311  }
8312  }
8313  if (result < 0)
8314  {
8315  printk(KERN_WARNING "(scsi%d) Couldn't register IRQ %d, ignoring "
8316  "controller.\n", p->host_no, p->irq);
8317  aic_outb(p, 0, SIMODE1);
8318  p->irq = 0;
8319  return (0);
8320  }
8321 
8322  if(aic_inb(p, INTSTAT) & INT_PEND)
8323  printk(INFO_LEAD "spurious interrupt during configuration, cleared.\n",
8324  p->host_no, -1, -1 , -1);
8325  aic7xxx_clear_intstat(p);
8326 
8327  unpause_sequencer(p, /* unpause_always */ TRUE);
8328 
8329  return (found);
8330 }
8331 
8332 /*+F*************************************************************************
8333  * Function:
8334  * aic7xxx_chip_reset
8335  *
8336  * Description:
8337  * Perform a chip reset on the aic7xxx SCSI controller. The controller
8338  * is paused upon return.
8339  *-F*************************************************************************/
8340 static int
8341 aic7xxx_chip_reset(struct aic7xxx_host *p)
8342 {
8343  unsigned char sblkctl;
8344  int wait;
8345 
8346  /*
8347  * For some 274x boards, we must clear the CHIPRST bit and pause
8348  * the sequencer. For some reason, this makes the driver work.
8349  */
8350  aic_outb(p, PAUSE | CHIPRST, HCNTRL);
8351 
8352  /*
8353  * In the future, we may call this function as a last resort for
8354  * error handling. Let's be nice and not do any unnecessary delays.
8355  */
8356  wait = 1000; /* 1 msec (1000 * 1 msec) */
8357  while (--wait && !(aic_inb(p, HCNTRL) & CHIPRSTACK))
8358  {
8359  udelay(1); /* 1 usec */
8360  }
8361 
8362  pause_sequencer(p);
8363 
8364  sblkctl = aic_inb(p, SBLKCTL) & (SELBUSB|SELWIDE);
8365  if (p->chip & AHC_PCI)
8366  sblkctl &= ~SELBUSB;
8367  switch( sblkctl )
8368  {
8369  case 0: /* normal narrow card */
8370  break;
8371  case 2: /* Wide card */
8372  p->features |= AHC_WIDE;
8373  break;
8374  case 8: /* Twin card */
8375  p->features |= AHC_TWIN;
8376  p->flags |= AHC_MULTI_CHANNEL;
8377  break;
8378  default: /* hmmm...we don't know what this is */
8379  printk(KERN_WARNING "aic7xxx: Unsupported adapter type %d, ignoring.\n",
8380  aic_inb(p, SBLKCTL) & 0x0a);
8381  return(-1);
8382  }
8383  return(0);
8384 }
8385 
8386 /*+F*************************************************************************
8387  * Function:
8388  * aic7xxx_alloc
8389  *
8390  * Description:
8391  * Allocate and initialize a host structure. Returns NULL upon error
8392  * and a pointer to a aic7xxx_host struct upon success.
8393  *-F*************************************************************************/
8394 static struct aic7xxx_host *
8395 aic7xxx_alloc(struct scsi_host_template *sht, struct aic7xxx_host *temp)
8396 {
8397  struct aic7xxx_host *p = NULL;
8398  struct Scsi_Host *host;
8399 
8400  /*
8401  * Allocate a storage area by registering us with the mid-level
8402  * SCSI layer.
8403  */
8404  host = scsi_register(sht, sizeof(struct aic7xxx_host));
8405 
8406  if (host != NULL)
8407  {
8408  p = (struct aic7xxx_host *) host->hostdata;
8409  memset(p, 0, sizeof(struct aic7xxx_host));
8410  *p = *temp;
8411  p->host = host;
8412 
8413  p->scb_data = kzalloc(sizeof(scb_data_type), GFP_ATOMIC);
8414  if (p->scb_data)
8415  {
8416  scbq_init (&p->scb_data->free_scbs);
8417  }
8418  else
8419  {
8420  /*
8421  * For some reason we don't have enough memory. Free the
8422  * allocated memory for the aic7xxx_host struct, and return NULL.
8423  */
8425  scsi_unregister(host);
8426  return(NULL);
8427  }
8428  p->host_no = host->host_no;
8429  }
8430  return (p);
8431 }
8432 
8433 /*+F*************************************************************************
8434  * Function:
8435  * aic7xxx_free
8436  *
8437  * Description:
8438  * Frees and releases all resources associated with an instance of
8439  * the driver (struct aic7xxx_host *).
8440  *-F*************************************************************************/
8441 static void
8442 aic7xxx_free(struct aic7xxx_host *p)
8443 {
8444  int i;
8445 
8446  /*
8447  * Free the allocated hardware SCB space.
8448  */
8449  if (p->scb_data != NULL)
8450  {
8451  struct aic7xxx_scb_dma *scb_dma = NULL;
8452  if (p->scb_data->hscbs != NULL)
8453  {
8455  p->scb_data->hscbs, p->scb_data->hscbs_dma);
8457  }
8458  /*
8459  * Free the driver SCBs. These were allocated on an as-need
8460  * basis. We allocated these in groups depending on how many
8461  * we could fit into a given amount of RAM. The tail SCB for
8462  * these allocations has a pointer to the alloced area.
8463  */
8464  for (i = 0; i < p->scb_data->numscbs; i++)
8465  {
8466  if (p->scb_data->scb_array[i]->scb_dma != scb_dma)
8467  {
8468  scb_dma = p->scb_data->scb_array[i]->scb_dma;
8469  pci_free_consistent(p->pdev, scb_dma->dma_len,
8470  (void *)((unsigned long)scb_dma->dma_address
8471  - scb_dma->dma_offset),
8472  scb_dma->dma_address);
8473  }
8474  kfree(p->scb_data->scb_array[i]->kmalloc_ptr);
8475  p->scb_data->scb_array[i] = NULL;
8476  }
8477 
8478  /*
8479  * Free the SCB data area.
8480  */
8481  kfree(p->scb_data);
8482  }
8483 
8484  pci_free_consistent(p->pdev, 3*256, (void *)p->untagged_scbs, p->fifo_dma);
8485 }
8486 
8487 /*+F*************************************************************************
8488  * Function:
8489  * aic7xxx_load_seeprom
8490  *
8491  * Description:
8492  * Load the seeprom and configure adapter and target settings.
8493  * Returns 1 if the load was successful and 0 otherwise.
8494  *-F*************************************************************************/
8495 static void
8496 aic7xxx_load_seeprom(struct aic7xxx_host *p, unsigned char *sxfrctl1)
8497 {
8498  int have_seeprom = 0;
8499  int i, max_targets, mask;
8500  unsigned char scsirate, scsi_conf;
8501  unsigned short scarray[128];
8502  struct seeprom_config *sc = (struct seeprom_config *) scarray;
8503 
8504  if (aic7xxx_verbose & VERBOSE_PROBE2)
8505  {
8506  printk(KERN_INFO "aic7xxx: Loading serial EEPROM...");
8507  }
8508  switch (p->chip)
8509  {
8510  case (AHC_AIC7770|AHC_EISA): /* None of these adapters have seeproms. */
8511  if (aic_inb(p, SCSICONF) & TERM_ENB)
8512  p->flags |= AHC_TERM_ENB_A;
8513  if ( (p->features & AHC_TWIN) && (aic_inb(p, SCSICONF + 1) & TERM_ENB) )
8514  p->flags |= AHC_TERM_ENB_B;
8515  break;
8516 
8517  case (AHC_AIC7770|AHC_VL):
8518  have_seeprom = read_284x_seeprom(p, (struct seeprom_config *) scarray);
8519  break;
8520 
8521  default:
8522  have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
8523  scarray, p->sc_size, p->sc_type);
8524  if (!have_seeprom)
8525  {
8526  if(p->sc_type == C46)
8527  have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
8528  scarray, p->sc_size, C56_66);
8529  else
8530  have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
8531  scarray, p->sc_size, C46);
8532  }
8533  if (!have_seeprom)
8534  {
8535  p->sc_size = 128;
8536  have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
8537  scarray, p->sc_size, p->sc_type);
8538  if (!have_seeprom)
8539  {
8540  if(p->sc_type == C46)
8541  have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
8542  scarray, p->sc_size, C56_66);
8543  else
8544  have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
8545  scarray, p->sc_size, C46);
8546  }
8547  }
8548  break;
8549  }
8550 
8551  if (!have_seeprom)
8552  {
8553  if (aic7xxx_verbose & VERBOSE_PROBE2)
8554  {
8555  printk("\naic7xxx: No SEEPROM available.\n");
8556  }
8557  p->flags |= AHC_NEWEEPROM_FMT;
8558  if (aic_inb(p, SCSISEQ) == 0)
8559  {
8560  p->flags |= AHC_USEDEFAULTS;
8561  p->flags &= ~AHC_BIOS_ENABLED;
8562  p->scsi_id = p->scsi_id_b = 7;
8563  *sxfrctl1 |= STPWEN;
8564  if (aic7xxx_verbose & VERBOSE_PROBE2)
8565  {
8566  printk("aic7xxx: Using default values.\n");
8567  }
8568  }
8569  else if (aic7xxx_verbose & VERBOSE_PROBE2)
8570  {
8571  printk("aic7xxx: Using leftover BIOS values.\n");
8572  }
8573  if ( ((p->chip & ~AHC_CHIPID_MASK) == AHC_PCI) && (*sxfrctl1 & STPWEN) )
8574  {
8576  sc->adapter_control &= ~CFAUTOTERM;
8578  }
8579  if (aic7xxx_extended)
8581  else
8583  }
8584  else
8585  {
8586  if (aic7xxx_verbose & VERBOSE_PROBE2)
8587  {
8588  printk("done\n");
8589  }
8590 
8591  /*
8592  * Note things in our flags
8593  */
8594  p->flags |= AHC_SEEPROM_FOUND;
8595 
8596  /*
8597  * Update the settings in sxfrctl1 to match the termination settings.
8598  */
8599  *sxfrctl1 = 0;
8600 
8601  /*
8602  * Get our SCSI ID from the SEEPROM setting...
8603  */
8604  p->scsi_id = (sc->brtime_id & CFSCSIID);
8605 
8606  /*
8607  * First process the settings that are different between the VLB
8608  * and PCI adapter seeproms.
8609  */
8610  if ((p->chip & AHC_CHIPID_MASK) == AHC_AIC7770)
8611  {
8612  /* VLB adapter seeproms */
8613  if (sc->bios_control & CF284XEXTEND)
8614  p->flags |= AHC_EXTEND_TRANS_A;
8615 
8616  if (sc->adapter_control & CF284XSTERM)
8617  {
8618  *sxfrctl1 |= STPWEN;
8620  }
8621  }
8622  else
8623  {
8624  /* PCI adapter seeproms */
8625  if (sc->bios_control & CFEXTEND)
8626  p->flags |= AHC_EXTEND_TRANS_A;
8627  if (sc->bios_control & CFBIOSEN)
8628  p->flags |= AHC_BIOS_ENABLED;
8629  else
8630  p->flags &= ~AHC_BIOS_ENABLED;
8631 
8632  if (sc->adapter_control & CFSTERM)
8633  {
8634  *sxfrctl1 |= STPWEN;
8636  }
8637  }
8638  memcpy(&p->sc, sc, sizeof(struct seeprom_config));
8639  }
8640 
8641  p->discenable = 0;
8642 
8643  /*
8644  * Limit to 16 targets just in case. The 2842 for one is known to
8645  * blow the max_targets setting, future cards might also.
8646  */
8647  max_targets = ((p->features & (AHC_TWIN | AHC_WIDE)) ? 16 : 8);
8648 
8649  if (have_seeprom)
8650  {
8651  for (i = 0; i < max_targets; i++)
8652  {
8653  if( ((p->features & AHC_ULTRA) &&
8654  !(sc->adapter_control & CFULTRAEN) &&
8655  (sc->device_flags[i] & CFSYNCHISULTRA)) ||
8656  (sc->device_flags[i] & CFNEWULTRAFORMAT) )
8657  {
8658  p->flags |= AHC_NEWEEPROM_FMT;
8659  break;
8660  }
8661  }
8662  }
8663 
8664  for (i = 0; i < max_targets; i++)
8665  {
8666  mask = (0x01 << i);
8667  if (!have_seeprom)
8668  {
8669  if (aic_inb(p, SCSISEQ) != 0)
8670  {
8671  /*
8672  * OK...the BIOS set things up and left behind the settings we need.
8673  * Just make our sc->device_flags[i] entry match what the card has
8674  * set for this device.
8675  */
8676  p->discenable =
8677  ~(aic_inb(p, DISC_DSB) | (aic_inb(p, DISC_DSB + 1) << 8) );
8678  p->ultraenb =
8679  (aic_inb(p, ULTRA_ENB) | (aic_inb(p, ULTRA_ENB + 1) << 8) );
8680  sc->device_flags[i] = (p->discenable & mask) ? CFDISC : 0;
8681  if (aic_inb(p, TARG_SCSIRATE + i) & WIDEXFER)
8682  sc->device_flags[i] |= CFWIDEB;
8683  if (p->features & AHC_ULTRA2)
8684  {
8685  if (aic_inb(p, TARG_OFFSET + i))
8686  {
8687  sc->device_flags[i] |= CFSYNCH;
8688  sc->device_flags[i] |= (aic_inb(p, TARG_SCSIRATE + i) & 0x07);
8689  if ( (aic_inb(p, TARG_SCSIRATE + i) & 0x18) == 0x18 )
8690  sc->device_flags[i] |= CFSYNCHISULTRA;
8691  }
8692  }
8693  else
8694  {
8695  if (aic_inb(p, TARG_SCSIRATE + i) & ~WIDEXFER)
8696  {
8697  sc->device_flags[i] |= CFSYNCH;
8698  if (p->features & AHC_ULTRA)
8699  sc->device_flags[i] |= ((p->ultraenb & mask) ?
8700  CFSYNCHISULTRA : 0);
8701  }
8702  }
8703  }
8704  else
8705  {
8706  /*
8707  * Assume the BIOS has NOT been run on this card and nothing between
8708  * the card and the devices is configured yet.
8709  */
8710  sc->device_flags[i] = CFDISC;
8711  if (p->features & AHC_WIDE)
8712  sc->device_flags[i] |= CFWIDEB;
8713  if (p->features & AHC_ULTRA3)
8714  sc->device_flags[i] |= 2;
8715  else if (p->features & AHC_ULTRA2)
8716  sc->device_flags[i] |= 3;
8717  else if (p->features & AHC_ULTRA)
8718  sc->device_flags[i] |= CFSYNCHISULTRA;
8719  sc->device_flags[i] |= CFSYNCH;
8720  aic_outb(p, 0, TARG_SCSIRATE + i);
8721  if (p->features & AHC_ULTRA2)
8722  aic_outb(p, 0, TARG_OFFSET + i);
8723  }
8724  }
8725  if (sc->device_flags[i] & CFDISC)
8726  {
8727  p->discenable |= mask;
8728  }
8729  if (p->flags & AHC_NEWEEPROM_FMT)
8730  {
8731  if ( !(p->features & AHC_ULTRA2) )
8732  {
8733  /*
8734  * I know of two different Ultra BIOSes that do this differently.
8735  * One on the Gigabyte 6BXU mb that wants flags[i] & CFXFER to
8736  * be == to 0x03 and SYNCHISULTRA to be true to mean 40MByte/s
8737  * while on the IBM Netfinity 5000 they want the same thing
8738  * to be something else, while flags[i] & CFXFER == 0x03 and
8739  * SYNCHISULTRA false should be 40MByte/s. So, we set both to
8740  * 40MByte/s and the lower speeds be damned. People will have
8741  * to select around the conversely mapped lower speeds in order
8742  * to select lower speeds on these boards.
8743  */
8744  if ( (sc->device_flags[i] & CFNEWULTRAFORMAT) &&
8745  ((sc->device_flags[i] & CFXFER) == 0x03) )
8746  {
8747  sc->device_flags[i] &= ~CFXFER;
8748  sc->device_flags[i] |= CFSYNCHISULTRA;
8749  }
8750  if (sc->device_flags[i] & CFSYNCHISULTRA)
8751  {
8752  p->ultraenb |= mask;
8753  }
8754  }
8755  else if ( !(sc->device_flags[i] & CFNEWULTRAFORMAT) &&
8756  (p->features & AHC_ULTRA2) &&
8757  (sc->device_flags[i] & CFSYNCHISULTRA) )
8758  {
8759  p->ultraenb |= mask;
8760  }
8761  }
8762  else if (sc->adapter_control & CFULTRAEN)
8763  {
8764  p->ultraenb |= mask;
8765  }
8766  if ( (sc->device_flags[i] & CFSYNCH) == 0)
8767  {
8768  sc->device_flags[i] &= ~CFXFER;
8769  p->ultraenb &= ~mask;
8770  p->user[i].offset = 0;
8771  p->user[i].period = 0;
8772  p->user[i].options = 0;
8773  }
8774  else
8775  {
8776  if (p->features & AHC_ULTRA3)
8777  {
8779  if( (sc->device_flags[i] & CFXFER) < 0x03 )
8780  {
8781  scsirate = (sc->device_flags[i] & CFXFER);
8783  }
8784  else
8785  {
8786  scsirate = (sc->device_flags[i] & CFXFER) |
8787  ((p->ultraenb & mask) ? 0x18 : 0x10);
8788  p->user[i].options = 0;
8789  }
8790  p->user[i].period = aic7xxx_find_period(p, scsirate,
8792  }
8793  else if (p->features & AHC_ULTRA2)
8794  {
8796  scsirate = (sc->device_flags[i] & CFXFER) |
8797  ((p->ultraenb & mask) ? 0x18 : 0x10);
8798  p->user[i].options = 0;
8799  p->user[i].period = aic7xxx_find_period(p, scsirate,
8801  }
8802  else
8803  {
8804  scsirate = (sc->device_flags[i] & CFXFER) << 4;
8805  p->user[i].options = 0;
8806  p->user[i].offset = MAX_OFFSET_8BIT;
8807  if (p->features & AHC_ULTRA)
8808  {
8809  short ultraenb;
8810  ultraenb = aic_inb(p, ULTRA_ENB) |
8811  (aic_inb(p, ULTRA_ENB + 1) << 8);
8812  p->user[i].period = aic7xxx_find_period(p, scsirate,
8813  (p->ultraenb & mask) ?
8816  }
8817  else
8818  p->user[i].period = aic7xxx_find_period(p, scsirate,
8820  }
8821  }
8822  if ( (sc->device_flags[i] & CFWIDEB) && (p->features & AHC_WIDE) )
8823  {
8825  }
8826  else
8827  {
8829  }
8830  }
8831  aic_outb(p, ~(p->discenable & 0xFF), DISC_DSB);
8832  aic_outb(p, ~((p->discenable >> 8) & 0xFF), DISC_DSB + 1);
8833 
8834  /*
8835  * We set the p->ultraenb from the SEEPROM to begin with, but now we make
8836  * it match what is already down in the card. If we are doing a reset
8837  * on the card then this will get put back to a default state anyway.
8838  * This allows us to not have to pre-emptively negotiate when using the
8839  * no_reset option.
8840  */
8841  if (p->features & AHC_ULTRA)
8842  p->ultraenb = aic_inb(p, ULTRA_ENB) | (aic_inb(p, ULTRA_ENB + 1) << 8);
8843 
8844 
8845  scsi_conf = (p->scsi_id & HSCSIID);
8846 
8847  if(have_seeprom)
8848  {
8850  p->bios_control = sc->bios_control;
8851 
8852  switch (p->chip & AHC_CHIPID_MASK)
8853  {
8854  case AHC_AIC7895:
8855  case AHC_AIC7896:
8856  case AHC_AIC7899:
8857  if (p->adapter_control & CFBPRIMARY)
8859  default:
8860  break;
8861  }
8862 
8863  if (sc->adapter_control & CFSPARITY)
8864  scsi_conf |= ENSPCHK;
8865  }
8866  else
8867  {
8868  scsi_conf |= ENSPCHK | RESET_SCSI;
8869  }
8870 
8871  /*
8872  * Only set the SCSICONF and SCSICONF + 1 registers if we are a PCI card.
8873  * The 2842 and 2742 cards already have these registers set and we don't
8874  * want to muck with them since we don't set all the bits they do.
8875  */
8876  if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI )
8877  {
8878  /* Set the host ID */
8879  aic_outb(p, scsi_conf, SCSICONF);
8880  /* In case we are a wide card */
8881  aic_outb(p, p->scsi_id, SCSICONF + 1);
8882  }
8883 }
8884 
8885 /*+F*************************************************************************
8886  * Function:
8887  * aic7xxx_configure_bugs
8888  *
8889  * Description:
8890  * Take the card passed in and set the appropriate bug flags based upon
8891  * the card model. Also make any changes needed to device registers or
8892  * PCI registers while we are here.
8893  *-F*************************************************************************/
8894 static void
8895 aic7xxx_configure_bugs(struct aic7xxx_host *p)
8896 {
8897  unsigned short tmp_word;
8898 
8899  switch(p->chip & AHC_CHIPID_MASK)
8900  {
8901  case AHC_AIC7860:
8903  /* fall through */
8904  case AHC_AIC7850:
8905  case AHC_AIC7870:
8907  break;
8908  case AHC_AIC7880:
8911  break;
8912  case AHC_AIC7890:
8914  break;
8915  case AHC_AIC7892:
8917  break;
8918  case AHC_AIC7895:
8921  break;
8922  case AHC_AIC7896:
8924  break;
8925  case AHC_AIC7899:
8927  break;
8928  default:
8929  /* Nothing to do */
8930  break;
8931  }
8932 
8933  /*
8934  * Now handle the bugs that require PCI register or card register tweaks
8935  */
8936  pci_read_config_word(p->pdev, PCI_COMMAND, &tmp_word);
8937  if(p->bugs & AHC_BUG_PCI_MWI)
8938  {
8939  tmp_word &= ~PCI_COMMAND_INVALIDATE;
8940  }
8941  else
8942  {
8943  tmp_word |= PCI_COMMAND_INVALIDATE;
8944  }
8945  pci_write_config_word(p->pdev, PCI_COMMAND, tmp_word);
8946 
8947  if(p->bugs & AHC_BUG_CACHETHEN)
8948  {
8949  aic_outb(p, aic_inb(p, DSCOMMAND0) & ~CACHETHEN, DSCOMMAND0);
8950  }
8951  else if (p->bugs & AHC_BUG_CACHETHEN_DIS)
8952  {
8953  aic_outb(p, aic_inb(p, DSCOMMAND0) | CACHETHEN, DSCOMMAND0);
8954  }
8955 
8956  return;
8957 }
8958 
8959 
8960 /*+F*************************************************************************
8961  * Function:
8962  * aic7xxx_detect
8963  *
8964  * Description:
8965  * Try to detect and register an Adaptec 7770 or 7870 SCSI controller.
8966  *
8967  * XXX - This should really be called aic7xxx_probe(). A sequence of
8968  * probe(), attach()/detach(), and init() makes more sense than
8969  * one do-it-all function. This may be useful when (and if) the
8970  * mid-level SCSI code is overhauled.
8971  *-F*************************************************************************/
8972 static int
8973 aic7xxx_detect(struct scsi_host_template *template)
8974 {
8975  struct aic7xxx_host *temp_p = NULL;
8976  struct aic7xxx_host *current_p = NULL;
8977  struct aic7xxx_host *list_p = NULL;
8978  int found = 0;
8979 #if defined(__i386__) || defined(__alpha__)
8980  ahc_flag_type flags = 0;
8981  int type;
8982 #endif
8983  unsigned char sxfrctl1;
8984 #if defined(__i386__) || defined(__alpha__)
8985  unsigned char hcntrl, hostconf;
8986  unsigned int slot, base;
8987 #endif
8988 
8989 #ifdef MODULE
8990  /*
8991  * If we are called as a module, the aic7xxx pointer may not be null
8992  * and it would point to our bootup string, just like on the lilo
8993  * command line. IF not NULL, then process this config string with
8994  * aic7xxx_setup
8995  */
8996  if(aic7xxx)
8997  aic7xxx_setup(aic7xxx);
8998 #endif
8999 
9000  template->proc_name = "aic7xxx";
9001  template->sg_tablesize = AIC7XXX_MAX_SG;
9002 
9003 
9004 #ifdef CONFIG_PCI
9005  /*
9006  * PCI-bus probe.
9007  */
9008  {
9009  static struct
9010  {
9011  unsigned short vendor_id;
9012  unsigned short device_id;
9013  ahc_chip chip;
9016  int board_name_index;
9017  unsigned short seeprom_size;
9018  unsigned short seeprom_type;
9019  } const aic_pdevs[] = {
9021  AHC_FNONE, AHC_FENONE, 1,
9022  32, C46 },
9025  32, C46 },
9028  32, C46 },
9031  AHC_AIC7860_FE, 7,
9032  32, C46 },
9035  AHC_AIC7860_FE, 7,
9036  32, C46 },
9039  AHC_AIC7860_FE, 7,
9040  32, C46 },
9043  AHC_AIC7860_FE, 7,
9044  32, C46 },
9047  AHC_AIC7860_FE, 7,
9048  32, C46 },
9051  AHC_AIC7860_FE, 8,
9052  32, C46 },
9055  AHC_AIC7870_FE, 9,
9056  32, C46 },
9059  32, C46 },
9062  AHC_AIC7870_FE, 11,
9063  32, C56_66 },
9066  AHC_AIC7870_FE, 12,
9067  32, C56_66 },
9070  32, C46 },
9073  AHC_AIC7880_FE, 14,
9074  32, C46 },
9077  32, C46 },
9080  AHC_AIC7880_FE, 16,
9081  32, C56_66 },
9084  AHC_AIC7880_FE, 17,
9085  32, C56_66 },
9088  32, C46 },
9091  32, C46 },
9094  32, C46 },
9097  32, C46 },
9100  32, C46 },
9103  AHC_AIC7895_FE, 20,
9104  32, C56_66 },
9107  AHC_AIC7890_FE, 21,
9108  32, C46 },
9111  AHC_AIC7890_FE, 21,
9112  32, C46 },
9115  AHC_AIC7890_FE, 22,
9116  32, C46 },
9119  AHC_AIC7890_FE, 23,
9120  32, C46 },
9123  AHC_AIC7896_FE, 24,
9124  32, C56_66 },
9127  AHC_AIC7896_FE, 25,
9128  32, C56_66 },
9131  AHC_AIC7896_FE, 26,
9132  32, C56_66 },
9135  AHC_AIC7860_FE, 27,
9136  32, C46 },
9139  AHC_AIC7892_FE, 28,
9140  32, C46 },
9143  AHC_AIC7892_FE, 28,
9144  32, C46 },
9147  AHC_AIC7892_FE, 28,
9148  32, C46 },
9151  AHC_AIC7892_FE, 28,
9152  32, C46 },
9155  AHC_AIC7899_FE, 29,
9156  32, C56_66 },
9159  AHC_AIC7899_FE, 29,
9160  32, C56_66 },
9163  AHC_AIC7899_FE, 29,
9164  32, C56_66 },
9167  AHC_AIC7899_FE, 29,
9168  32, C56_66 },
9169  };
9170 
9171  unsigned short command;
9172  unsigned int devconfig, i, oldverbose;
9173  struct pci_dev *pdev = NULL;
9174 
9175  for (i = 0; i < ARRAY_SIZE(aic_pdevs); i++)
9176  {
9177  pdev = NULL;
9178  while ((pdev = pci_get_device(aic_pdevs[i].vendor_id,
9179  aic_pdevs[i].device_id,
9180  pdev))) {
9181  if (pci_enable_device(pdev))
9182  continue;
9183  if ( i == 0 ) /* We found one, but it's the 7810 RAID cont. */
9184  {
9185  if (aic7xxx_verbose & (VERBOSE_PROBE|VERBOSE_PROBE2))
9186  {
9187  printk(KERN_INFO "aic7xxx: The 7810 RAID controller is not "
9188  "supported by\n");
9189  printk(KERN_INFO " this driver, we are ignoring it.\n");
9190  }
9191  }
9192  else if ( (temp_p = kzalloc(sizeof(struct aic7xxx_host),
9193  GFP_ATOMIC)) != NULL )
9194  {
9195  temp_p->chip = aic_pdevs[i].chip | AHC_PCI;
9196  temp_p->flags = aic_pdevs[i].flags;
9197  temp_p->features = aic_pdevs[i].features;
9198  temp_p->board_name_index = aic_pdevs[i].board_name_index;
9199  temp_p->sc_size = aic_pdevs[i].seeprom_size;
9200  temp_p->sc_type = aic_pdevs[i].seeprom_type;
9201 
9202  /*
9203  * Read sundry information from PCI BIOS.
9204  */
9205  temp_p->irq = pdev->irq;
9206  temp_p->pdev = pdev;
9207  temp_p->pci_bus = pdev->bus->number;
9208  temp_p->pci_device_fn = pdev->devfn;
9209  temp_p->base = pci_resource_start(pdev, 0);
9210  temp_p->mbase = pci_resource_start(pdev, 1);
9211  current_p = list_p;
9212  while(current_p && temp_p)
9213  {
9214  if ( ((current_p->pci_bus == temp_p->pci_bus) &&
9215  (current_p->pci_device_fn == temp_p->pci_device_fn)) ||
9216  (temp_p->base && (current_p->base == temp_p->base)) ||
9217  (temp_p->mbase && (current_p->mbase == temp_p->mbase)) )
9218  {
9219  /* duplicate PCI entry, skip it */
9220  kfree(temp_p);
9221  temp_p = NULL;
9222  continue;
9223  }
9224  current_p = current_p->next;
9225  }
9226  if(pci_request_regions(temp_p->pdev, "aic7xxx"))
9227  {
9228  printk("aic7xxx: <%s> at PCI %d/%d/%d\n",
9229  board_names[aic_pdevs[i].board_name_index],
9230  temp_p->pci_bus,
9231  PCI_SLOT(temp_p->pci_device_fn),
9232  PCI_FUNC(temp_p->pci_device_fn));
9233  printk("aic7xxx: I/O ports already in use, ignoring.\n");
9234  kfree(temp_p);
9235  continue;
9236  }
9237 
9238  if (aic7xxx_verbose & VERBOSE_PROBE2)
9239  printk("aic7xxx: <%s> at PCI %d/%d\n",
9240  board_names[aic_pdevs[i].board_name_index],
9241  PCI_SLOT(pdev->devfn),
9242  PCI_FUNC(pdev->devfn));
9243  pci_read_config_word(pdev, PCI_COMMAND, &command);
9244  if (aic7xxx_verbose & VERBOSE_PROBE2)
9245  {
9246  printk("aic7xxx: Initial PCI_COMMAND value was 0x%x\n",
9247  (int)command);
9248  }
9249 #ifdef AIC7XXX_STRICT_PCI_SETUP
9250  command |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
9252 #else
9254 #endif
9255  command &= ~PCI_COMMAND_INVALIDATE;
9256  if (aic7xxx_pci_parity == 0)
9257  command &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
9258  pci_write_config_word(pdev, PCI_COMMAND, command);
9259 #ifdef AIC7XXX_STRICT_PCI_SETUP
9260  pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9261  if (aic7xxx_verbose & VERBOSE_PROBE2)
9262  {
9263  printk("aic7xxx: Initial DEVCONFIG value was 0x%x\n", devconfig);
9264  }
9265  devconfig |= 0x80000040;
9266  pci_write_config_dword(pdev, DEVCONFIG, devconfig);
9267 #endif /* AIC7XXX_STRICT_PCI_SETUP */
9268 
9269  temp_p->unpause = INTEN;
9270  temp_p->pause = temp_p->unpause | PAUSE;
9271  if ( ((temp_p->base == 0) &&
9272  (temp_p->mbase == 0)) ||
9273  (temp_p->irq == 0) )
9274  {
9275  printk("aic7xxx: <%s> at PCI %d/%d/%d\n",
9276  board_names[aic_pdevs[i].board_name_index],
9277  temp_p->pci_bus,
9278  PCI_SLOT(temp_p->pci_device_fn),
9279  PCI_FUNC(temp_p->pci_device_fn));
9280  printk("aic7xxx: Controller disabled by BIOS, ignoring.\n");
9281  goto skip_pci_controller;
9282  }
9283 
9284 #ifdef MMAPIO
9285  if ( !(temp_p->base) || !(temp_p->flags & AHC_MULTI_CHANNEL) ||
9286  ((temp_p->chip != (AHC_AIC7870 | AHC_PCI)) &&
9287  (temp_p->chip != (AHC_AIC7880 | AHC_PCI))) )
9288  {
9289  temp_p->maddr = ioremap_nocache(temp_p->mbase, 256);
9290  if(temp_p->maddr)
9291  {
9292  /*
9293  * We need to check the I/O with the MMAPed address. Some machines
9294  * simply fail to work with MMAPed I/O and certain controllers.
9295  */
9296  if(aic_inb(temp_p, HCNTRL) == 0xff)
9297  {
9298  /*
9299  * OK.....we failed our test....go back to programmed I/O
9300  */
9301  printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n",
9302  board_names[aic_pdevs[i].board_name_index],
9303  temp_p->pci_bus,
9304  PCI_SLOT(temp_p->pci_device_fn),
9305  PCI_FUNC(temp_p->pci_device_fn));
9306  printk(KERN_INFO "aic7xxx: MMAPed I/O failed, reverting to "
9307  "Programmed I/O.\n");
9308  iounmap(temp_p->maddr);
9309  temp_p->maddr = NULL;
9310  if(temp_p->base == 0)
9311  {
9312  printk("aic7xxx: <%s> at PCI %d/%d/%d\n",
9313  board_names[aic_pdevs[i].board_name_index],
9314  temp_p->pci_bus,
9315  PCI_SLOT(temp_p->pci_device_fn),
9316  PCI_FUNC(temp_p->pci_device_fn));
9317  printk("aic7xxx: Controller disabled by BIOS, ignoring.\n");
9318  goto skip_pci_controller;
9319  }
9320  }
9321  }
9322  }
9323 #endif
9324 
9325  /*
9326  * We HAVE to make sure the first pause_sequencer() and all other
9327  * subsequent I/O that isn't PCI config space I/O takes place
9328  * after the MMAPed I/O region is configured and tested. The
9329  * problem is the PowerPC architecture that doesn't support
9330  * programmed I/O at all, so we have to have the MMAP I/O set up
9331  * for this pause to even work on those machines.
9332  */
9333  pause_sequencer(temp_p);
9334 
9335  /*
9336  * Clear out any pending PCI error status messages. Also set
9337  * verbose to 0 so that we don't emit strange PCI error messages
9338  * while cleaning out the current status bits.
9339  */
9340  oldverbose = aic7xxx_verbose;
9341  aic7xxx_verbose = 0;
9342  aic7xxx_pci_intr(temp_p);
9343  aic7xxx_verbose = oldverbose;
9344 
9345  temp_p->bios_address = 0;
9346 
9347  /*
9348  * Remember how the card was setup in case there is no seeprom.
9349  */
9350  if (temp_p->features & AHC_ULTRA2)
9351  temp_p->scsi_id = aic_inb(temp_p, SCSIID_ULTRA2) & OID;
9352  else
9353  temp_p->scsi_id = aic_inb(temp_p, SCSIID) & OID;
9354  /*
9355  * Get current termination setting
9356  */
9357  sxfrctl1 = aic_inb(temp_p, SXFRCTL1);
9358 
9359  if (aic7xxx_chip_reset(temp_p) == -1)
9360  {
9361  goto skip_pci_controller;
9362  }
9363  /*
9364  * Very quickly put the term setting back into the register since
9365  * the chip reset may cause odd things to happen. This is to keep
9366  * LVD busses with lots of drives from draining the power out of
9367  * the diffsense line before we get around to running the
9368  * configure_termination() function. Also restore the STPWLEVEL
9369  * bit of DEVCONFIG
9370  */
9371  aic_outb(temp_p, sxfrctl1, SXFRCTL1);
9372  pci_write_config_dword(temp_p->pdev, DEVCONFIG, devconfig);
9373  sxfrctl1 &= STPWEN;
9374 
9375  /*
9376  * We need to set the CHNL? assignments before loading the SEEPROM
9377  * The 3940 and 3985 cards (original stuff, not any of the later
9378  * stuff) are 7870 and 7880 class chips. The Ultra2 stuff falls
9379  * under 7896 and 7897. The 7895 is in a class by itself :)
9380  */
9381  switch (temp_p->chip & AHC_CHIPID_MASK)
9382  {
9383  case AHC_AIC7870: /* 3840 / 3985 */
9384  case AHC_AIC7880: /* 3840 UW / 3985 UW */
9385  if(temp_p->flags & AHC_MULTI_CHANNEL)
9386  {
9387  switch(PCI_SLOT(temp_p->pci_device_fn))
9388  {
9389  case 5:
9390  temp_p->flags |= AHC_CHNLB;
9391  break;
9392  case 8:
9393  temp_p->flags |= AHC_CHNLB;
9394  break;
9395  case 12:
9396  temp_p->flags |= AHC_CHNLC;
9397  break;
9398  default:
9399  break;
9400  }
9401  }
9402  break;
9403 
9404  case AHC_AIC7895: /* 7895 */
9405  case AHC_AIC7896: /* 7896/7 */
9406  case AHC_AIC7899: /* 7899 */
9407  if (PCI_FUNC(pdev->devfn) != 0)
9408  {
9409  temp_p->flags |= AHC_CHNLB;
9410  }
9411  /*
9412  * The 7895 is the only chipset that sets the SCBSIZE32 param
9413  * in the DEVCONFIG register. The Ultra2 chipsets use
9414  * the DSCOMMAND0 register instead.
9415  */
9416  if ((temp_p->chip & AHC_CHIPID_MASK) == AHC_AIC7895)
9417  {
9418  pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9419  devconfig |= SCBSIZE32;
9420  pci_write_config_dword(pdev, DEVCONFIG, devconfig);
9421  }
9422  break;
9423  default:
9424  break;
9425  }
9426 
9427  /*
9428  * Loading of the SEEPROM needs to come after we've set the flags
9429  * to indicate possible CHNLB and CHNLC assigments. Otherwise,
9430  * on 394x and 398x cards we'll end up reading the wrong settings
9431  * for channels B and C
9432  */
9433  switch (temp_p->chip & AHC_CHIPID_MASK)
9434  {
9435  case AHC_AIC7892:
9436  case AHC_AIC7899:
9437  aic_outb(temp_p, 0, SCAMCTL);
9438  /*
9439  * Switch to the alt mode of the chip...
9440  */
9441  aic_outb(temp_p, aic_inb(temp_p, SFUNCT) | ALT_MODE, SFUNCT);
9442  /*
9443  * Set our options...the last two items set our CRC after x byte
9444  * count in target mode...
9445  */
9446  aic_outb(temp_p, AUTO_MSGOUT_DE | DIS_MSGIN_DUALEDGE, OPTIONMODE);
9447  aic_outb(temp_p, 0x00, 0x0b);
9448  aic_outb(temp_p, 0x10, 0x0a);
9449  /*
9450  * switch back to normal mode...
9451  */
9452  aic_outb(temp_p, aic_inb(temp_p, SFUNCT) & ~ALT_MODE, SFUNCT);
9453  aic_outb(temp_p, CRCVALCHKEN | CRCENDCHKEN | CRCREQCHKEN |
9455  CRCCONTROL1);
9456  aic_outb(temp_p, ((aic_inb(temp_p, DSCOMMAND0) | USCBSIZE32 |
9457  MPARCKEN | CIOPARCKEN | CACHETHEN) &
9458  ~DPARCKEN), DSCOMMAND0);
9459  aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9460  break;
9461  case AHC_AIC7890:
9462  case AHC_AIC7896:
9463  aic_outb(temp_p, 0, SCAMCTL);
9464  aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
9467  aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9468  break;
9469  case AHC_AIC7850:
9470  case AHC_AIC7860:
9471  /*
9472  * Set the DSCOMMAND0 register on these cards different from
9473  * on the 789x cards. Also, read the SEEPROM as well.
9474  */
9475  aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
9476  CACHETHEN | MPARCKEN) & ~DPARCKEN,
9477  DSCOMMAND0);
9478  /* FALLTHROUGH */
9479  default:
9480  aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9481  break;
9482  case AHC_AIC7880:
9483  /*
9484  * Check the rev of the chipset before we change DSCOMMAND0
9485  */
9486  pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9487  if ((devconfig & 0xff) >= 1)
9488  {
9489  aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
9490  CACHETHEN | MPARCKEN) & ~DPARCKEN,
9491  DSCOMMAND0);
9492  }
9493  aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9494  break;
9495  }
9496 
9497 
9498  /*
9499  * and then we need another switch based on the type in order to
9500  * make sure the channel B primary flag is set properly on 7895
9501  * controllers....Arrrgggghhh!!! We also have to catch the fact
9502  * that when you disable the BIOS on the 7895 on the Intel DK440LX
9503  * motherboard, and possibly others, it only sets the BIOS disabled
9504  * bit on the A channel...I think I'm starting to lean towards
9505  * going postal....
9506  */
9507  switch(temp_p->chip & AHC_CHIPID_MASK)
9508  {
9509  case AHC_AIC7895:
9510  case AHC_AIC7896:
9511  case AHC_AIC7899:
9512  current_p = list_p;
9513  while(current_p != NULL)
9514  {
9515  if ( (current_p->pci_bus == temp_p->pci_bus) &&
9516  (PCI_SLOT(current_p->pci_device_fn) ==
9517  PCI_SLOT(temp_p->pci_device_fn)) )
9518  {
9519  if ( PCI_FUNC(current_p->pci_device_fn) == 0 )
9520  {
9521  temp_p->flags |=
9522  (current_p->flags & AHC_CHANNEL_B_PRIMARY);
9523  temp_p->flags &= ~(AHC_BIOS_ENABLED|AHC_USEDEFAULTS);
9524  temp_p->flags |=
9525  (current_p->flags & (AHC_BIOS_ENABLED|AHC_USEDEFAULTS));
9526  }
9527  else
9528  {
9529  current_p->flags |=
9530  (temp_p->flags & AHC_CHANNEL_B_PRIMARY);
9531  current_p->flags &= ~(AHC_BIOS_ENABLED|AHC_USEDEFAULTS);
9532  current_p->flags |=
9533  (temp_p->flags & (AHC_BIOS_ENABLED|AHC_USEDEFAULTS));
9534  }
9535  }
9536  current_p = current_p->next;
9537  }
9538  break;
9539  default:
9540  break;
9541  }
9542 
9543  /*
9544  * We only support external SCB RAM on the 7895/6/7 chipsets.
9545  * We could support it on the 7890/1 easy enough, but I don't
9546  * know of any 7890/1 based cards that have it. I do know
9547  * of 7895/6/7 cards that have it and they work properly.
9548  */
9549  switch(temp_p->chip & AHC_CHIPID_MASK)
9550  {
9551  default:
9552  break;
9553  case AHC_AIC7895:
9554  case AHC_AIC7896:
9555  case AHC_AIC7899:
9556  pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9557  if (temp_p->features & AHC_ULTRA2)
9558  {
9559  if ( (aic_inb(temp_p, DSCOMMAND0) & RAMPSM_ULTRA2) &&
9560  (aic7xxx_scbram) )
9561  {
9562  aic_outb(temp_p,
9563  aic_inb(temp_p, DSCOMMAND0) & ~SCBRAMSEL_ULTRA2,
9564  DSCOMMAND0);
9565  temp_p->flags |= AHC_EXTERNAL_SRAM;
9566  devconfig |= EXTSCBPEN;
9567  }
9568  else if (aic_inb(temp_p, DSCOMMAND0) & RAMPSM_ULTRA2)
9569  {
9570  printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n",
9571  board_names[aic_pdevs[i].board_name_index],
9572  temp_p->pci_bus,
9573  PCI_SLOT(temp_p->pci_device_fn),
9574  PCI_FUNC(temp_p->pci_device_fn));
9575  printk("aic7xxx: external SCB RAM detected, "
9576  "but not enabled\n");
9577  }
9578  }
9579  else
9580  {
9581  if ((devconfig & RAMPSM) && (aic7xxx_scbram))
9582  {
9583  devconfig &= ~SCBRAMSEL;
9584  devconfig |= EXTSCBPEN;
9585  temp_p->flags |= AHC_EXTERNAL_SRAM;
9586  }
9587  else if (devconfig & RAMPSM)
9588  {
9589  printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n",
9590  board_names[aic_pdevs[i].board_name_index],
9591  temp_p->pci_bus,
9592  PCI_SLOT(temp_p->pci_device_fn),
9593  PCI_FUNC(temp_p->pci_device_fn));
9594  printk("aic7xxx: external SCB RAM detected, "
9595  "but not enabled\n");
9596  }
9597  }
9598  pci_write_config_dword(pdev, DEVCONFIG, devconfig);
9599  if ( (temp_p->flags & AHC_EXTERNAL_SRAM) &&
9600  (temp_p->flags & AHC_CHNLB) )
9601  aic_outb(temp_p, 1, CCSCBBADDR);
9602  break;
9603  }
9604 
9605  /*
9606  * Take the LED out of diagnostic mode
9607  */
9608  aic_outb(temp_p,
9609  (aic_inb(temp_p, SBLKCTL) & ~(DIAGLEDEN | DIAGLEDON)),
9610  SBLKCTL);
9611 
9612  /*
9613  * We don't know where this is set in the SEEPROM or by the
9614  * BIOS, so we default to 100%. On Ultra2 controllers, use 75%
9615  * instead.
9616  */
9617  if (temp_p->features & AHC_ULTRA2)
9618  {
9619  aic_outb(temp_p, RD_DFTHRSH_MAX | WR_DFTHRSH_MAX, DFF_THRSH);
9620  }
9621  else
9622  {
9623  aic_outb(temp_p, DFTHRSH_100, DSPCISTATUS);
9624  }
9625 
9626  /*
9627  * Call our function to fixup any bugs that exist on this chipset.
9628  * This may muck with PCI settings and other device settings, so
9629  * make sure it's after all the other PCI and device register
9630  * tweaks so it can back out bad settings on specific broken cards.
9631  */
9632  aic7xxx_configure_bugs(temp_p);
9633 
9634  /* Hold a pci device reference */
9635  pci_dev_get(temp_p->pdev);
9636 
9637  if ( list_p == NULL )
9638  {
9639  list_p = current_p = temp_p;
9640  }
9641  else
9642  {
9643  current_p = list_p;
9644  while(current_p->next != NULL)
9645  current_p = current_p->next;
9646  current_p->next = temp_p;
9647  }
9648  temp_p->next = NULL;
9649  found++;
9650  continue;
9651 skip_pci_controller:
9652 #ifdef CONFIG_PCI
9653  pci_release_regions(temp_p->pdev);
9654 #endif
9655  kfree(temp_p);
9656  } /* Found an Adaptec PCI device. */
9657  else /* Well, we found one, but we couldn't get any memory */
9658  {
9659  printk("aic7xxx: Found <%s>\n",
9660  board_names[aic_pdevs[i].board_name_index]);
9661  printk(KERN_INFO "aic7xxx: Unable to allocate device memory, "
9662  "skipping.\n");
9663  }
9664  } /* while(pdev=....) */
9665  } /* for PCI_DEVICES */
9666  }
9667 #endif /* CONFIG_PCI */
9668 
9669 #if defined(__i386__) || defined(__alpha__)
9670  /*
9671  * EISA/VL-bus card signature probe.
9672  */
9673  slot = MINSLOT;
9674  while ( (slot <= MAXSLOT) &&
9675  !(aic7xxx_no_probe) )
9676  {
9677  base = SLOTBASE(slot) + MINREG;
9678 
9679  if (!request_region(base, MAXREG - MINREG, "aic7xxx"))
9680  {
9681  /*
9682  * Some other driver has staked a
9683  * claim to this i/o region already.
9684  */
9685  slot++;
9686  continue; /* back to the beginning of the for loop */
9687  }
9688  flags = 0;
9689  type = aic7xxx_probe(slot, base + AHC_HID0, &flags);
9690  if (type == -1)
9691  {
9692  release_region(base, MAXREG - MINREG);
9693  slot++;
9694  continue;
9695  }
9696  temp_p = kmalloc(sizeof(struct aic7xxx_host), GFP_ATOMIC);
9697  if (temp_p == NULL)
9698  {
9699  printk(KERN_WARNING "aic7xxx: Unable to allocate device space.\n");
9700  release_region(base, MAXREG - MINREG);
9701  slot++;
9702  continue; /* back to the beginning of the while loop */
9703  }
9704 
9705  /*
9706  * Pause the card preserving the IRQ type. Allow the operator
9707  * to override the IRQ trigger.
9708  */
9709  if (aic7xxx_irq_trigger == 1)
9710  hcntrl = IRQMS; /* Level */
9711  else if (aic7xxx_irq_trigger == 0)
9712  hcntrl = 0; /* Edge */
9713  else
9714  hcntrl = inb(base + HCNTRL) & IRQMS; /* Default */
9715  memset(temp_p, 0, sizeof(struct aic7xxx_host));
9716  temp_p->unpause = hcntrl | INTEN;
9717  temp_p->pause = hcntrl | PAUSE | INTEN;
9718  temp_p->base = base;
9719  temp_p->mbase = 0;
9720  temp_p->maddr = NULL;
9721  temp_p->pci_bus = 0;
9722  temp_p->pci_device_fn = slot;
9723  aic_outb(temp_p, hcntrl | PAUSE, HCNTRL);
9724  while( (aic_inb(temp_p, HCNTRL) & PAUSE) == 0 ) ;
9725  if (aic7xxx_chip_reset(temp_p) == -1)
9726  temp_p->irq = 0;
9727  else
9728  temp_p->irq = aic_inb(temp_p, INTDEF) & 0x0F;
9729  temp_p->flags |= AHC_PAGESCBS;
9730 
9731  switch (temp_p->irq)
9732  {
9733  case 9:
9734  case 10:
9735  case 11:
9736  case 12:
9737  case 14:
9738  case 15:
9739  break;
9740 
9741  default:
9742  printk(KERN_WARNING "aic7xxx: Host adapter uses unsupported IRQ "
9743  "level %d, ignoring.\n", temp_p->irq);
9744  kfree(temp_p);
9745  release_region(base, MAXREG - MINREG);
9746  slot++;
9747  continue; /* back to the beginning of the while loop */
9748  }
9749 
9750  /*
9751  * We are committed now, everything has been checked and this card
9752  * has been found, now we just set it up
9753  */
9754 
9755  /*
9756  * Insert our new struct into the list at the end
9757  */
9758  if (list_p == NULL)
9759  {
9760  list_p = current_p = temp_p;
9761  }
9762  else
9763  {
9764  current_p = list_p;
9765  while (current_p->next != NULL)
9766  current_p = current_p->next;
9767  current_p->next = temp_p;
9768  }
9769 
9770  switch (type)
9771  {
9772  case 0:
9773  temp_p->board_name_index = 2;
9774  if (aic7xxx_verbose & VERBOSE_PROBE2)
9775  printk("aic7xxx: <%s> at EISA %d\n",
9776  board_names[2], slot);
9777  /* FALLTHROUGH */
9778  case 1:
9779  {
9780  temp_p->chip = AHC_AIC7770 | AHC_EISA;
9781  temp_p->features |= AHC_AIC7770_FE;
9782  temp_p->bios_control = aic_inb(temp_p, HA_274_BIOSCTRL);
9783 
9784  /*
9785  * Get the primary channel information. Right now we don't
9786  * do anything with this, but someday we will be able to inform
9787  * the mid-level SCSI code which channel is primary.
9788  */
9789  if (temp_p->board_name_index == 0)
9790  {
9791  temp_p->board_name_index = 3;
9792  if (aic7xxx_verbose & VERBOSE_PROBE2)
9793  printk("aic7xxx: <%s> at EISA %d\n",
9794  board_names[3], slot);
9795  }
9796  if (temp_p->bios_control & CHANNEL_B_PRIMARY)
9797  {
9798  temp_p->flags |= AHC_CHANNEL_B_PRIMARY;
9799  }
9800 
9801  if ((temp_p->bios_control & BIOSMODE) == BIOSDISABLED)
9802  {
9803  temp_p->flags &= ~AHC_BIOS_ENABLED;
9804  }
9805  else
9806  {
9807  temp_p->flags &= ~AHC_USEDEFAULTS;
9808  temp_p->flags |= AHC_BIOS_ENABLED;
9809  if ( (temp_p->bios_control & 0x20) == 0 )
9810  {
9811  temp_p->bios_address = 0xcc000;
9812  temp_p->bios_address += (0x4000 * (temp_p->bios_control & 0x07));
9813  }
9814  else
9815  {
9816  temp_p->bios_address = 0xd0000;
9817  temp_p->bios_address += (0x8000 * (temp_p->bios_control & 0x06));
9818  }
9819  }
9820  temp_p->adapter_control = aic_inb(temp_p, SCSICONF) << 8;
9821  temp_p->adapter_control |= aic_inb(temp_p, SCSICONF + 1);
9822  if (temp_p->features & AHC_WIDE)
9823  {
9824  temp_p->scsi_id = temp_p->adapter_control & HWSCSIID;
9825  temp_p->scsi_id_b = temp_p->scsi_id;
9826  }
9827  else
9828  {
9829  temp_p->scsi_id = (temp_p->adapter_control >> 8) & HSCSIID;
9830  temp_p->scsi_id_b = temp_p->adapter_control & HSCSIID;
9831  }
9832  aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9833  break;
9834  }
9835 
9836  case 2:
9837  case 3:
9838  temp_p->chip = AHC_AIC7770 | AHC_VL;
9839  temp_p->features |= AHC_AIC7770_FE;
9840  if (type == 2)
9841  temp_p->flags |= AHC_BIOS_ENABLED;
9842  else
9843  temp_p->flags &= ~AHC_BIOS_ENABLED;
9844  if (aic_inb(temp_p, SCSICONF) & TERM_ENB)
9845  sxfrctl1 = STPWEN;
9846  aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9847  temp_p->board_name_index = 4;
9848  if (aic7xxx_verbose & VERBOSE_PROBE2)
9849  printk("aic7xxx: <%s> at VLB %d\n",
9850  board_names[2], slot);
9851  switch( aic_inb(temp_p, STATUS_2840) & BIOS_SEL )
9852  {
9853  case 0x00:
9854  temp_p->bios_address = 0xe0000;
9855  break;
9856  case 0x20:
9857  temp_p->bios_address = 0xc8000;
9858  break;
9859  case 0x40:
9860  temp_p->bios_address = 0xd0000;
9861  break;
9862  case 0x60:
9863  temp_p->bios_address = 0xd8000;
9864  break;
9865  default:
9866  break; /* can't get here */
9867  }
9868  break;
9869 
9870  default: /* Won't get here. */
9871  break;
9872  }
9873  if (aic7xxx_verbose & VERBOSE_PROBE2)
9874  {
9875  printk(KERN_INFO "aic7xxx: BIOS %sabled, IO Port 0x%lx, IRQ %d (%s)\n",
9876  (temp_p->flags & AHC_USEDEFAULTS) ? "dis" : "en", temp_p->base,
9877  temp_p->irq,
9878  (temp_p->pause & IRQMS) ? "level sensitive" : "edge triggered");
9879  printk(KERN_INFO "aic7xxx: Extended translation %sabled.\n",
9880  (temp_p->flags & AHC_EXTEND_TRANS_A) ? "en" : "dis");
9881  }
9882 
9883  /*
9884  * All the 7770 based chipsets have this bug
9885  */
9886  temp_p->bugs |= AHC_BUG_TMODE_WIDEODD;
9887 
9888  /*
9889  * Set the FIFO threshold and the bus off time.
9890  */
9891  hostconf = aic_inb(temp_p, HOSTCONF);
9892  aic_outb(temp_p, hostconf & DFTHRSH, BUSSPD);
9893  aic_outb(temp_p, (hostconf << 2) & BOFF, BUSTIME);
9894  slot++;
9895  found++;
9896  }
9897 
9898 #endif /* defined(__i386__) || defined(__alpha__) */
9899 
9900  /*
9901  * Now, we re-order the probed devices by BIOS address and BUS class.
9902  * In general, we follow this algorithm to make the adapters show up
9903  * in the same order under linux that the computer finds them.
9904  * 1: All VLB/EISA cards with BIOS_ENABLED first, according to BIOS
9905  * address, going from lowest to highest.
9906  * 2: All PCI controllers with BIOS_ENABLED next, according to BIOS
9907  * address, going from lowest to highest.
9908  * 3: Remaining VLB/EISA controllers going in slot order.
9909  * 4: Remaining PCI controllers, going in PCI device order (reversible)
9910  */
9911 
9912  {
9913  struct aic7xxx_host *sort_list[4] = { NULL, NULL, NULL, NULL };
9914  struct aic7xxx_host *vlb, *pci;
9915  struct aic7xxx_host *prev_p;
9916  struct aic7xxx_host *p;
9917  unsigned char left;
9918 
9919  prev_p = vlb = pci = NULL;
9920 
9921  temp_p = list_p;
9922  while (temp_p != NULL)
9923  {
9924  switch(temp_p->chip & ~AHC_CHIPID_MASK)
9925  {
9926  case AHC_EISA:
9927  case AHC_VL:
9928  {
9929  p = temp_p;
9930  if (p->flags & AHC_BIOS_ENABLED)
9931  vlb = sort_list[0];
9932  else
9933  vlb = sort_list[2];
9934 
9935  if (vlb == NULL)
9936  {
9937  vlb = temp_p;
9938  temp_p = temp_p->next;
9939  vlb->next = NULL;
9940  }
9941  else
9942  {
9943  current_p = vlb;
9944  prev_p = NULL;
9945  while ( (current_p != NULL) &&
9946  (current_p->bios_address < temp_p->bios_address))
9947  {
9948  prev_p = current_p;
9949  current_p = current_p->next;
9950  }
9951  if (prev_p != NULL)
9952  {
9953  prev_p->next = temp_p;
9954  temp_p = temp_p->next;
9955  prev_p->next->next = current_p;
9956  }
9957  else
9958  {
9959  vlb = temp_p;
9960  temp_p = temp_p->next;
9961  vlb->next = current_p;
9962  }
9963  }
9964 
9965  if (p->flags & AHC_BIOS_ENABLED)
9966  sort_list[0] = vlb;
9967  else
9968  sort_list[2] = vlb;
9969 
9970  break;
9971  }
9972  default: /* All PCI controllers fall through to default */
9973  {
9974 
9975  p = temp_p;
9976  if (p->flags & AHC_BIOS_ENABLED)
9977  pci = sort_list[1];
9978  else
9979  pci = sort_list[3];
9980 
9981  if (pci == NULL)
9982  {
9983  pci = temp_p;
9984  temp_p = temp_p->next;
9985  pci->next = NULL;
9986  }
9987  else
9988  {
9989  current_p = pci;
9990  prev_p = NULL;
9991  if (!aic7xxx_reverse_scan)
9992  {
9993  while ( (current_p != NULL) &&
9994  ( (PCI_SLOT(current_p->pci_device_fn) |
9995  (current_p->pci_bus << 8)) <
9996  (PCI_SLOT(temp_p->pci_device_fn) |
9997  (temp_p->pci_bus << 8)) ) )
9998  {
9999  prev_p = current_p;
10000  current_p = current_p->next;
10001  }
10002  }
10003  else
10004  {
10005  while ( (current_p != NULL) &&
10006  ( (PCI_SLOT(current_p->pci_device_fn) |
10007  (current_p->pci_bus << 8)) >
10008  (PCI_SLOT(temp_p->pci_device_fn) |
10009  (temp_p->pci_bus << 8)) ) )
10010  {
10011  prev_p = current_p;
10012  current_p = current_p->next;
10013  }
10014  }
10015  /*
10016  * Are we dealing with a 7895/6/7/9 where we need to sort the
10017  * channels as well, if so, the bios_address values should
10018  * be the same
10019  */
10020  if ( (current_p) && (temp_p->flags & AHC_MULTI_CHANNEL) &&
10021  (temp_p->pci_bus == current_p->pci_bus) &&
10022  (PCI_SLOT(temp_p->pci_device_fn) ==
10023  PCI_SLOT(current_p->pci_device_fn)) )
10024  {
10025  if (temp_p->flags & AHC_CHNLB)
10026  {
10027  if ( !(temp_p->flags & AHC_CHANNEL_B_PRIMARY) )
10028  {
10029  prev_p = current_p;
10030  current_p = current_p->next;
10031  }
10032  }
10033  else
10034  {
10035  if (temp_p->flags & AHC_CHANNEL_B_PRIMARY)
10036  {
10037  prev_p = current_p;
10038  current_p = current_p->next;
10039  }
10040  }
10041  }
10042  if (prev_p != NULL)
10043  {
10044  prev_p->next = temp_p;
10045  temp_p = temp_p->next;
10046  prev_p->next->next = current_p;
10047  }
10048  else
10049  {
10050  pci = temp_p;
10051  temp_p = temp_p->next;
10052  pci->next = current_p;
10053  }
10054  }
10055 
10056  if (p->flags & AHC_BIOS_ENABLED)
10057  sort_list[1] = pci;
10058  else
10059  sort_list[3] = pci;
10060 
10061  break;
10062  }
10063  } /* End of switch(temp_p->type) */
10064  } /* End of while (temp_p != NULL) */
10065  /*
10066  * At this point, the cards have been broken into 4 sorted lists, now
10067  * we run through the lists in order and register each controller
10068  */
10069  {
10070  int i;
10071 
10072  left = found;
10073  for (i=0; i<ARRAY_SIZE(sort_list); i++)
10074  {
10075  temp_p = sort_list[i];
10076  while(temp_p != NULL)
10077  {
10078  template->name = board_names[temp_p->board_name_index];
10079  p = aic7xxx_alloc(template, temp_p);
10080  if (p != NULL)
10081  {
10082  p->instance = found - left;
10083  if (aic7xxx_register(template, p, (--left)) == 0)
10084  {
10085  found--;
10086  aic7xxx_release(p->host);
10087  scsi_unregister(p->host);
10088  }
10089  else if (aic7xxx_dump_card)
10090  {
10091  pause_sequencer(p);
10092  aic7xxx_print_card(p);
10093  aic7xxx_print_scratch_ram(p);
10094  unpause_sequencer(p, TRUE);
10095  }
10096  }
10097  current_p = temp_p;
10098  temp_p = (struct aic7xxx_host *)temp_p->next;
10099  kfree(current_p);
10100  }
10101  }
10102  }
10103  }
10104  return (found);
10105 }
10106 
10107 /*+F*************************************************************************
10108  * Function:
10109  * aic7xxx_buildscb
10110  *
10111  * Description:
10112  * Build a SCB.
10113  *-F*************************************************************************/
10114 static void aic7xxx_buildscb(struct aic7xxx_host *p, struct scsi_cmnd *cmd,
10115  struct aic7xxx_scb *scb)
10116 {
10117  unsigned short mask;
10118  struct aic7xxx_hwscb *hscb;
10119  struct aic_dev_data *aic_dev = cmd->device->hostdata;
10120  struct scsi_device *sdptr = cmd->device;
10121  unsigned char tindex = TARGET_INDEX(cmd);
10122  int use_sg;
10123 
10124  mask = (0x01 << tindex);
10125  hscb = scb->hscb;
10126 
10127  /*
10128  * Setup the control byte if we need negotiation and have not
10129  * already requested it.
10130  */
10131  hscb->control = 0;
10132  scb->tag_action = 0;
10133 
10134  if (p->discenable & mask)
10135  {
10136  hscb->control |= DISCENB;
10137  /* We always force TEST_UNIT_READY to untagged */
10138  if (cmd->cmnd[0] != TEST_UNIT_READY && sdptr->simple_tags)
10139  {
10140  hscb->control |= MSG_SIMPLE_Q_TAG;
10142  }
10143  }
10144  if ( !(aic_dev->dtr_pending) &&
10145  (aic_dev->needppr || aic_dev->needwdtr || aic_dev->needsdtr) &&
10146  (aic_dev->flags & DEVICE_DTR_SCANNED) )
10147  {
10148  aic_dev->dtr_pending = 1;
10149  scb->tag_action = 0;
10150  hscb->control &= DISCENB;
10151  hscb->control |= MK_MESSAGE;
10152  if(aic_dev->needppr)
10153  {
10154  scb->flags |= SCB_MSGOUT_PPR;
10155  }
10156  else if(aic_dev->needwdtr)
10157  {
10158  scb->flags |= SCB_MSGOUT_WDTR;
10159  }
10160  else if(aic_dev->needsdtr)
10161  {
10162  scb->flags |= SCB_MSGOUT_SDTR;
10163  }
10164  scb->flags |= SCB_DTR_SCB;
10165  }
10166  hscb->target_channel_lun = ((cmd->device->id << 4) & 0xF0) |
10167  ((cmd->device->channel & 0x01) << 3) | (cmd->device->lun & 0x07);
10168 
10169  /*
10170  * The interpretation of request_buffer and request_bufflen
10171  * changes depending on whether or not use_sg is zero; a
10172  * non-zero use_sg indicates the number of elements in the
10173  * scatter-gather array.
10174  */
10175 
10176  /*
10177  * XXX - this relies on the host data being stored in a
10178  * little-endian format.
10179  */
10180  hscb->SCSI_cmd_length = cmd->cmd_len;
10181  memcpy(scb->cmnd, cmd->cmnd, cmd->cmd_len);
10182  hscb->SCSI_cmd_pointer = cpu_to_le32(SCB_DMA_ADDR(scb, scb->cmnd));
10183 
10184  use_sg = scsi_dma_map(cmd);
10185  BUG_ON(use_sg < 0);
10186 
10187  if (use_sg) {
10188  struct scatterlist *sg; /* Must be mid-level SCSI code scatterlist */
10189 
10190  /*
10191  * We must build an SG list in adapter format, as the kernel's SG list
10192  * cannot be used directly because of data field size (__alpha__)
10193  * differences and the kernel SG list uses virtual addresses where
10194  * we need physical addresses.
10195  */
10196  int i;
10197 
10198  scb->sg_length = 0;
10199 
10200 
10201  /*
10202  * Copy the segments into the SG array. NOTE!!! - We used to
10203  * have the first entry both in the data_pointer area and the first
10204  * SG element. That has changed somewhat. We still have the first
10205  * entry in both places, but now we download the address of
10206  * scb->sg_list[1] instead of 0 to the sg pointer in the hscb.
10207  */
10208  scsi_for_each_sg(cmd, sg, use_sg, i) {
10209  unsigned int len = sg_dma_len(sg);
10210  scb->sg_list[i].address = cpu_to_le32(sg_dma_address(sg));
10211  scb->sg_list[i].length = cpu_to_le32(len);
10212  scb->sg_length += len;
10213  }
10214  /* Copy the first SG into the data pointer area. */
10215  hscb->data_pointer = scb->sg_list[0].address;
10216  hscb->data_count = scb->sg_list[0].length;
10217  scb->sg_count = i;
10218  hscb->SG_segment_count = i;
10219  hscb->SG_list_pointer = cpu_to_le32(SCB_DMA_ADDR(scb, &scb->sg_list[1]));
10220  } else {
10221  scb->sg_count = 0;
10222  scb->sg_length = 0;
10223  hscb->SG_segment_count = 0;
10224  hscb->SG_list_pointer = 0;
10225  hscb->data_count = 0;
10226  hscb->data_pointer = 0;
10227  }
10228 }
10229 
10230 /*+F*************************************************************************
10231  * Function:
10232  * aic7xxx_queue
10233  *
10234  * Description:
10235  * Queue a SCB to the controller.
10236  *-F*************************************************************************/
10237 static int aic7xxx_queue_lck(struct scsi_cmnd *cmd, void (*fn)(struct scsi_cmnd *))
10238 {
10239  struct aic7xxx_host *p;
10240  struct aic7xxx_scb *scb;
10241  struct aic_dev_data *aic_dev;
10242 
10243  p = (struct aic7xxx_host *) cmd->device->host->hostdata;
10244 
10245  aic_dev = cmd->device->hostdata;
10246 #ifdef AIC7XXX_VERBOSE_DEBUGGING
10247  if (aic_dev->active_cmds > aic_dev->max_q_depth)
10248  {
10249  printk(WARN_LEAD "Commands queued exceeds queue "
10250  "depth, active=%d\n",
10251  p->host_no, CTL_OF_CMD(cmd),
10252  aic_dev->active_cmds);
10253  }
10254 #endif
10255 
10256  scb = scbq_remove_head(&p->scb_data->free_scbs);
10257  if (scb == NULL)
10258  {
10259  aic7xxx_allocate_scb(p);
10260  scb = scbq_remove_head(&p->scb_data->free_scbs);
10261  if(scb == NULL)
10262  {
10263  printk(WARN_LEAD "Couldn't get a free SCB.\n", p->host_no,
10264  CTL_OF_CMD(cmd));
10265  return 1;
10266  }
10267  }
10268  scb->cmd = cmd;
10269 
10270  /*
10271  * Make sure the scsi_cmnd pointer is saved, the struct it points to
10272  * is set up properly, and the parity error flag is reset, then send
10273  * the SCB to the sequencer and watch the fun begin.
10274  */
10275  aic7xxx_position(cmd) = scb->hscb->tag;
10276  cmd->scsi_done = fn;
10277  cmd->result = DID_OK;
10278  aic7xxx_error(cmd) = DID_OK;
10279  aic7xxx_status(cmd) = 0;
10280  cmd->host_scribble = NULL;
10281 
10282  /*
10283  * Construct the SCB beforehand, so the sequencer is
10284  * paused a minimal amount of time.
10285  */
10286  aic7xxx_buildscb(p, cmd, scb);
10287 
10288  scb->flags |= SCB_ACTIVE | SCB_WAITINGQ;
10289 
10290  scbq_insert_tail(&p->waiting_scbs, scb);
10291  aic7xxx_run_waiting_queues(p);
10292  return (0);
10293 }
10294 
10295 static DEF_SCSI_QCMD(aic7xxx_queue)
10296 
10297 /*+F*************************************************************************
10298  * Function:
10299  * aic7xxx_bus_device_reset
10300  *
10301  * Description:
10302  * Abort or reset the current SCSI command(s). If the scb has not
10303  * previously been aborted, then we attempt to send a BUS_DEVICE_RESET
10304  * message to the target. If the scb has previously been unsuccessfully
10305  * aborted, then we will reset the channel and have all devices renegotiate.
10306  * Returns an enumerated type that indicates the status of the operation.
10307  *-F*************************************************************************/
10308 static int __aic7xxx_bus_device_reset(struct scsi_cmnd *cmd)
10309 {
10310  struct aic7xxx_host *p;
10311  struct aic7xxx_scb *scb;
10312  struct aic7xxx_hwscb *hscb;
10313  int channel;
10314  unsigned char saved_scbptr, lastphase;
10315  unsigned char hscb_index;
10316  int disconnected;
10317  struct aic_dev_data *aic_dev;
10318 
10319  if(cmd == NULL)
10320  {
10321  printk(KERN_ERR "aic7xxx_bus_device_reset: called with NULL cmd!\n");
10322  return FAILED;
10323  }
10324  p = (struct aic7xxx_host *)cmd->device->host->hostdata;
10325  aic_dev = AIC_DEV(cmd);
10326  if(aic7xxx_position(cmd) < p->scb_data->numscbs)
10327  scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
10328  else
10329  return FAILED;
10330 
10331  hscb = scb->hscb;
10332 
10333  aic7xxx_isr(p);
10334  aic7xxx_done_cmds_complete(p);
10335  /* If the command was already complete or just completed, then we didn't
10336  * do a reset, return FAILED */
10337  if(!(scb->flags & SCB_ACTIVE))
10338  return FAILED;
10339 
10340  pause_sequencer(p);
10341  lastphase = aic_inb(p, LASTPHASE);
10342  if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
10343  {
10344  printk(INFO_LEAD "Bus Device reset, scb flags 0x%x, ",
10345  p->host_no, CTL_OF_SCB(scb), scb->flags);
10346  switch (lastphase)
10347  {
10348  case P_DATAOUT:
10349  printk("Data-Out phase\n");
10350  break;
10351  case P_DATAIN:
10352  printk("Data-In phase\n");
10353  break;
10354  case P_COMMAND:
10355  printk("Command phase\n");
10356  break;
10357  case P_MESGOUT:
10358  printk("Message-Out phase\n");
10359  break;
10360  case P_STATUS:
10361  printk("Status phase\n");
10362  break;
10363  case P_MESGIN:
10364  printk("Message-In phase\n");
10365  break;
10366  default:
10367  /*
10368  * We're not in a valid phase, so assume we're idle.
10369  */
10370  printk("while idle, LASTPHASE = 0x%x\n", lastphase);
10371  break;
10372  }
10373  printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
10374  "0x%x\n", p->host_no, CTL_OF_SCB(scb),
10375  aic_inb(p, SCSISIGI),
10376  aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
10377  aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
10378  printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n", p->host_no,
10379  CTL_OF_SCB(scb),
10380  (p->features & AHC_ULTRA2) ? aic_inb(p, SG_CACHEPTR) : 0,
10381  aic_inb(p, SSTAT2),
10382  aic_inb(p, STCNT + 2) << 16 | aic_inb(p, STCNT + 1) << 8 |
10383  aic_inb(p, STCNT));
10384  }
10385 
10386  channel = cmd->device->channel;
10387 
10388  /*
10389  * Send a Device Reset Message:
10390  * The target that is holding up the bus may not be the same as
10391  * the one that triggered this timeout (different commands have
10392  * different timeout lengths). Our strategy here is to queue an
10393  * abort message to the timed out target if it is disconnected.
10394  * Otherwise, if we have an active target we stuff the message buffer
10395  * with an abort message and assert ATN in the hopes that the target
10396  * will let go of the bus and go to the mesgout phase. If this
10397  * fails, we'll get another timeout a few seconds later which will
10398  * attempt a bus reset.
10399  */
10400  saved_scbptr = aic_inb(p, SCBPTR);
10401  disconnected = FALSE;
10402 
10403  if (lastphase != P_BUSFREE)
10404  {
10405  if (aic_inb(p, SCB_TAG) >= p->scb_data->numscbs)
10406  {
10407  printk(WARN_LEAD "Invalid SCB ID %d is active, "
10408  "SCB flags = 0x%x.\n", p->host_no,
10409  CTL_OF_CMD(cmd), scb->hscb->tag, scb->flags);
10410  unpause_sequencer(p, FALSE);
10411  return FAILED;
10412  }
10413  if (scb->hscb->tag == aic_inb(p, SCB_TAG))
10414  {
10415  if ( (lastphase == P_MESGOUT) || (lastphase == P_MESGIN) )
10416  {
10417  printk(WARN_LEAD "Device reset, Message buffer "
10418  "in use\n", p->host_no, CTL_OF_SCB(scb));
10419  unpause_sequencer(p, FALSE);
10420  return FAILED;
10421  }
10422 
10423  if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
10424  printk(INFO_LEAD "Device reset message in "
10425  "message buffer\n", p->host_no, CTL_OF_SCB(scb));
10426  scb->flags |= SCB_RESET | SCB_DEVICE_RESET;
10427  aic7xxx_error(cmd) = DID_RESET;
10428  aic_dev->flags |= BUS_DEVICE_RESET_PENDING;
10429  /* Send the abort message to the active SCB. */
10430  aic_outb(p, HOST_MSG, MSG_OUT);
10431  aic_outb(p, lastphase | ATNO, SCSISIGO);
10432  unpause_sequencer(p, FALSE);
10433  spin_unlock_irq(p->host->host_lock);
10434  ssleep(1);
10435  spin_lock_irq(p->host->host_lock);
10436  if(aic_dev->flags & BUS_DEVICE_RESET_PENDING)
10437  return FAILED;
10438  else
10439  return SUCCESS;
10440  }
10441  } /* if (last_phase != P_BUSFREE).....indicates we are idle and can work */
10442  /*
10443  * Simply set the MK_MESSAGE flag and the SEQINT handler will do
10444  * the rest on a reconnect/connect.
10445  */
10446  scb->hscb->control |= MK_MESSAGE;
10447  scb->flags |= SCB_RESET | SCB_DEVICE_RESET;
10448  aic_dev->flags |= BUS_DEVICE_RESET_PENDING;
10449  /*
10450  * Check to see if the command is on the qinfifo. If it is, then we will
10451  * not need to queue the command again since the card should start it soon
10452  */
10453  if (aic7xxx_search_qinfifo(p, cmd->device->channel, cmd->device->id, cmd->device->lun, hscb->tag,
10454  0, TRUE, NULL) == 0)
10455  {
10456  disconnected = TRUE;
10457  if ((hscb_index = aic7xxx_find_scb(p, scb)) != SCB_LIST_NULL)
10458  {
10459  unsigned char scb_control;
10460 
10461  aic_outb(p, hscb_index, SCBPTR);
10462  scb_control = aic_inb(p, SCB_CONTROL);
10463  /*
10464  * If the DISCONNECTED bit is not set in SCB_CONTROL, then we are
10465  * actually on the waiting list, not disconnected, and we don't
10466  * need to requeue the command.
10467  */
10468  disconnected = (scb_control & DISCONNECTED);
10469  aic_outb(p, scb_control | MK_MESSAGE, SCB_CONTROL);
10470  }
10471  if (disconnected)
10472  {
10473  /*
10474  * Actually requeue this SCB in case we can select the
10475  * device before it reconnects. This can result in the command
10476  * being on the qinfifo twice, but we don't care because it will
10477  * all get cleaned up if/when the reset takes place.
10478  */
10479  if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
10480  printk(INFO_LEAD "Queueing device reset command.\n", p->host_no,
10481  CTL_OF_SCB(scb));
10482  p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
10483  if (p->features & AHC_QUEUE_REGS)
10484  aic_outb(p, p->qinfifonext, HNSCB_QOFF);
10485  else
10486  aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
10487  scb->flags |= SCB_QUEUED_ABORT;
10488  }
10489  }
10490  aic_outb(p, saved_scbptr, SCBPTR);
10491  unpause_sequencer(p, FALSE);
10492  spin_unlock_irq(p->host->host_lock);
10493  msleep(1000/4);
10494  spin_lock_irq(p->host->host_lock);
10495  if(aic_dev->flags & BUS_DEVICE_RESET_PENDING)
10496  return FAILED;
10497  else
10498  return SUCCESS;
10499 }
10500 
10501 static int aic7xxx_bus_device_reset(struct scsi_cmnd *cmd)
10502 {
10503  int rc;
10504 
10505  spin_lock_irq(cmd->device->host->host_lock);
10506  rc = __aic7xxx_bus_device_reset(cmd);
10507  spin_unlock_irq(cmd->device->host->host_lock);
10508 
10509  return rc;
10510 }
10511 
10512 
10513 /*+F*************************************************************************
10514  * Function:
10515  * aic7xxx_panic_abort
10516  *
10517  * Description:
10518  * Abort the current SCSI command(s).
10519  *-F*************************************************************************/
10520 static void aic7xxx_panic_abort(struct aic7xxx_host *p, struct scsi_cmnd *cmd)
10521 {
10522 
10523  printk("aic7xxx driver version %s\n", AIC7XXX_C_VERSION);
10524  printk("Controller type:\n %s\n", board_names[p->board_name_index]);
10525  printk("p->flags=0x%lx, p->chip=0x%x, p->features=0x%x, "
10526  "sequencer %s paused\n",
10527  p->flags, p->chip, p->features,
10528  (aic_inb(p, HCNTRL) & PAUSE) ? "is" : "isn't" );
10529  pause_sequencer(p);
10530  disable_irq(p->irq);
10531  aic7xxx_print_card(p);
10532  aic7xxx_print_scratch_ram(p);
10533  spin_unlock_irq(p->host->host_lock);
10534  for(;;) barrier();
10535 }
10536 
10537 /*+F*************************************************************************
10538  * Function:
10539  * aic7xxx_abort
10540  *
10541  * Description:
10542  * Abort the current SCSI command(s).
10543  *-F*************************************************************************/
10544 static int __aic7xxx_abort(struct scsi_cmnd *cmd)
10545 {
10546  struct aic7xxx_scb *scb = NULL;
10547  struct aic7xxx_host *p;
10548  int found=0, disconnected;
10549  unsigned char saved_hscbptr, hscbptr, scb_control;
10550  struct aic_dev_data *aic_dev;
10551 
10552  if(cmd == NULL)
10553  {
10554  printk(KERN_ERR "aic7xxx_abort: called with NULL cmd!\n");
10555  return FAILED;
10556  }
10557  p = (struct aic7xxx_host *)cmd->device->host->hostdata;
10558  aic_dev = AIC_DEV(cmd);
10559  if(aic7xxx_position(cmd) < p->scb_data->numscbs)
10560  scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
10561  else
10562  return FAILED;
10563 
10564  aic7xxx_isr(p);
10565  aic7xxx_done_cmds_complete(p);
10566  /* If the command was already complete or just completed, then we didn't
10567  * do a reset, return FAILED */
10568  if(!(scb->flags & SCB_ACTIVE))
10569  return FAILED;
10570 
10571  pause_sequencer(p);
10572 
10573  /*
10574  * I added a new config option to the driver: "panic_on_abort" that will
10575  * cause the driver to panic and the machine to stop on the first abort
10576  * or reset call into the driver. At that point, it prints out a lot of
10577  * useful information for me which I can then use to try and debug the
10578  * problem. Simply enable the boot time prompt in order to activate this
10579  * code.
10580  */
10581  if (aic7xxx_panic_on_abort)
10582  aic7xxx_panic_abort(p, cmd);
10583 
10585  {
10586  printk(INFO_LEAD "Aborting scb %d, flags 0x%x, SEQADDR 0x%x, LASTPHASE "
10587  "0x%x\n",
10588  p->host_no, CTL_OF_SCB(scb), scb->hscb->tag, scb->flags,
10589  aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
10590  aic_inb(p, LASTPHASE));
10591  printk(INFO_LEAD "SG_CACHEPTR 0x%x, SG_COUNT %d, SCSISIGI 0x%x\n",
10592  p->host_no, CTL_OF_SCB(scb), (p->features & AHC_ULTRA2) ?
10593  aic_inb(p, SG_CACHEPTR) : 0, aic_inb(p, SG_COUNT),
10594  aic_inb(p, SCSISIGI));
10595  printk(INFO_LEAD "SSTAT0 0x%x, SSTAT1 0x%x, SSTAT2 0x%x\n",
10596  p->host_no, CTL_OF_SCB(scb), aic_inb(p, SSTAT0),
10597  aic_inb(p, SSTAT1), aic_inb(p, SSTAT2));
10598  }
10599 
10600  if (scb->flags & SCB_WAITINGQ)
10601  {
10602  if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
10603  printk(INFO_LEAD "SCB found on waiting list and "
10604  "aborted.\n", p->host_no, CTL_OF_SCB(scb));
10605  scbq_remove(&p->waiting_scbs, scb);
10606  scbq_remove(&aic_dev->delayed_scbs, scb);
10607  aic_dev->active_cmds++;
10608  p->activescbs++;
10609  scb->flags &= ~(SCB_WAITINGQ | SCB_ACTIVE);
10611  goto success;
10612  }
10613 
10614 /*
10615  * We just checked the waiting_q, now for the QINFIFO
10616  */
10617  if ( ((found = aic7xxx_search_qinfifo(p, cmd->device->id, cmd->device->channel,
10618  cmd->device->lun, scb->hscb->tag, SCB_ABORT | SCB_QUEUED_FOR_DONE,
10619  FALSE, NULL)) != 0) &&
10621  {
10622  printk(INFO_LEAD "SCB found in QINFIFO and aborted.\n", p->host_no,
10623  CTL_OF_SCB(scb));
10624  goto success;
10625  }
10626 
10627 /*
10628  * QINFIFO, waitingq, completeq done. Next, check WAITING_SCB list in card
10629  */
10630 
10631  saved_hscbptr = aic_inb(p, SCBPTR);
10632  if ((hscbptr = aic7xxx_find_scb(p, scb)) != SCB_LIST_NULL)
10633  {
10634  aic_outb(p, hscbptr, SCBPTR);
10635  scb_control = aic_inb(p, SCB_CONTROL);
10636  disconnected = scb_control & DISCONNECTED;
10637  /*
10638  * If the DISCONNECTED bit is not set in SCB_CONTROL, then we are
10639  * either currently active or on the waiting list.
10640  */
10641  if(!disconnected && aic_inb(p, LASTPHASE) == P_BUSFREE) {
10642  if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
10643  printk(INFO_LEAD "SCB found on hardware waiting"
10644  " list and aborted.\n", p->host_no, CTL_OF_SCB(scb));
10645  /* If we are the only waiting command, stop the selection engine */
10646  if (aic_inb(p, WAITING_SCBH) == hscbptr && aic_inb(p, SCB_NEXT) ==
10647  SCB_LIST_NULL)
10648  {
10649  aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
10650  aic_outb(p, CLRSELTIMEO, CLRSINT1);
10651  aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
10652  }
10653  else
10654  {
10655  unsigned char prev, next;
10656  prev = SCB_LIST_NULL;
10657  next = aic_inb(p, WAITING_SCBH);
10658  while(next != SCB_LIST_NULL)
10659  {
10660  aic_outb(p, next, SCBPTR);
10661  if (next == hscbptr)
10662  {
10663  next = aic_inb(p, SCB_NEXT);
10664  if (prev != SCB_LIST_NULL)
10665  {
10666  aic_outb(p, prev, SCBPTR);
10667  aic_outb(p, next, SCB_NEXT);
10668  }
10669  else
10670  aic_outb(p, next, WAITING_SCBH);
10671  aic_outb(p, hscbptr, SCBPTR);
10672  next = SCB_LIST_NULL;
10673  }
10674  else
10675  {
10676  prev = next;
10677  next = aic_inb(p, SCB_NEXT);
10678  }
10679  }
10680  }
10681  aic_outb(p, SCB_LIST_NULL, SCB_TAG);
10682  aic_outb(p, 0, SCB_CONTROL);
10683  aic7xxx_add_curscb_to_free_list(p);
10685  goto success;
10686  }
10687  else if (!disconnected)
10688  {
10689  /*
10690  * We are the currently active command
10691  */
10692  if((aic_inb(p, LASTPHASE) == P_MESGIN) ||
10693  (aic_inb(p, LASTPHASE) == P_MESGOUT))
10694  {
10695  /*
10696  * Message buffer busy, unable to abort
10697  */
10698  printk(INFO_LEAD "message buffer busy, unable to abort.\n",
10699  p->host_no, CTL_OF_SCB(scb));
10700  unpause_sequencer(p, FALSE);
10701  return FAILED;
10702  }
10703  /* Fallthrough to below, set ATNO after we set SCB_CONTROL */
10704  }
10705  aic_outb(p, scb_control | MK_MESSAGE, SCB_CONTROL);
10706  if(!disconnected)
10707  {
10708  aic_outb(p, HOST_MSG, MSG_OUT);
10709  aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
10710  }
10711  aic_outb(p, saved_hscbptr, SCBPTR);
10712  }
10713  else
10714  {
10715  /*
10716  * The scb isn't in the card at all and it is active and it isn't in
10717  * any of the queues, so it must be disconnected and paged out. Fall
10718  * through to the code below.
10719  */
10720  disconnected = 1;
10721  }
10722 
10723  p->flags |= AHC_ABORT_PENDING;
10725  scb->hscb->control |= MK_MESSAGE;
10726  if(disconnected)
10727  {
10728  if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
10729  printk(INFO_LEAD "SCB disconnected. Queueing Abort"
10730  " SCB.\n", p->host_no, CTL_OF_SCB(scb));
10731  p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
10732  if (p->features & AHC_QUEUE_REGS)
10733  aic_outb(p, p->qinfifonext, HNSCB_QOFF);
10734  else
10735  aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
10736  }
10737  unpause_sequencer(p, FALSE);
10738  spin_unlock_irq(p->host->host_lock);
10739  msleep(1000/4);
10740  spin_lock_irq(p->host->host_lock);
10741  if (p->flags & AHC_ABORT_PENDING)
10742  {
10744  printk(INFO_LEAD "Abort never delivered, returning FAILED\n", p->host_no,
10745  CTL_OF_CMD(cmd));
10746  p->flags &= ~AHC_ABORT_PENDING;
10747  return FAILED;
10748  }
10749  if (aic7xxx_verbose & VERBOSE_ABORT_RETURN)
10750  printk(INFO_LEAD "Abort successful.\n", p->host_no, CTL_OF_CMD(cmd));
10751  return SUCCESS;
10752 
10753 success:
10754  if (aic7xxx_verbose & VERBOSE_ABORT_RETURN)
10755  printk(INFO_LEAD "Abort successful.\n", p->host_no, CTL_OF_CMD(cmd));
10756  aic7xxx_run_done_queue(p, TRUE);
10757  unpause_sequencer(p, FALSE);
10758  return SUCCESS;
10759 }
10760 
10761 static int aic7xxx_abort(struct scsi_cmnd *cmd)
10762 {
10763  int rc;
10764 
10765  spin_lock_irq(cmd->device->host->host_lock);
10766  rc = __aic7xxx_abort(cmd);
10767  spin_unlock_irq(cmd->device->host->host_lock);
10768 
10769  return rc;
10770 }
10771 
10772 
10773 /*+F*************************************************************************
10774  * Function:
10775  * aic7xxx_reset
10776  *
10777  * Description:
10778  * Resetting the bus always succeeds - is has to, otherwise the
10779  * kernel will panic! Try a surgical technique - sending a BUS
10780  * DEVICE RESET message - on the offending target before pulling
10781  * the SCSI bus reset line.
10782  *-F*************************************************************************/
10783 static int aic7xxx_reset(struct scsi_cmnd *cmd)
10784 {
10785  struct aic7xxx_scb *scb;
10786  struct aic7xxx_host *p;
10787  struct aic_dev_data *aic_dev;
10788 
10789  p = (struct aic7xxx_host *) cmd->device->host->hostdata;
10790  spin_lock_irq(p->host->host_lock);
10791 
10792  aic_dev = AIC_DEV(cmd);
10793  if(aic7xxx_position(cmd) < p->scb_data->numscbs)
10794  {
10795  scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
10796  if (scb->cmd != cmd)
10797  scb = NULL;
10798  }
10799  else
10800  {
10801  scb = NULL;
10802  }
10803 
10804  /*
10805  * I added a new config option to the driver: "panic_on_abort" that will
10806  * cause the driver to panic and the machine to stop on the first abort
10807  * or reset call into the driver. At that point, it prints out a lot of
10808  * useful information for me which I can then use to try and debug the
10809  * problem. Simply enable the boot time prompt in order to activate this
10810  * code.
10811  */
10812  if (aic7xxx_panic_on_abort)
10813  aic7xxx_panic_abort(p, cmd);
10814 
10815  pause_sequencer(p);
10816 
10817  while((aic_inb(p, INTSTAT) & INT_PEND) && !(p->flags & AHC_IN_ISR))
10818  {
10819  aic7xxx_isr(p);
10820  pause_sequencer(p);
10821  }
10822  aic7xxx_done_cmds_complete(p);
10823 
10824  if(scb && (scb->cmd == NULL))
10825  {
10826  /*
10827  * We just completed the command when we ran the isr stuff, so we no
10828  * longer have it.
10829  */
10830  unpause_sequencer(p, FALSE);
10831  spin_unlock_irq(p->host->host_lock);
10832  return SUCCESS;
10833  }
10834 
10835 /*
10836  * By this point, we want to already know what we are going to do and
10837  * only have the following code implement our course of action.
10838  */
10839  aic7xxx_reset_channel(p, cmd->device->channel, TRUE);
10840  if (p->features & AHC_TWIN)
10841  {
10842  aic7xxx_reset_channel(p, cmd->device->channel ^ 0x01, TRUE);
10843  restart_sequencer(p);
10844  }
10845  aic_outb(p, aic_inb(p, SIMODE1) & ~(ENREQINIT|ENBUSFREE), SIMODE1);
10846  aic7xxx_clear_intstat(p);
10848  p->msg_type = MSG_TYPE_NONE;
10849  p->msg_index = 0;
10850  p->msg_len = 0;
10851  aic7xxx_run_done_queue(p, TRUE);
10852  unpause_sequencer(p, FALSE);
10853  spin_unlock_irq(p->host->host_lock);
10854  ssleep(2);
10855  return SUCCESS;
10856 }
10857 
10858 /*+F*************************************************************************
10859  * Function:
10860  * aic7xxx_biosparam
10861  *
10862  * Description:
10863  * Return the disk geometry for the given SCSI device.
10864  *
10865  * Note:
10866  * This function is broken for today's really large drives and needs
10867  * fixed.
10868  *-F*************************************************************************/
10869 static int
10870 aic7xxx_biosparam(struct scsi_device *sdev, struct block_device *bdev,
10871  sector_t capacity, int geom[])
10872 {
10874  int ret;
10875  struct aic7xxx_host *p;
10876  unsigned char *buf;
10877 
10878  p = (struct aic7xxx_host *) sdev->host->hostdata;
10879  buf = scsi_bios_ptable(bdev);
10880 
10881  if ( buf )
10882  {
10883  ret = scsi_partsize(buf, capacity, &geom[2], &geom[0], &geom[1]);
10884  kfree(buf);
10885  if ( ret != -1 )
10886  return(ret);
10887  }
10888 
10889  heads = 64;
10890  sectors = 32;
10891  cylinders = capacity >> 11;
10892 
10893  if ((p->flags & AHC_EXTEND_TRANS_A) && (cylinders > 1024))
10894  {
10895  heads = 255;
10896  sectors = 63;
10897  cylinders = capacity >> 14;
10898  if(capacity > (65535 * heads * sectors))
10899  cylinders = 65535;
10900  else
10901  cylinders = ((unsigned int)capacity) / (unsigned int)(heads * sectors);
10902  }
10903 
10904  geom[0] = (int)heads;
10905  geom[1] = (int)sectors;
10906  geom[2] = (int)cylinders;
10907 
10908  return (0);
10909 }
10910 
10911 /*+F*************************************************************************
10912  * Function:
10913  * aic7xxx_release
10914  *
10915  * Description:
10916  * Free the passed in Scsi_Host memory structures prior to unloading the
10917  * module.
10918  *-F*************************************************************************/
10919 static int
10920 aic7xxx_release(struct Scsi_Host *host)
10921 {
10922  struct aic7xxx_host *p = (struct aic7xxx_host *) host->hostdata;
10923  struct aic7xxx_host *next, *prev;
10924 
10925  if(p->irq)
10926  free_irq(p->irq, p);
10927 #ifdef MMAPIO
10928  if(p->maddr)
10929  {
10930  iounmap(p->maddr);
10931  }
10932 #endif /* MMAPIO */
10933  if(!p->pdev)
10935 #ifdef CONFIG_PCI
10936  else {
10938  pci_dev_put(p->pdev);
10939  }
10940 #endif
10941  prev = NULL;
10942  next = first_aic7xxx;
10943  while(next != NULL)
10944  {
10945  if(next == p)
10946  {
10947  if(prev == NULL)
10948  first_aic7xxx = next->next;
10949  else
10950  prev->next = next->next;
10951  }
10952  else
10953  {
10954  prev = next;
10955  }
10956  next = next->next;
10957  }
10958  aic7xxx_free(p);
10959  return(0);
10960 }
10961 
10962 /*+F*************************************************************************
10963  * Function:
10964  * aic7xxx_print_card
10965  *
10966  * Description:
10967  * Print out all of the control registers on the card
10968  *
10969  * NOTE: This function is not yet safe for use on the VLB and EISA
10970  * controllers, so it isn't used on those controllers at all.
10971  *-F*************************************************************************/
10972 static void
10973 aic7xxx_print_card(struct aic7xxx_host *p)
10974 {
10975  int i, j, k, chip;
10976  static struct register_ranges {
10977  int num_ranges;
10978  int range_val[32];
10979  } cards_ds[] = {
10980  { 0, {0,} }, /* none */
10981  {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1f, 0x1f, 0x60, 0x60, /*7771*/
10982  0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9b, 0x9f} },
10983  { 9, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7850*/
10984  0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
10985  { 9, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7860*/
10986  0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
10987  {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1c, 0x1f, 0x60, 0x60, /*7870*/
10988  0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
10989  {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1a, 0x1c, 0x1f, 0x60, 0x60, /*7880*/
10990  0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
10991  {16, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7890*/
10992  0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9f, 0x9f,
10993  0xe0, 0xf1, 0xf4, 0xf4, 0xf6, 0xf6, 0xf8, 0xf8, 0xfa, 0xfc,
10994  0xfe, 0xff} },
10995  {12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1b, 0x1f, 0x60, 0x60, /*7895*/
10996  0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a,
10997  0x9f, 0x9f, 0xe0, 0xf1} },
10998  {16, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7896*/
10999  0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9f, 0x9f,
11000  0xe0, 0xf1, 0xf4, 0xf4, 0xf6, 0xf6, 0xf8, 0xf8, 0xfa, 0xfc,
11001  0xfe, 0xff} },
11002  {12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7892*/
11003  0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9c, 0x9f,
11004  0xe0, 0xf1, 0xf4, 0xfc} },
11005  {12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7899*/
11006  0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9c, 0x9f,
11007  0xe0, 0xf1, 0xf4, 0xfc} },
11008  };
11009  chip = p->chip & AHC_CHIPID_MASK;
11010  printk("%s at ",
11011  board_names[p->board_name_index]);
11012  switch(p->chip & ~AHC_CHIPID_MASK)
11013  {
11014  case AHC_VL:
11015  printk("VLB Slot %d.\n", p->pci_device_fn);
11016  break;
11017  case AHC_EISA:
11018  printk("EISA Slot %d.\n", p->pci_device_fn);
11019  break;
11020  case AHC_PCI:
11021  default:
11022  printk("PCI %d/%d/%d.\n", p->pci_bus, PCI_SLOT(p->pci_device_fn),
11023  PCI_FUNC(p->pci_device_fn));
11024  break;
11025  }
11026 
11027  /*
11028  * the registers on the card....
11029  */
11030  printk("Card Dump:\n");
11031  k = 0;
11032  for(i=0; i<cards_ds[chip].num_ranges; i++)
11033  {
11034  for(j = cards_ds[chip].range_val[ i * 2 ];
11035  j <= cards_ds[chip].range_val[ i * 2 + 1 ] ;
11036  j++)
11037  {
11038  printk("%02x:%02x ", j, aic_inb(p, j));
11039  if(++k == 13)
11040  {
11041  printk("\n");
11042  k=0;
11043  }
11044  }
11045  }
11046  if(k != 0)
11047  printk("\n");
11048 
11049  /*
11050  * If this was an Ultra2 controller, then we just hosed the card in terms
11051  * of the QUEUE REGS. This function is only called at init time or by
11052  * the panic_abort function, so it's safe to assume a generic init time
11053  * setting here
11054  */
11055 
11056  if(p->features & AHC_QUEUE_REGS)
11057  {
11058  aic_outb(p, 0, SDSCB_QOFF);
11059  aic_outb(p, 0, SNSCB_QOFF);
11060  aic_outb(p, 0, HNSCB_QOFF);
11061  }
11062 
11063 }
11064 
11065 /*+F*************************************************************************
11066  * Function:
11067  * aic7xxx_print_scratch_ram
11068  *
11069  * Description:
11070  * Print out the scratch RAM values on the card.
11071  *-F*************************************************************************/
11072 static void
11073 aic7xxx_print_scratch_ram(struct aic7xxx_host *p)
11074 {
11075  int i, k;
11076 
11077  k = 0;
11078  printk("Scratch RAM:\n");
11079  for(i = SRAM_BASE; i < SEQCTL; i++)
11080  {
11081  printk("%02x:%02x ", i, aic_inb(p, i));
11082  if(++k == 13)
11083  {
11084  printk("\n");
11085  k=0;
11086  }
11087  }
11088  if (p->features & AHC_MORE_SRAM)
11089  {
11090  for(i = TARG_OFFSET; i < 0x80; i++)
11091  {
11092  printk("%02x:%02x ", i, aic_inb(p, i));
11093  if(++k == 13)
11094  {
11095  printk("\n");
11096  k=0;
11097  }
11098  }
11099  }
11100  printk("\n");
11101 }
11102 
11103 
11104 #include "aic7xxx_old/aic7xxx_proc.c"
11105 
11106 MODULE_LICENSE("Dual BSD/GPL");
11108 
11109 
11110 static struct scsi_host_template driver_template = {
11111  .proc_info = aic7xxx_proc_info,
11112  .detect = aic7xxx_detect,
11113  .release = aic7xxx_release,
11114  .info = aic7xxx_info,
11115  .queuecommand = aic7xxx_queue,
11116  .slave_alloc = aic7xxx_slave_alloc,
11117  .slave_configure = aic7xxx_slave_configure,
11118  .slave_destroy = aic7xxx_slave_destroy,
11119  .bios_param = aic7xxx_biosparam,
11120  .eh_abort_handler = aic7xxx_abort,
11121  .eh_device_reset_handler = aic7xxx_bus_device_reset,
11122  .eh_host_reset_handler = aic7xxx_reset,
11123  .can_queue = 255,
11124  .this_id = -1,
11125  .max_sectors = 2048,
11126  .cmd_per_lun = 3,
11127  .use_clustering = ENABLE_CLUSTERING,
11128 };
11129 
11130 #include "scsi_module.c"
11131 
11132 /*
11133  * Overrides for Emacs so that we almost follow Linus's tabbing style.
11134  * Emacs will notice this stuff at the end of the file and automatically
11135  * adjust the settings for this buffer only. This must remain at the end
11136  * of the file.
11137  * ---------------------------------------------------------------------------
11138  * Local variables:
11139  * c-indent-level: 2
11140  * c-brace-imaginary-offset: 0
11141  * c-brace-offset: -2
11142  * c-argdecl-indent: 2
11143  * c-label-offset: -2
11144  * c-continued-statement-offset: 2
11145  * c-continued-brace-offset: 0
11146  * indent-tabs-mode: nil
11147  * tab-width: 8
11148  * End:
11149  */