Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
base.c
Go to the documentation of this file.
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
4  * Copyright (c) 2006 Devicescape Software, Inc.
5  * Copyright (c) 2007 Jiri Slaby <[email protected]>
6  * Copyright (c) 2007 Luis R. Rodriguez <[email protected]>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer,
15  * without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  * redistribution must be conditioned upon including a substantially
19  * similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  * of any contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39  * THE POSSIBILITY OF SUCH DAMAGES.
40  *
41  */
42 
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44 
45 #include <linux/module.h>
46 #include <linux/delay.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/hardirq.h>
49 #include <linux/if.h>
50 #include <linux/io.h>
51 #include <linux/netdevice.h>
52 #include <linux/cache.h>
53 #include <linux/ethtool.h>
54 #include <linux/uaccess.h>
55 #include <linux/slab.h>
56 #include <linux/etherdevice.h>
57 #include <linux/nl80211.h>
58 
59 #include <net/ieee80211_radiotap.h>
60 
61 #include <asm/unaligned.h>
62 
63 #include "base.h"
64 #include "reg.h"
65 #include "debug.h"
66 #include "ani.h"
67 #include "ath5k.h"
68 #include "../regd.h"
69 
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72 
75 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
76 
77 static bool modparam_fastchanswitch;
78 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
79 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
80 
81 static bool ath5k_modparam_no_hw_rfkill_switch;
82 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
83  bool, S_IRUGO);
84 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
85 
86 
87 /* Module info */
88 MODULE_AUTHOR("Jiri Slaby");
89 MODULE_AUTHOR("Nick Kossifidis");
90 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
91 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
92 MODULE_LICENSE("Dual BSD/GPL");
93 
94 static int ath5k_init(struct ieee80211_hw *hw);
95 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
96  bool skip_pcu);
97 
98 /* Known SREVs */
99 static const struct ath5k_srev_name srev_names[] = {
100 #ifdef CONFIG_ATHEROS_AR231X
108 #else
109  { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
110  { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
111  { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
112  { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
113  { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
114  { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
115  { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
116  { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
117  { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
118  { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
119  { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
120  { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
121  { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
122  { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
123  { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
124  { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
125  { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
126  { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
127 #endif
128  { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
143 #ifdef CONFIG_ATHEROS_AR231X
146 #endif
147  { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
148 };
149 
150 static const struct ieee80211_rate ath5k_rates[] = {
151  { .bitrate = 10,
152  .hw_value = ATH5K_RATE_CODE_1M, },
153  { .bitrate = 20,
154  .hw_value = ATH5K_RATE_CODE_2M,
155  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
157  { .bitrate = 55,
158  .hw_value = ATH5K_RATE_CODE_5_5M,
159  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
161  { .bitrate = 110,
162  .hw_value = ATH5K_RATE_CODE_11M,
163  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
165  { .bitrate = 60,
166  .hw_value = ATH5K_RATE_CODE_6M,
167  .flags = 0 },
168  { .bitrate = 90,
169  .hw_value = ATH5K_RATE_CODE_9M,
170  .flags = 0 },
171  { .bitrate = 120,
172  .hw_value = ATH5K_RATE_CODE_12M,
173  .flags = 0 },
174  { .bitrate = 180,
175  .hw_value = ATH5K_RATE_CODE_18M,
176  .flags = 0 },
177  { .bitrate = 240,
178  .hw_value = ATH5K_RATE_CODE_24M,
179  .flags = 0 },
180  { .bitrate = 360,
181  .hw_value = ATH5K_RATE_CODE_36M,
182  .flags = 0 },
183  { .bitrate = 480,
184  .hw_value = ATH5K_RATE_CODE_48M,
185  .flags = 0 },
186  { .bitrate = 540,
187  .hw_value = ATH5K_RATE_CODE_54M,
188  .flags = 0 },
189 };
190 
191 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
192 {
193  u64 tsf = ath5k_hw_get_tsf64(ah);
194 
195  if ((tsf & 0x7fff) < rstamp)
196  tsf -= 0x8000;
197 
198  return (tsf & ~0x7fff) | rstamp;
199 }
200 
201 const char *
203 {
204  const char *name = "xxxxx";
205  unsigned int i;
206 
207  for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
208  if (srev_names[i].sr_type != type)
209  continue;
210 
211  if ((val & 0xf0) == srev_names[i].sr_val)
212  name = srev_names[i].sr_name;
213 
214  if ((val & 0xff) == srev_names[i].sr_val) {
215  name = srev_names[i].sr_name;
216  break;
217  }
218  }
219 
220  return name;
221 }
222 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
223 {
224  struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
225  return ath5k_hw_reg_read(ah, reg_offset);
226 }
227 
228 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
229 {
230  struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
231  ath5k_hw_reg_write(ah, val, reg_offset);
232 }
233 
234 static const struct ath_ops ath5k_common_ops = {
235  .read = ath5k_ioread32,
236  .write = ath5k_iowrite32,
237 };
238 
239 /***********************\
240 * Driver Initialization *
241 \***********************/
242 
243 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
244 {
245  struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
246  struct ath5k_hw *ah = hw->priv;
247  struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
248 
249  return ath_reg_notifier_apply(wiphy, request, regulatory);
250 }
251 
252 /********************\
253 * Channel/mode setup *
254 \********************/
255 
256 /*
257  * Returns true for the channel numbers used.
258  */
259 #ifdef CONFIG_ATH5K_TEST_CHANNELS
260 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
261 {
262  return true;
263 }
264 
265 #else
266 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
267 {
268  if (band == IEEE80211_BAND_2GHZ && chan <= 14)
269  return true;
270 
271  return /* UNII 1,2 */
272  (((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
273  /* midband */
274  ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
275  /* UNII-3 */
276  ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
277  /* 802.11j 5.030-5.080 GHz (20MHz) */
278  (chan == 8 || chan == 12 || chan == 16) ||
279  /* 802.11j 4.9GHz (20MHz) */
280  (chan == 184 || chan == 188 || chan == 192 || chan == 196));
281 }
282 #endif
283 
284 static unsigned int
285 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
286  unsigned int mode, unsigned int max)
287 {
288  unsigned int count, size, freq, ch;
289  enum ieee80211_band band;
290 
291  switch (mode) {
292  case AR5K_MODE_11A:
293  /* 1..220, but 2GHz frequencies are filtered by check_channel */
294  size = 220;
295  band = IEEE80211_BAND_5GHZ;
296  break;
297  case AR5K_MODE_11B:
298  case AR5K_MODE_11G:
299  size = 26;
300  band = IEEE80211_BAND_2GHZ;
301  break;
302  default:
303  ATH5K_WARN(ah, "bad mode, not copying channels\n");
304  return 0;
305  }
306 
307  count = 0;
308  for (ch = 1; ch <= size && count < max; ch++) {
309  freq = ieee80211_channel_to_frequency(ch, band);
310 
311  if (freq == 0) /* mapping failed - not a standard channel */
312  continue;
313 
314  /* Write channel info, needed for ath5k_channel_ok() */
315  channels[count].center_freq = freq;
316  channels[count].band = band;
317  channels[count].hw_value = mode;
318 
319  /* Check if channel is supported by the chipset */
320  if (!ath5k_channel_ok(ah, &channels[count]))
321  continue;
322 
323  if (!ath5k_is_standard_channel(ch, band))
324  continue;
325 
326  count++;
327  }
328 
329  return count;
330 }
331 
332 static void
333 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
334 {
335  u8 i;
336 
337  for (i = 0; i < AR5K_MAX_RATES; i++)
338  ah->rate_idx[b->band][i] = -1;
339 
340  for (i = 0; i < b->n_bitrates; i++) {
341  ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
342  if (b->bitrates[i].hw_value_short)
343  ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
344  }
345 }
346 
347 static int
348 ath5k_setup_bands(struct ieee80211_hw *hw)
349 {
350  struct ath5k_hw *ah = hw->priv;
351  struct ieee80211_supported_band *sband;
352  int max_c, count_c = 0;
353  int i;
354 
356  max_c = ARRAY_SIZE(ah->channels);
357 
358  /* 2GHz band */
359  sband = &ah->sbands[IEEE80211_BAND_2GHZ];
360  sband->band = IEEE80211_BAND_2GHZ;
361  sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
362 
363  if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
364  /* G mode */
365  memcpy(sband->bitrates, &ath5k_rates[0],
366  sizeof(struct ieee80211_rate) * 12);
367  sband->n_bitrates = 12;
368 
369  sband->channels = ah->channels;
370  sband->n_channels = ath5k_setup_channels(ah, sband->channels,
371  AR5K_MODE_11G, max_c);
372 
373  hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
374  count_c = sband->n_channels;
375  max_c -= count_c;
376  } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
377  /* B mode */
378  memcpy(sband->bitrates, &ath5k_rates[0],
379  sizeof(struct ieee80211_rate) * 4);
380  sband->n_bitrates = 4;
381 
382  /* 5211 only supports B rates and uses 4bit rate codes
383  * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
384  * fix them up here:
385  */
386  if (ah->ah_version == AR5K_AR5211) {
387  for (i = 0; i < 4; i++) {
388  sband->bitrates[i].hw_value =
389  sband->bitrates[i].hw_value & 0xF;
390  sband->bitrates[i].hw_value_short =
391  sband->bitrates[i].hw_value_short & 0xF;
392  }
393  }
394 
395  sband->channels = ah->channels;
396  sband->n_channels = ath5k_setup_channels(ah, sband->channels,
397  AR5K_MODE_11B, max_c);
398 
399  hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
400  count_c = sband->n_channels;
401  max_c -= count_c;
402  }
403  ath5k_setup_rate_idx(ah, sband);
404 
405  /* 5GHz band, A mode */
406  if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
407  sband = &ah->sbands[IEEE80211_BAND_5GHZ];
408  sband->band = IEEE80211_BAND_5GHZ;
409  sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
410 
411  memcpy(sband->bitrates, &ath5k_rates[4],
412  sizeof(struct ieee80211_rate) * 8);
413  sband->n_bitrates = 8;
414 
415  sband->channels = &ah->channels[count_c];
416  sband->n_channels = ath5k_setup_channels(ah, sband->channels,
417  AR5K_MODE_11A, max_c);
418 
419  hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
420  }
421  ath5k_setup_rate_idx(ah, sband);
422 
424 
425  return 0;
426 }
427 
428 /*
429  * Set/change channels. We always reset the chip.
430  * To accomplish this we must first cleanup any pending DMA,
431  * then restart stuff after a la ath5k_init.
432  *
433  * Called with ah->lock.
434  */
435 int
436 ath5k_chan_set(struct ath5k_hw *ah, struct ieee80211_channel *chan)
437 {
438  ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
439  "channel set, resetting (%u -> %u MHz)\n",
440  ah->curchan->center_freq, chan->center_freq);
441 
442  /*
443  * To switch channels clear any pending DMA operations;
444  * wait long enough for the RX fifo to drain, reset the
445  * hardware at the new frequency, and then re-enable
446  * the relevant bits of the h/w.
447  */
448  return ath5k_reset(ah, chan, true);
449 }
450 
451 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
452 {
453  struct ath5k_vif_iter_data *iter_data = data;
454  int i;
455  struct ath5k_vif *avf = (void *)vif->drv_priv;
456 
457  if (iter_data->hw_macaddr)
458  for (i = 0; i < ETH_ALEN; i++)
459  iter_data->mask[i] &=
460  ~(iter_data->hw_macaddr[i] ^ mac[i]);
461 
462  if (!iter_data->found_active) {
463  iter_data->found_active = true;
464  memcpy(iter_data->active_mac, mac, ETH_ALEN);
465  }
466 
467  if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
468  if (ether_addr_equal(iter_data->hw_macaddr, mac))
469  iter_data->need_set_hw_addr = false;
470 
471  if (!iter_data->any_assoc) {
472  if (avf->assoc)
473  iter_data->any_assoc = true;
474  }
475 
476  /* Calculate combined mode - when APs are active, operate in AP mode.
477  * Otherwise use the mode of the new interface. This can currently
478  * only deal with combinations of APs and STAs. Only one ad-hoc
479  * interfaces is allowed.
480  */
481  if (avf->opmode == NL80211_IFTYPE_AP)
482  iter_data->opmode = NL80211_IFTYPE_AP;
483  else {
484  if (avf->opmode == NL80211_IFTYPE_STATION)
485  iter_data->n_stas++;
486  if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
487  iter_data->opmode = avf->opmode;
488  }
489 }
490 
491 void
493  struct ieee80211_vif *vif)
494 {
495  struct ath_common *common = ath5k_hw_common(ah);
496  struct ath5k_vif_iter_data iter_data;
497  u32 rfilt;
498 
499  /*
500  * Use the hardware MAC address as reference, the hardware uses it
501  * together with the BSSID mask when matching addresses.
502  */
503  iter_data.hw_macaddr = common->macaddr;
504  memset(&iter_data.mask, 0xff, ETH_ALEN);
505  iter_data.found_active = false;
506  iter_data.need_set_hw_addr = true;
508  iter_data.n_stas = 0;
509 
510  if (vif)
511  ath5k_vif_iter(&iter_data, vif->addr, vif);
512 
513  /* Get list of all active MAC addresses */
515  &iter_data);
516  memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
517 
518  ah->opmode = iter_data.opmode;
520  /* Nothing active, default to station mode */
522 
523  ath5k_hw_set_opmode(ah, ah->opmode);
524  ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
526 
527  if (iter_data.need_set_hw_addr && iter_data.found_active)
528  ath5k_hw_set_lladdr(ah, iter_data.active_mac);
529 
530  if (ath5k_hw_hasbssidmask(ah))
532 
533  /* Set up RX Filter */
534  if (iter_data.n_stas > 1) {
535  /* If you have multiple STA interfaces connected to
536  * different APs, ARPs are not received (most of the time?)
537  * Enabling PROMISC appears to fix that problem.
538  */
540  }
541 
542  rfilt = ah->filter_flags;
543  ath5k_hw_set_rx_filter(ah, rfilt);
544  ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
545 }
546 
547 static inline int
548 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
549 {
550  int rix;
551 
552  /* return base rate on errors */
553  if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
554  "hw_rix out of bounds: %x\n", hw_rix))
555  return 0;
556 
557  rix = ah->rate_idx[ah->curchan->band][hw_rix];
558  if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
559  rix = 0;
560 
561  return rix;
562 }
563 
564 /***************\
565 * Buffers setup *
566 \***************/
567 
568 static
569 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
570 {
571  struct ath_common *common = ath5k_hw_common(ah);
572  struct sk_buff *skb;
573 
574  /*
575  * Allocate buffer with headroom_needed space for the
576  * fake physical layer header at the start.
577  */
578  skb = ath_rxbuf_alloc(common,
579  common->rx_bufsize,
580  GFP_ATOMIC);
581 
582  if (!skb) {
583  ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
584  common->rx_bufsize);
585  return NULL;
586  }
587 
588  *skb_addr = dma_map_single(ah->dev,
589  skb->data, common->rx_bufsize,
591 
592  if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
593  ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
594  dev_kfree_skb(skb);
595  return NULL;
596  }
597  return skb;
598 }
599 
600 static int
601 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
602 {
603  struct sk_buff *skb = bf->skb;
604  struct ath5k_desc *ds;
605  int ret;
606 
607  if (!skb) {
608  skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
609  if (!skb)
610  return -ENOMEM;
611  bf->skb = skb;
612  }
613 
614  /*
615  * Setup descriptors. For receive we always terminate
616  * the descriptor list with a self-linked entry so we'll
617  * not get overrun under high load (as can happen with a
618  * 5212 when ANI processing enables PHY error frames).
619  *
620  * To ensure the last descriptor is self-linked we create
621  * each descriptor as self-linked and add it to the end. As
622  * each additional descriptor is added the previous self-linked
623  * entry is "fixed" naturally. This should be safe even
624  * if DMA is happening. When processing RX interrupts we
625  * never remove/process the last, self-linked, entry on the
626  * descriptor list. This ensures the hardware always has
627  * someplace to write a new frame.
628  */
629  ds = bf->desc;
630  ds->ds_link = bf->daddr; /* link to self */
631  ds->ds_data = bf->skbaddr;
632  ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
633  if (ret) {
634  ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
635  return ret;
636  }
637 
638  if (ah->rxlink != NULL)
639  *ah->rxlink = bf->daddr;
640  ah->rxlink = &ds->ds_link;
641  return 0;
642 }
643 
644 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
645 {
646  struct ieee80211_hdr *hdr;
647  enum ath5k_pkt_type htype;
648  __le16 fc;
649 
650  hdr = (struct ieee80211_hdr *)skb->data;
651  fc = hdr->frame_control;
652 
653  if (ieee80211_is_beacon(fc))
654  htype = AR5K_PKT_TYPE_BEACON;
655  else if (ieee80211_is_probe_resp(fc))
656  htype = AR5K_PKT_TYPE_PROBE_RESP;
657  else if (ieee80211_is_atim(fc))
658  htype = AR5K_PKT_TYPE_ATIM;
659  else if (ieee80211_is_pspoll(fc))
660  htype = AR5K_PKT_TYPE_PSPOLL;
661  else
662  htype = AR5K_PKT_TYPE_NORMAL;
663 
664  return htype;
665 }
666 
667 static int
668 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
669  struct ath5k_txq *txq, int padsize)
670 {
671  struct ath5k_desc *ds = bf->desc;
672  struct sk_buff *skb = bf->skb;
673  struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
674  unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
675  struct ieee80211_rate *rate;
676  unsigned int mrr_rate[3], mrr_tries[3];
677  int i, ret;
678  u16 hw_rate;
679  u16 cts_rate = 0;
680  u16 duration = 0;
681  u8 rc_flags;
682 
684 
685  /* XXX endianness */
686  bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
687  DMA_TO_DEVICE);
688 
689  rate = ieee80211_get_tx_rate(ah->hw, info);
690  if (!rate) {
691  ret = -EINVAL;
692  goto err_unmap;
693  }
694 
695  if (info->flags & IEEE80211_TX_CTL_NO_ACK)
696  flags |= AR5K_TXDESC_NOACK;
697 
698  rc_flags = info->control.rates[0].flags;
699  hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
700  rate->hw_value_short : rate->hw_value;
701 
702  pktlen = skb->len;
703 
704  /* FIXME: If we are in g mode and rate is a CCK rate
705  * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
706  * from tx power (value is in dB units already) */
707  if (info->control.hw_key) {
708  keyidx = info->control.hw_key->hw_key_idx;
709  pktlen += info->control.hw_key->icv_len;
710  }
711  if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
712  flags |= AR5K_TXDESC_RTSENA;
713  cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
714  duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
715  info->control.vif, pktlen, info));
716  }
717  if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
718  flags |= AR5K_TXDESC_CTSENA;
719  cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
721  info->control.vif, pktlen, info));
722  }
723  ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
724  ieee80211_get_hdrlen_from_skb(skb), padsize,
725  get_hw_packet_type(skb),
726  (ah->ah_txpower.txp_requested * 2),
727  hw_rate,
728  info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
729  cts_rate, duration);
730  if (ret)
731  goto err_unmap;
732 
733  /* Set up MRR descriptor */
734  if (ah->ah_capabilities.cap_has_mrr_support) {
735  memset(mrr_rate, 0, sizeof(mrr_rate));
736  memset(mrr_tries, 0, sizeof(mrr_tries));
737  for (i = 0; i < 3; i++) {
738  rate = ieee80211_get_alt_retry_rate(ah->hw, info, i);
739  if (!rate)
740  break;
741 
742  mrr_rate[i] = rate->hw_value;
743  mrr_tries[i] = info->control.rates[i + 1].count;
744  }
745 
747  mrr_rate[0], mrr_tries[0],
748  mrr_rate[1], mrr_tries[1],
749  mrr_rate[2], mrr_tries[2]);
750  }
751 
752  ds->ds_link = 0;
753  ds->ds_data = bf->skbaddr;
754 
755  spin_lock_bh(&txq->lock);
756  list_add_tail(&bf->list, &txq->q);
757  txq->txq_len++;
758  if (txq->link == NULL) /* is this first packet? */
759  ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
760  else /* no, so only link it */
761  *txq->link = bf->daddr;
762 
763  txq->link = &ds->ds_link;
764  ath5k_hw_start_tx_dma(ah, txq->qnum);
765  mmiowb();
766  spin_unlock_bh(&txq->lock);
767 
768  return 0;
769 err_unmap:
770  dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
771  return ret;
772 }
773 
774 /*******************\
775 * Descriptors setup *
776 \*******************/
777 
778 static int
779 ath5k_desc_alloc(struct ath5k_hw *ah)
780 {
781  struct ath5k_desc *ds;
782  struct ath5k_buf *bf;
783  dma_addr_t da;
784  unsigned int i;
785  int ret;
786 
787  /* allocate descriptors */
788  ah->desc_len = sizeof(struct ath5k_desc) *
789  (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
790 
791  ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
792  &ah->desc_daddr, GFP_KERNEL);
793  if (ah->desc == NULL) {
794  ATH5K_ERR(ah, "can't allocate descriptors\n");
795  ret = -ENOMEM;
796  goto err;
797  }
798  ds = ah->desc;
799  da = ah->desc_daddr;
800  ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
801  ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
802 
803  bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
804  sizeof(struct ath5k_buf), GFP_KERNEL);
805  if (bf == NULL) {
806  ATH5K_ERR(ah, "can't allocate bufptr\n");
807  ret = -ENOMEM;
808  goto err_free;
809  }
810  ah->bufptr = bf;
811 
812  INIT_LIST_HEAD(&ah->rxbuf);
813  for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
814  bf->desc = ds;
815  bf->daddr = da;
816  list_add_tail(&bf->list, &ah->rxbuf);
817  }
818 
819  INIT_LIST_HEAD(&ah->txbuf);
820  ah->txbuf_len = ATH_TXBUF;
821  for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
822  bf->desc = ds;
823  bf->daddr = da;
824  list_add_tail(&bf->list, &ah->txbuf);
825  }
826 
827  /* beacon buffers */
828  INIT_LIST_HEAD(&ah->bcbuf);
829  for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
830  bf->desc = ds;
831  bf->daddr = da;
832  list_add_tail(&bf->list, &ah->bcbuf);
833  }
834 
835  return 0;
836 err_free:
837  dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
838 err:
839  ah->desc = NULL;
840  return ret;
841 }
842 
843 void
844 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
845 {
846  BUG_ON(!bf);
847  if (!bf->skb)
848  return;
849  dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
850  DMA_TO_DEVICE);
851  dev_kfree_skb_any(bf->skb);
852  bf->skb = NULL;
853  bf->skbaddr = 0;
854  bf->desc->ds_data = 0;
855 }
856 
857 void
858 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
859 {
860  struct ath_common *common = ath5k_hw_common(ah);
861 
862  BUG_ON(!bf);
863  if (!bf->skb)
864  return;
865  dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
867  dev_kfree_skb_any(bf->skb);
868  bf->skb = NULL;
869  bf->skbaddr = 0;
870  bf->desc->ds_data = 0;
871 }
872 
873 static void
874 ath5k_desc_free(struct ath5k_hw *ah)
875 {
876  struct ath5k_buf *bf;
877 
878  list_for_each_entry(bf, &ah->txbuf, list)
879  ath5k_txbuf_free_skb(ah, bf);
880  list_for_each_entry(bf, &ah->rxbuf, list)
881  ath5k_rxbuf_free_skb(ah, bf);
882  list_for_each_entry(bf, &ah->bcbuf, list)
883  ath5k_txbuf_free_skb(ah, bf);
884 
885  /* Free memory associated with all descriptors */
886  dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
887  ah->desc = NULL;
888  ah->desc_daddr = 0;
889 
890  kfree(ah->bufptr);
891  ah->bufptr = NULL;
892 }
893 
894 
895 /**************\
896 * Queues setup *
897 \**************/
898 
899 static struct ath5k_txq *
900 ath5k_txq_setup(struct ath5k_hw *ah,
901  int qtype, int subtype)
902 {
903  struct ath5k_txq *txq;
904  struct ath5k_txq_info qi = {
905  .tqi_subtype = subtype,
906  /* XXX: default values not correct for B and XR channels,
907  * but who cares? */
908  .tqi_aifs = AR5K_TUNE_AIFS,
909  .tqi_cw_min = AR5K_TUNE_CWMIN,
910  .tqi_cw_max = AR5K_TUNE_CWMAX
911  };
912  int qnum;
913 
914  /*
915  * Enable interrupts only for EOL and DESC conditions.
916  * We mark tx descriptors to receive a DESC interrupt
917  * when a tx queue gets deep; otherwise we wait for the
918  * EOL to reap descriptors. Note that this is done to
919  * reduce interrupt load and this only defers reaping
920  * descriptors, never transmitting frames. Aside from
921  * reducing interrupts this also permits more concurrency.
922  * The only potential downside is if the tx queue backs
923  * up in which case the top half of the kernel may backup
924  * due to a lack of tx descriptors.
925  */
928  qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
929  if (qnum < 0) {
930  /*
931  * NB: don't print a message, this happens
932  * normally on parts with too few tx queues
933  */
934  return ERR_PTR(qnum);
935  }
936  txq = &ah->txqs[qnum];
937  if (!txq->setup) {
938  txq->qnum = qnum;
939  txq->link = NULL;
940  INIT_LIST_HEAD(&txq->q);
941  spin_lock_init(&txq->lock);
942  txq->setup = true;
943  txq->txq_len = 0;
944  txq->txq_max = ATH5K_TXQ_LEN_MAX;
945  txq->txq_poll_mark = false;
946  txq->txq_stuck = 0;
947  }
948  return &ah->txqs[qnum];
949 }
950 
951 static int
952 ath5k_beaconq_setup(struct ath5k_hw *ah)
953 {
954  struct ath5k_txq_info qi = {
955  /* XXX: default values not correct for B and XR channels,
956  * but who cares? */
958  .tqi_cw_min = AR5K_TUNE_CWMIN,
959  .tqi_cw_max = AR5K_TUNE_CWMAX,
960  /* NB: for dynamic turbo, don't enable any other interrupts */
961  .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
962  };
963 
965 }
966 
967 static int
968 ath5k_beaconq_config(struct ath5k_hw *ah)
969 {
970  struct ath5k_txq_info qi;
971  int ret;
972 
973  ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
974  if (ret)
975  goto err;
976 
977  if (ah->opmode == NL80211_IFTYPE_AP ||
979  /*
980  * Always burst out beacon and CAB traffic
981  * (aifs = cwmin = cwmax = 0)
982  */
983  qi.tqi_aifs = 0;
984  qi.tqi_cw_min = 0;
985  qi.tqi_cw_max = 0;
986  } else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
987  /*
988  * Adhoc mode; backoff between 0 and (2 * cw_min).
989  */
990  qi.tqi_aifs = 0;
991  qi.tqi_cw_min = 0;
992  qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
993  }
994 
995  ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
996  "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
997  qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
998 
999  ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1000  if (ret) {
1001  ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1002  "hardware queue!\n", __func__);
1003  goto err;
1004  }
1005  ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1006  if (ret)
1007  goto err;
1008 
1009  /* reconfigure cabq with ready time to 80% of beacon_interval */
1011  if (ret)
1012  goto err;
1013 
1014  qi.tqi_ready_time = (ah->bintval * 80) / 100;
1016  if (ret)
1017  goto err;
1018 
1020 err:
1021  return ret;
1022 }
1023 
1035 static void
1036 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1037 {
1038  struct ath5k_txq *txq;
1039  struct ath5k_buf *bf, *bf0;
1040  int i;
1041 
1042  for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1043  if (ah->txqs[i].setup) {
1044  txq = &ah->txqs[i];
1045  spin_lock_bh(&txq->lock);
1046  list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1047  ath5k_debug_printtxbuf(ah, bf);
1048 
1049  ath5k_txbuf_free_skb(ah, bf);
1050 
1051  spin_lock(&ah->txbuflock);
1052  list_move_tail(&bf->list, &ah->txbuf);
1053  ah->txbuf_len++;
1054  txq->txq_len--;
1055  spin_unlock(&ah->txbuflock);
1056  }
1057  txq->link = NULL;
1058  txq->txq_poll_mark = false;
1059  spin_unlock_bh(&txq->lock);
1060  }
1061  }
1062 }
1063 
1064 static void
1065 ath5k_txq_release(struct ath5k_hw *ah)
1066 {
1067  struct ath5k_txq *txq = ah->txqs;
1068  unsigned int i;
1069 
1070  for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1071  if (txq->setup) {
1072  ath5k_hw_release_tx_queue(ah, txq->qnum);
1073  txq->setup = false;
1074  }
1075 }
1076 
1077 
1078 /*************\
1079 * RX Handling *
1080 \*************/
1081 
1082 /*
1083  * Enable the receive h/w following a reset.
1084  */
1085 static int
1086 ath5k_rx_start(struct ath5k_hw *ah)
1087 {
1088  struct ath_common *common = ath5k_hw_common(ah);
1089  struct ath5k_buf *bf;
1090  int ret;
1091 
1092  common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1093 
1094  ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1095  common->cachelsz, common->rx_bufsize);
1096 
1097  spin_lock_bh(&ah->rxbuflock);
1098  ah->rxlink = NULL;
1099  list_for_each_entry(bf, &ah->rxbuf, list) {
1100  ret = ath5k_rxbuf_setup(ah, bf);
1101  if (ret != 0) {
1102  spin_unlock_bh(&ah->rxbuflock);
1103  goto err;
1104  }
1105  }
1106  bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1107  ath5k_hw_set_rxdp(ah, bf->daddr);
1108  spin_unlock_bh(&ah->rxbuflock);
1109 
1110  ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
1111  ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1112  ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1113 
1114  return 0;
1115 err:
1116  return ret;
1117 }
1118 
1119 /*
1120  * Disable the receive logic on PCU (DRU)
1121  * In preparation for a shutdown.
1122  *
1123  * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1124  * does.
1125  */
1126 static void
1127 ath5k_rx_stop(struct ath5k_hw *ah)
1128 {
1129 
1130  ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1131  ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1132 
1134 }
1135 
1136 static unsigned int
1137 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1138  struct ath5k_rx_status *rs)
1139 {
1140  struct ath_common *common = ath5k_hw_common(ah);
1141  struct ieee80211_hdr *hdr = (void *)skb->data;
1142  unsigned int keyix, hlen;
1143 
1144  if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1146  return RX_FLAG_DECRYPTED;
1147 
1148  /* Apparently when a default key is used to decrypt the packet
1149  the hw does not set the index used to decrypt. In such cases
1150  get the index from the packet. */
1151  hlen = ieee80211_hdrlen(hdr->frame_control);
1152  if (ieee80211_has_protected(hdr->frame_control) &&
1153  !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1154  skb->len >= hlen + 4) {
1155  keyix = skb->data[hlen + 3] >> 6;
1156 
1157  if (test_bit(keyix, common->keymap))
1158  return RX_FLAG_DECRYPTED;
1159  }
1160 
1161  return 0;
1162 }
1163 
1164 
1165 static void
1166 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1167  struct ieee80211_rx_status *rxs)
1168 {
1169  struct ath_common *common = ath5k_hw_common(ah);
1170  u64 tsf, bc_tstamp;
1171  u32 hw_tu;
1172  struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1173 
1174  if (ieee80211_is_beacon(mgmt->frame_control) &&
1175  le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1176  ether_addr_equal(mgmt->bssid, common->curbssid)) {
1177  /*
1178  * Received an IBSS beacon with the same BSSID. Hardware *must*
1179  * have updated the local TSF. We have to work around various
1180  * hardware bugs, though...
1181  */
1182  tsf = ath5k_hw_get_tsf64(ah);
1183  bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1184  hw_tu = TSF_TO_TU(tsf);
1185 
1186  ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1187  "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1188  (unsigned long long)bc_tstamp,
1189  (unsigned long long)rxs->mactime,
1190  (unsigned long long)(rxs->mactime - bc_tstamp),
1191  (unsigned long long)tsf);
1192 
1193  /*
1194  * Sometimes the HW will give us a wrong tstamp in the rx
1195  * status, causing the timestamp extension to go wrong.
1196  * (This seems to happen especially with beacon frames bigger
1197  * than 78 byte (incl. FCS))
1198  * But we know that the receive timestamp must be later than the
1199  * timestamp of the beacon since HW must have synced to that.
1200  *
1201  * NOTE: here we assume mactime to be after the frame was
1202  * received, not like mac80211 which defines it at the start.
1203  */
1204  if (bc_tstamp > rxs->mactime) {
1205  ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1206  "fixing mactime from %llx to %llx\n",
1207  (unsigned long long)rxs->mactime,
1208  (unsigned long long)tsf);
1209  rxs->mactime = tsf;
1210  }
1211 
1212  /*
1213  * Local TSF might have moved higher than our beacon timers,
1214  * in that case we have to update them to continue sending
1215  * beacons. This also takes care of synchronizing beacon sending
1216  * times with other stations.
1217  */
1218  if (hw_tu >= ah->nexttbtt)
1219  ath5k_beacon_update_timers(ah, bc_tstamp);
1220 
1221  /* Check if the beacon timers are still correct, because a TSF
1222  * update might have created a window between them - for a
1223  * longer description see the comment of this function: */
1224  if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1225  ath5k_beacon_update_timers(ah, bc_tstamp);
1226  ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1227  "fixed beacon timers after beacon receive\n");
1228  }
1229  }
1230 }
1231 
1232 static void
1233 ath5k_update_beacon_rssi(struct ath5k_hw *ah, struct sk_buff *skb, int rssi)
1234 {
1235  struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1236  struct ath_common *common = ath5k_hw_common(ah);
1237 
1238  /* only beacons from our BSSID */
1239  if (!ieee80211_is_beacon(mgmt->frame_control) ||
1240  !ether_addr_equal(mgmt->bssid, common->curbssid))
1241  return;
1242 
1243  ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1244 
1245  /* in IBSS mode we should keep RSSI statistics per neighbour */
1246  /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1247 }
1248 
1249 /*
1250  * Compute padding position. skb must contain an IEEE 802.11 frame
1251  */
1252 static int ath5k_common_padpos(struct sk_buff *skb)
1253 {
1254  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1256  int padpos = 24;
1257 
1258  if (ieee80211_has_a4(frame_control))
1259  padpos += ETH_ALEN;
1260 
1261  if (ieee80211_is_data_qos(frame_control))
1262  padpos += IEEE80211_QOS_CTL_LEN;
1263 
1264  return padpos;
1265 }
1266 
1267 /*
1268  * This function expects an 802.11 frame and returns the number of
1269  * bytes added, or -1 if we don't have enough header room.
1270  */
1271 static int ath5k_add_padding(struct sk_buff *skb)
1272 {
1273  int padpos = ath5k_common_padpos(skb);
1274  int padsize = padpos & 3;
1275 
1276  if (padsize && skb->len > padpos) {
1277 
1278  if (skb_headroom(skb) < padsize)
1279  return -1;
1280 
1281  skb_push(skb, padsize);
1282  memmove(skb->data, skb->data + padsize, padpos);
1283  return padsize;
1284  }
1285 
1286  return 0;
1287 }
1288 
1289 /*
1290  * The MAC header is padded to have 32-bit boundary if the
1291  * packet payload is non-zero. The general calculation for
1292  * padsize would take into account odd header lengths:
1293  * padsize = 4 - (hdrlen & 3); however, since only
1294  * even-length headers are used, padding can only be 0 or 2
1295  * bytes and we can optimize this a bit. We must not try to
1296  * remove padding from short control frames that do not have a
1297  * payload.
1298  *
1299  * This function expects an 802.11 frame and returns the number of
1300  * bytes removed.
1301  */
1302 static int ath5k_remove_padding(struct sk_buff *skb)
1303 {
1304  int padpos = ath5k_common_padpos(skb);
1305  int padsize = padpos & 3;
1306 
1307  if (padsize && skb->len >= padpos + padsize) {
1308  memmove(skb->data + padsize, skb->data, padpos);
1309  skb_pull(skb, padsize);
1310  return padsize;
1311  }
1312 
1313  return 0;
1314 }
1315 
1316 static void
1317 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1318  struct ath5k_rx_status *rs)
1319 {
1320  struct ieee80211_rx_status *rxs;
1321 
1322  ath5k_remove_padding(skb);
1323 
1324  rxs = IEEE80211_SKB_RXCB(skb);
1325 
1326  rxs->flag = 0;
1327  if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1328  rxs->flag |= RX_FLAG_MMIC_ERROR;
1329 
1330  /*
1331  * always extend the mac timestamp, since this information is
1332  * also needed for proper IBSS merging.
1333  *
1334  * XXX: it might be too late to do it here, since rs_tstamp is
1335  * 15bit only. that means TSF extension has to be done within
1336  * 32768usec (about 32ms). it might be necessary to move this to
1337  * the interrupt handler, like it is done in madwifi.
1338  *
1339  * Unfortunately we don't know when the hardware takes the rx
1340  * timestamp (beginning of phy frame, data frame, end of rx?).
1341  * The only thing we know is that it is hardware specific...
1342  * On AR5213 it seems the rx timestamp is at the end of the
1343  * frame, but I'm not sure.
1344  *
1345  * NOTE: mac80211 defines mactime at the beginning of the first
1346  * data symbol. Since we don't have any time references it's
1347  * impossible to comply to that. This affects IBSS merge only
1348  * right now, so it's not too bad...
1349  */
1350  rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1351  rxs->flag |= RX_FLAG_MACTIME_MPDU;
1352 
1353  rxs->freq = ah->curchan->center_freq;
1354  rxs->band = ah->curchan->band;
1355 
1356  rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1357 
1358  rxs->antenna = rs->rs_antenna;
1359 
1360  if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1361  ah->stats.antenna_rx[rs->rs_antenna]++;
1362  else
1363  ah->stats.antenna_rx[0]++; /* invalid */
1364 
1365  rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1366  rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1367 
1368  if (rxs->rate_idx >= 0 && rs->rs_rate ==
1369  ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1370  rxs->flag |= RX_FLAG_SHORTPRE;
1371 
1372  trace_ath5k_rx(ah, skb);
1373 
1374  ath5k_update_beacon_rssi(ah, skb, rs->rs_rssi);
1375 
1376  /* check beacons in IBSS mode */
1377  if (ah->opmode == NL80211_IFTYPE_ADHOC)
1378  ath5k_check_ibss_tsf(ah, skb, rxs);
1379 
1380  ieee80211_rx(ah->hw, skb);
1381 }
1382 
1388 static bool
1389 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1390 {
1391  ah->stats.rx_all_count++;
1392  ah->stats.rx_bytes_count += rs->rs_datalen;
1393 
1394  if (unlikely(rs->rs_status)) {
1395  if (rs->rs_status & AR5K_RXERR_CRC)
1396  ah->stats.rxerr_crc++;
1397  if (rs->rs_status & AR5K_RXERR_FIFO)
1398  ah->stats.rxerr_fifo++;
1399  if (rs->rs_status & AR5K_RXERR_PHY) {
1400  ah->stats.rxerr_phy++;
1401  if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1402  ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1403  return false;
1404  }
1405  if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1406  /*
1407  * Decrypt error. If the error occurred
1408  * because there was no hardware key, then
1409  * let the frame through so the upper layers
1410  * can process it. This is necessary for 5210
1411  * parts which have no way to setup a ``clear''
1412  * key cache entry.
1413  *
1414  * XXX do key cache faulting
1415  */
1416  ah->stats.rxerr_decrypt++;
1417  if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1418  !(rs->rs_status & AR5K_RXERR_CRC))
1419  return true;
1420  }
1421  if (rs->rs_status & AR5K_RXERR_MIC) {
1422  ah->stats.rxerr_mic++;
1423  return true;
1424  }
1425 
1426  /* reject any frames with non-crypto errors */
1427  if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1428  return false;
1429  }
1430 
1431  if (unlikely(rs->rs_more)) {
1432  ah->stats.rxerr_jumbo++;
1433  return false;
1434  }
1435  return true;
1436 }
1437 
1438 static void
1439 ath5k_set_current_imask(struct ath5k_hw *ah)
1440 {
1441  enum ath5k_int imask;
1442  unsigned long flags;
1443 
1444  spin_lock_irqsave(&ah->irqlock, flags);
1445  imask = ah->imask;
1446  if (ah->rx_pending)
1447  imask &= ~AR5K_INT_RX_ALL;
1448  if (ah->tx_pending)
1449  imask &= ~AR5K_INT_TX_ALL;
1450  ath5k_hw_set_imr(ah, imask);
1451  spin_unlock_irqrestore(&ah->irqlock, flags);
1452 }
1453 
1454 static void
1455 ath5k_tasklet_rx(unsigned long data)
1456 {
1457  struct ath5k_rx_status rs = {};
1458  struct sk_buff *skb, *next_skb;
1459  dma_addr_t next_skb_addr;
1460  struct ath5k_hw *ah = (void *)data;
1461  struct ath_common *common = ath5k_hw_common(ah);
1462  struct ath5k_buf *bf;
1463  struct ath5k_desc *ds;
1464  int ret;
1465 
1466  spin_lock(&ah->rxbuflock);
1467  if (list_empty(&ah->rxbuf)) {
1468  ATH5K_WARN(ah, "empty rx buf pool\n");
1469  goto unlock;
1470  }
1471  do {
1472  bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1473  BUG_ON(bf->skb == NULL);
1474  skb = bf->skb;
1475  ds = bf->desc;
1476 
1477  /* bail if HW is still using self-linked descriptor */
1478  if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1479  break;
1480 
1481  ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1482  if (unlikely(ret == -EINPROGRESS))
1483  break;
1484  else if (unlikely(ret)) {
1485  ATH5K_ERR(ah, "error in processing rx descriptor\n");
1486  ah->stats.rxerr_proc++;
1487  break;
1488  }
1489 
1490  if (ath5k_receive_frame_ok(ah, &rs)) {
1491  next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1492 
1493  /*
1494  * If we can't replace bf->skb with a new skb under
1495  * memory pressure, just skip this packet
1496  */
1497  if (!next_skb)
1498  goto next;
1499 
1500  dma_unmap_single(ah->dev, bf->skbaddr,
1501  common->rx_bufsize,
1502  DMA_FROM_DEVICE);
1503 
1504  skb_put(skb, rs.rs_datalen);
1505 
1506  ath5k_receive_frame(ah, skb, &rs);
1507 
1508  bf->skb = next_skb;
1509  bf->skbaddr = next_skb_addr;
1510  }
1511 next:
1512  list_move_tail(&bf->list, &ah->rxbuf);
1513  } while (ath5k_rxbuf_setup(ah, bf) == 0);
1514 unlock:
1515  spin_unlock(&ah->rxbuflock);
1516  ah->rx_pending = false;
1517  ath5k_set_current_imask(ah);
1518 }
1519 
1520 
1521 /*************\
1522 * TX Handling *
1523 \*************/
1524 
1525 void
1526 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1527  struct ath5k_txq *txq)
1528 {
1529  struct ath5k_hw *ah = hw->priv;
1530  struct ath5k_buf *bf;
1531  unsigned long flags;
1532  int padsize;
1533 
1534  trace_ath5k_tx(ah, skb, txq);
1535 
1536  /*
1537  * The hardware expects the header padded to 4 byte boundaries.
1538  * If this is not the case, we add the padding after the header.
1539  */
1540  padsize = ath5k_add_padding(skb);
1541  if (padsize < 0) {
1542  ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1543  " headroom to pad");
1544  goto drop_packet;
1545  }
1546 
1547  if (txq->txq_len >= txq->txq_max &&
1549  ieee80211_stop_queue(hw, txq->qnum);
1550 
1551  spin_lock_irqsave(&ah->txbuflock, flags);
1552  if (list_empty(&ah->txbuf)) {
1553  ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1554  spin_unlock_irqrestore(&ah->txbuflock, flags);
1556  goto drop_packet;
1557  }
1558  bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1559  list_del(&bf->list);
1560  ah->txbuf_len--;
1561  if (list_empty(&ah->txbuf))
1563  spin_unlock_irqrestore(&ah->txbuflock, flags);
1564 
1565  bf->skb = skb;
1566 
1567  if (ath5k_txbuf_setup(ah, bf, txq, padsize)) {
1568  bf->skb = NULL;
1569  spin_lock_irqsave(&ah->txbuflock, flags);
1570  list_add_tail(&bf->list, &ah->txbuf);
1571  ah->txbuf_len++;
1572  spin_unlock_irqrestore(&ah->txbuflock, flags);
1573  goto drop_packet;
1574  }
1575  return;
1576 
1577 drop_packet:
1578  dev_kfree_skb_any(skb);
1579 }
1580 
1581 static void
1582 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1583  struct ath5k_txq *txq, struct ath5k_tx_status *ts)
1584 {
1585  struct ieee80211_tx_info *info;
1586  u8 tries[3];
1587  int i;
1588 
1589  ah->stats.tx_all_count++;
1590  ah->stats.tx_bytes_count += skb->len;
1591  info = IEEE80211_SKB_CB(skb);
1592 
1593  tries[0] = info->status.rates[0].count;
1594  tries[1] = info->status.rates[1].count;
1595  tries[2] = info->status.rates[2].count;
1596 
1597  ieee80211_tx_info_clear_status(info);
1598 
1599  for (i = 0; i < ts->ts_final_idx; i++) {
1600  struct ieee80211_tx_rate *r =
1601  &info->status.rates[i];
1602 
1603  r->count = tries[i];
1604  }
1605 
1606  info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1607  info->status.rates[ts->ts_final_idx + 1].idx = -1;
1608 
1609  if (unlikely(ts->ts_status)) {
1610  ah->stats.ack_fail++;
1611  if (ts->ts_status & AR5K_TXERR_FILT) {
1613  ah->stats.txerr_filt++;
1614  }
1615  if (ts->ts_status & AR5K_TXERR_XRETRY)
1616  ah->stats.txerr_retry++;
1617  if (ts->ts_status & AR5K_TXERR_FIFO)
1618  ah->stats.txerr_fifo++;
1619  } else {
1620  info->flags |= IEEE80211_TX_STAT_ACK;
1621  info->status.ack_signal = ts->ts_rssi;
1622 
1623  /* count the successful attempt as well */
1624  info->status.rates[ts->ts_final_idx].count++;
1625  }
1626 
1627  /*
1628  * Remove MAC header padding before giving the frame
1629  * back to mac80211.
1630  */
1631  ath5k_remove_padding(skb);
1632 
1633  if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1634  ah->stats.antenna_tx[ts->ts_antenna]++;
1635  else
1636  ah->stats.antenna_tx[0]++; /* invalid */
1637 
1638  trace_ath5k_tx_complete(ah, skb, txq, ts);
1639  ieee80211_tx_status(ah->hw, skb);
1640 }
1641 
1642 static void
1643 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1644 {
1645  struct ath5k_tx_status ts = {};
1646  struct ath5k_buf *bf, *bf0;
1647  struct ath5k_desc *ds;
1648  struct sk_buff *skb;
1649  int ret;
1650 
1651  spin_lock(&txq->lock);
1652  list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1653 
1654  txq->txq_poll_mark = false;
1655 
1656  /* skb might already have been processed last time. */
1657  if (bf->skb != NULL) {
1658  ds = bf->desc;
1659 
1660  ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1661  if (unlikely(ret == -EINPROGRESS))
1662  break;
1663  else if (unlikely(ret)) {
1664  ATH5K_ERR(ah,
1665  "error %d while processing "
1666  "queue %u\n", ret, txq->qnum);
1667  break;
1668  }
1669 
1670  skb = bf->skb;
1671  bf->skb = NULL;
1672 
1673  dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1674  DMA_TO_DEVICE);
1675  ath5k_tx_frame_completed(ah, skb, txq, &ts);
1676  }
1677 
1678  /*
1679  * It's possible that the hardware can say the buffer is
1680  * completed when it hasn't yet loaded the ds_link from
1681  * host memory and moved on.
1682  * Always keep the last descriptor to avoid HW races...
1683  */
1684  if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1685  spin_lock(&ah->txbuflock);
1686  list_move_tail(&bf->list, &ah->txbuf);
1687  ah->txbuf_len++;
1688  txq->txq_len--;
1689  spin_unlock(&ah->txbuflock);
1690  }
1691  }
1692  spin_unlock(&txq->lock);
1693  if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1694  ieee80211_wake_queue(ah->hw, txq->qnum);
1695 }
1696 
1697 static void
1698 ath5k_tasklet_tx(unsigned long data)
1699 {
1700  int i;
1701  struct ath5k_hw *ah = (void *)data;
1702 
1703  for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1704  if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1705  ath5k_tx_processq(ah, &ah->txqs[i]);
1706 
1707  ah->tx_pending = false;
1708  ath5k_set_current_imask(ah);
1709 }
1710 
1711 
1712 /*****************\
1713 * Beacon handling *
1714 \*****************/
1715 
1716 /*
1717  * Setup the beacon frame for transmit.
1718  */
1719 static int
1720 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1721 {
1722  struct sk_buff *skb = bf->skb;
1723  struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1724  struct ath5k_desc *ds;
1725  int ret = 0;
1726  u8 antenna;
1727  u32 flags;
1728  const int padsize = 0;
1729 
1730  bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1731  DMA_TO_DEVICE);
1732  ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1733  "skbaddr %llx\n", skb, skb->data, skb->len,
1734  (unsigned long long)bf->skbaddr);
1735 
1736  if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1737  ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1738  dev_kfree_skb_any(skb);
1739  bf->skb = NULL;
1740  return -EIO;
1741  }
1742 
1743  ds = bf->desc;
1744  antenna = ah->ah_tx_ant;
1745 
1746  flags = AR5K_TXDESC_NOACK;
1747  if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1748  ds->ds_link = bf->daddr; /* self-linked */
1749  flags |= AR5K_TXDESC_VEOL;
1750  } else
1751  ds->ds_link = 0;
1752 
1753  /*
1754  * If we use multiple antennas on AP and use
1755  * the Sectored AP scenario, switch antenna every
1756  * 4 beacons to make sure everybody hears our AP.
1757  * When a client tries to associate, hw will keep
1758  * track of the tx antenna to be used for this client
1759  * automatically, based on ACKed packets.
1760  *
1761  * Note: AP still listens and transmits RTS on the
1762  * default antenna which is supposed to be an omni.
1763  *
1764  * Note2: On sectored scenarios it's possible to have
1765  * multiple antennas (1 omni -- the default -- and 14
1766  * sectors), so if we choose to actually support this
1767  * mode, we need to allow the user to set how many antennas
1768  * we have and tweak the code below to send beacons
1769  * on all of them.
1770  */
1772  antenna = ah->bsent & 4 ? 2 : 1;
1773 
1774 
1775  /* FIXME: If we are in g mode and rate is a CCK rate
1776  * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1777  * from tx power (value is in dB units already) */
1778  ds->ds_data = bf->skbaddr;
1779  ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1780  ieee80211_get_hdrlen_from_skb(skb), padsize,
1782  (ah->ah_txpower.txp_requested * 2),
1783  ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1785  antenna, flags, 0, 0);
1786  if (ret)
1787  goto err_unmap;
1788 
1789  return 0;
1790 err_unmap:
1791  dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1792  return ret;
1793 }
1794 
1795 /*
1796  * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1797  * this is called only once at config_bss time, for AP we do it every
1798  * SWBA interrupt so that the TIM will reflect buffered frames.
1799  *
1800  * Called with the beacon lock.
1801  */
1802 int
1804 {
1805  int ret;
1806  struct ath5k_hw *ah = hw->priv;
1807  struct ath5k_vif *avf;
1808  struct sk_buff *skb;
1809 
1810  if (WARN_ON(!vif)) {
1811  ret = -EINVAL;
1812  goto out;
1813  }
1814 
1815  skb = ieee80211_beacon_get(hw, vif);
1816 
1817  if (!skb) {
1818  ret = -ENOMEM;
1819  goto out;
1820  }
1821 
1822  avf = (void *)vif->drv_priv;
1823  ath5k_txbuf_free_skb(ah, avf->bbuf);
1824  avf->bbuf->skb = skb;
1825  ret = ath5k_beacon_setup(ah, avf->bbuf);
1826 out:
1827  return ret;
1828 }
1829 
1830 /*
1831  * Transmit a beacon frame at SWBA. Dynamic updates to the
1832  * frame contents are done as needed and the slot time is
1833  * also adjusted based on current state.
1834  *
1835  * This is called from software irq context (beacontq tasklets)
1836  * or user context from ath5k_beacon_config.
1837  */
1838 static void
1839 ath5k_beacon_send(struct ath5k_hw *ah)
1840 {
1841  struct ieee80211_vif *vif;
1842  struct ath5k_vif *avf;
1843  struct ath5k_buf *bf;
1844  struct sk_buff *skb;
1845  int err;
1846 
1847  ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1848 
1849  /*
1850  * Check if the previous beacon has gone out. If
1851  * not, don't don't try to post another: skip this
1852  * period and wait for the next. Missed beacons
1853  * indicate a problem and should not occur. If we
1854  * miss too many consecutive beacons reset the device.
1855  */
1856  if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1857  ah->bmisscount++;
1858  ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1859  "missed %u consecutive beacons\n", ah->bmisscount);
1860  if (ah->bmisscount > 10) { /* NB: 10 is a guess */
1861  ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1862  "stuck beacon time (%u missed)\n",
1863  ah->bmisscount);
1864  ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1865  "stuck beacon, resetting\n");
1866  ieee80211_queue_work(ah->hw, &ah->reset_work);
1867  }
1868  return;
1869  }
1870  if (unlikely(ah->bmisscount != 0)) {
1871  ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1872  "resume beacon xmit after %u misses\n",
1873  ah->bmisscount);
1874  ah->bmisscount = 0;
1875  }
1876 
1877  if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1878  ah->num_mesh_vifs > 1) ||
1880  u64 tsf = ath5k_hw_get_tsf64(ah);
1881  u32 tsftu = TSF_TO_TU(tsf);
1882  int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1883  vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1884  ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1885  "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1886  (unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1887  } else /* only one interface */
1888  vif = ah->bslot[0];
1889 
1890  if (!vif)
1891  return;
1892 
1893  avf = (void *)vif->drv_priv;
1894  bf = avf->bbuf;
1895 
1896  /*
1897  * Stop any current dma and put the new frame on the queue.
1898  * This should never fail since we check above that no frames
1899  * are still pending on the queue.
1900  */
1902  ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1903  /* NB: hw still stops DMA, so proceed */
1904  }
1905 
1906  /* refresh the beacon for AP or MESH mode */
1907  if (ah->opmode == NL80211_IFTYPE_AP ||
1909  err = ath5k_beacon_update(ah->hw, vif);
1910  if (err)
1911  return;
1912  }
1913 
1914  if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1915  ah->opmode == NL80211_IFTYPE_MONITOR)) {
1916  ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1917  return;
1918  }
1919 
1920  trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1921 
1922  ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1923  ath5k_hw_start_tx_dma(ah, ah->bhalq);
1924  ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1925  ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
1926 
1927  skb = ieee80211_get_buffered_bc(ah->hw, vif);
1928  while (skb) {
1929  ath5k_tx_queue(ah->hw, skb, ah->cabq);
1930 
1931  if (ah->cabq->txq_len >= ah->cabq->txq_max)
1932  break;
1933 
1934  skb = ieee80211_get_buffered_bc(ah->hw, vif);
1935  }
1936 
1937  ah->bsent++;
1938 }
1939 
1956 void
1958 {
1959  u32 nexttbtt, intval, hw_tu, bc_tu;
1960  u64 hw_tsf;
1961 
1962  intval = ah->bintval & AR5K_BEACON_PERIOD;
1963  if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
1964  + ah->num_mesh_vifs > 1) {
1965  intval /= ATH_BCBUF; /* staggered multi-bss beacons */
1966  if (intval < 15)
1967  ATH5K_WARN(ah, "intval %u is too low, min 15\n",
1968  intval);
1969  }
1970  if (WARN_ON(!intval))
1971  return;
1972 
1973  /* beacon TSF converted to TU */
1974  bc_tu = TSF_TO_TU(bc_tsf);
1975 
1976  /* current TSF converted to TU */
1977  hw_tsf = ath5k_hw_get_tsf64(ah);
1978  hw_tu = TSF_TO_TU(hw_tsf);
1979 
1980 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
1981  /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1982  * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1983  * configuration we need to make sure it is bigger than that. */
1984 
1985  if (bc_tsf == -1) {
1986  /*
1987  * no beacons received, called internally.
1988  * just need to refresh timers based on HW TSF.
1989  */
1990  nexttbtt = roundup(hw_tu + FUDGE, intval);
1991  } else if (bc_tsf == 0) {
1992  /*
1993  * no beacon received, probably called by ath5k_reset_tsf().
1994  * reset TSF to start with 0.
1995  */
1996  nexttbtt = intval;
1997  intval |= AR5K_BEACON_RESET_TSF;
1998  } else if (bc_tsf > hw_tsf) {
1999  /*
2000  * beacon received, SW merge happened but HW TSF not yet updated.
2001  * not possible to reconfigure timers yet, but next time we
2002  * receive a beacon with the same BSSID, the hardware will
2003  * automatically update the TSF and then we need to reconfigure
2004  * the timers.
2005  */
2006  ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2007  "need to wait for HW TSF sync\n");
2008  return;
2009  } else {
2010  /*
2011  * most important case for beacon synchronization between STA.
2012  *
2013  * beacon received and HW TSF has been already updated by HW.
2014  * update next TBTT based on the TSF of the beacon, but make
2015  * sure it is ahead of our local TSF timer.
2016  */
2017  nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2018  }
2019 #undef FUDGE
2020 
2021  ah->nexttbtt = nexttbtt;
2022 
2023  intval |= AR5K_BEACON_ENA;
2024  ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2025 
2026  /*
2027  * debugging output last in order to preserve the time critical aspect
2028  * of this function
2029  */
2030  if (bc_tsf == -1)
2031  ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2032  "reconfigured timers based on HW TSF\n");
2033  else if (bc_tsf == 0)
2034  ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2035  "reset HW TSF and timers\n");
2036  else
2037  ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2038  "updated timers based on beacon TSF\n");
2039 
2040  ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2041  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2042  (unsigned long long) bc_tsf,
2043  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2044  ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2045  intval & AR5K_BEACON_PERIOD,
2046  intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2047  intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2048 }
2049 
2058 void
2060 {
2061  spin_lock_bh(&ah->block);
2062  ah->bmisscount = 0;
2063  ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2064 
2065  if (ah->enable_beacon) {
2066  /*
2067  * In IBSS mode we use a self-linked tx descriptor and let the
2068  * hardware send the beacons automatically. We have to load it
2069  * only once here.
2070  * We use the SWBA interrupt only to keep track of the beacon
2071  * timers in order to detect automatic TSF updates.
2072  */
2073  ath5k_beaconq_config(ah);
2074 
2075  ah->imask |= AR5K_INT_SWBA;
2076 
2077  if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2078  if (ath5k_hw_hasveol(ah))
2079  ath5k_beacon_send(ah);
2080  } else
2082  } else {
2084  }
2085 
2086  ath5k_hw_set_imr(ah, ah->imask);
2087  mmiowb();
2088  spin_unlock_bh(&ah->block);
2089 }
2090 
2091 static void ath5k_tasklet_beacon(unsigned long data)
2092 {
2093  struct ath5k_hw *ah = (struct ath5k_hw *) data;
2094 
2095  /*
2096  * Software beacon alert--time to send a beacon.
2097  *
2098  * In IBSS mode we use this interrupt just to
2099  * keep track of the next TBTT (target beacon
2100  * transmission time) in order to detect whether
2101  * automatic TSF updates happened.
2102  */
2103  if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2104  /* XXX: only if VEOL supported */
2105  u64 tsf = ath5k_hw_get_tsf64(ah);
2106  ah->nexttbtt += ah->bintval;
2107  ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2108  "SWBA nexttbtt: %x hw_tu: %x "
2109  "TSF: %llx\n",
2110  ah->nexttbtt,
2111  TSF_TO_TU(tsf),
2112  (unsigned long long) tsf);
2113  } else {
2114  spin_lock(&ah->block);
2115  ath5k_beacon_send(ah);
2116  spin_unlock(&ah->block);
2117  }
2118 }
2119 
2120 
2121 /********************\
2122 * Interrupt handling *
2123 \********************/
2124 
2125 static void
2126 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2127 {
2131 
2132  /* Run ANI only when calibration is not active */
2133 
2134  ah->ah_cal_next_ani = jiffies +
2136  tasklet_schedule(&ah->ani_tasklet);
2137 
2138  } else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2141 
2142  /* Run calibration only when another calibration
2143  * is not running.
2144  *
2145  * Note: This is for both full/short calibration,
2146  * if it's time for a full one, ath5k_calibrate_work will deal
2147  * with it. */
2148 
2149  ah->ah_cal_next_short = jiffies +
2151  ieee80211_queue_work(ah->hw, &ah->calib_work);
2152  }
2153  /* we could use SWI to generate enough interrupts to meet our
2154  * calibration interval requirements, if necessary:
2155  * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2156 }
2157 
2158 static void
2159 ath5k_schedule_rx(struct ath5k_hw *ah)
2160 {
2161  ah->rx_pending = true;
2162  tasklet_schedule(&ah->rxtq);
2163 }
2164 
2165 static void
2166 ath5k_schedule_tx(struct ath5k_hw *ah)
2167 {
2168  ah->tx_pending = true;
2169  tasklet_schedule(&ah->txtq);
2170 }
2171 
2172 static irqreturn_t
2173 ath5k_intr(int irq, void *dev_id)
2174 {
2175  struct ath5k_hw *ah = dev_id;
2176  enum ath5k_int status;
2177  unsigned int counter = 1000;
2178 
2179 
2180  /*
2181  * If hw is not ready (or detached) and we get an
2182  * interrupt, or if we have no interrupts pending
2183  * (that means it's not for us) skip it.
2184  *
2185  * NOTE: Group 0/1 PCI interface registers are not
2186  * supported on WiSOCs, so we can't check for pending
2187  * interrupts (ISR belongs to another register group
2188  * so we are ok).
2189  */
2190  if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2191  ((ath5k_get_bus_type(ah) != ATH_AHB) &&
2192  !ath5k_hw_is_intr_pending(ah))))
2193  return IRQ_NONE;
2194 
2196  do {
2197  ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2198 
2199  ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2200  status, ah->imask);
2201 
2202  /*
2203  * Fatal hw error -> Log and reset
2204  *
2205  * Fatal errors are unrecoverable so we have to
2206  * reset the card. These errors include bus and
2207  * dma errors.
2208  */
2209  if (unlikely(status & AR5K_INT_FATAL)) {
2210 
2211  ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2212  "fatal int, resetting\n");
2213  ieee80211_queue_work(ah->hw, &ah->reset_work);
2214 
2215  /*
2216  * RX Overrun -> Count and reset if needed
2217  *
2218  * Receive buffers are full. Either the bus is busy or
2219  * the CPU is not fast enough to process all received
2220  * frames.
2221  */
2222  } else if (unlikely(status & AR5K_INT_RXORN)) {
2223 
2224  /*
2225  * Older chipsets need a reset to come out of this
2226  * condition, but we treat it as RX for newer chips.
2227  * We don't know exactly which versions need a reset
2228  * this guess is copied from the HAL.
2229  */
2230  ah->stats.rxorn_intr++;
2231 
2232  if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2233  ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2234  "rx overrun, resetting\n");
2235  ieee80211_queue_work(ah->hw, &ah->reset_work);
2236  } else
2237  ath5k_schedule_rx(ah);
2238 
2239  } else {
2240 
2241  /* Software Beacon Alert -> Schedule beacon tasklet */
2242  if (status & AR5K_INT_SWBA)
2243  tasklet_hi_schedule(&ah->beacontq);
2244 
2245  /*
2246  * No more RX descriptors -> Just count
2247  *
2248  * NB: the hardware should re-read the link when
2249  * RXE bit is written, but it doesn't work at
2250  * least on older hardware revs.
2251  */
2252  if (status & AR5K_INT_RXEOL)
2253  ah->stats.rxeol_intr++;
2254 
2255 
2256  /* TX Underrun -> Bump tx trigger level */
2257  if (status & AR5K_INT_TXURN)
2258  ath5k_hw_update_tx_triglevel(ah, true);
2259 
2260  /* RX -> Schedule rx tasklet */
2261  if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2262  ath5k_schedule_rx(ah);
2263 
2264  /* TX -> Schedule tx tasklet */
2265  if (status & (AR5K_INT_TXOK
2266  | AR5K_INT_TXDESC
2267  | AR5K_INT_TXERR
2268  | AR5K_INT_TXEOL))
2269  ath5k_schedule_tx(ah);
2270 
2271  /* Missed beacon -> TODO
2272  if (status & AR5K_INT_BMISS)
2273  */
2274 
2275  /* MIB event -> Update counters and notify ANI */
2276  if (status & AR5K_INT_MIB) {
2277  ah->stats.mib_intr++;
2279  ath5k_ani_mib_intr(ah);
2280  }
2281 
2282  /* GPIO -> Notify RFKill layer */
2283  if (status & AR5K_INT_GPIO)
2284  tasklet_schedule(&ah->rf_kill.toggleq);
2285 
2286  }
2287 
2288  if (ath5k_get_bus_type(ah) == ATH_AHB)
2289  break;
2290 
2291  } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2292 
2293  /*
2294  * Until we handle rx/tx interrupts mask them on IMR
2295  *
2296  * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2297  * and unset after we 've handled the interrupts.
2298  */
2299  if (ah->rx_pending || ah->tx_pending)
2300  ath5k_set_current_imask(ah);
2301 
2302  if (unlikely(!counter))
2303  ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2304 
2305  /* Fire up calibration poll */
2306  ath5k_intr_calibration_poll(ah);
2307 
2308  return IRQ_HANDLED;
2309 }
2310 
2311 /*
2312  * Periodically recalibrate the PHY to account
2313  * for temperature/environment changes.
2314  */
2315 static void
2316 ath5k_calibrate_work(struct work_struct *work)
2317 {
2318  struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2319  calib_work);
2320 
2321  /* Should we run a full calibration ? */
2323 
2324  ah->ah_cal_next_full = jiffies +
2327 
2328  ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2329  "running full calibration\n");
2330 
2332  /*
2333  * Rfgain is out of bounds, reset the chip
2334  * to load new gain values.
2335  */
2336  ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2337  "got new rfgain, resetting\n");
2338  ieee80211_queue_work(ah->hw, &ah->reset_work);
2339  }
2340  } else
2342 
2343 
2344  ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2345  ieee80211_frequency_to_channel(ah->curchan->center_freq),
2346  ah->curchan->hw_value);
2347 
2348  if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2349  ATH5K_ERR(ah, "calibration of channel %u failed\n",
2351  ah->curchan->center_freq));
2352 
2353  /* Clear calibration flags */
2356  else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2358 }
2359 
2360 
2361 static void
2362 ath5k_tasklet_ani(unsigned long data)
2363 {
2364  struct ath5k_hw *ah = (void *)data;
2365 
2369 }
2370 
2371 
2372 static void
2373 ath5k_tx_complete_poll_work(struct work_struct *work)
2374 {
2375  struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2376  tx_complete_work.work);
2377  struct ath5k_txq *txq;
2378  int i;
2379  bool needreset = false;
2380 
2381  mutex_lock(&ah->lock);
2382 
2383  for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2384  if (ah->txqs[i].setup) {
2385  txq = &ah->txqs[i];
2386  spin_lock_bh(&txq->lock);
2387  if (txq->txq_len > 1) {
2388  if (txq->txq_poll_mark) {
2389  ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2390  "TX queue stuck %d\n",
2391  txq->qnum);
2392  needreset = true;
2393  txq->txq_stuck++;
2394  spin_unlock_bh(&txq->lock);
2395  break;
2396  } else {
2397  txq->txq_poll_mark = true;
2398  }
2399  }
2400  spin_unlock_bh(&txq->lock);
2401  }
2402  }
2403 
2404  if (needreset) {
2405  ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2406  "TX queues stuck, resetting\n");
2407  ath5k_reset(ah, NULL, true);
2408  }
2409 
2410  mutex_unlock(&ah->lock);
2411 
2414 }
2415 
2416 
2417 /*************************\
2418 * Initialization routines *
2419 \*************************/
2420 
2421 static const struct ieee80211_iface_limit if_limits[] = {
2422  { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) },
2423  { .max = 4, .types =
2424 #ifdef CONFIG_MAC80211_MESH
2426 #endif
2428 };
2429 
2430 static const struct ieee80211_iface_combination if_comb = {
2431  .limits = if_limits,
2432  .n_limits = ARRAY_SIZE(if_limits),
2433  .max_interfaces = 2048,
2434  .num_different_channels = 1,
2435 };
2436 
2437 int __devinit
2438 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2439 {
2440  struct ieee80211_hw *hw = ah->hw;
2441  struct ath_common *common;
2442  int ret;
2443  int csz;
2444 
2445  /* Initialize driver private data */
2446  SET_IEEE80211_DEV(hw, ah->dev);
2452 
2453  hw->wiphy->interface_modes =
2458 
2459  hw->wiphy->iface_combinations = &if_comb;
2460  hw->wiphy->n_iface_combinations = 1;
2461 
2462  /* SW support for IBSS_RSN is provided by mac80211 */
2463  hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2464 
2465  /* both antennas can be configured as RX or TX */
2466  hw->wiphy->available_antennas_tx = 0x3;
2467  hw->wiphy->available_antennas_rx = 0x3;
2468 
2469  hw->extra_tx_headroom = 2;
2470  hw->channel_change_time = 5000;
2471 
2472  /*
2473  * Mark the device as detached to avoid processing
2474  * interrupts until setup is complete.
2475  */
2476  __set_bit(ATH_STAT_INVALID, ah->status);
2477 
2479  ah->bintval = 1000;
2480  mutex_init(&ah->lock);
2481  spin_lock_init(&ah->rxbuflock);
2482  spin_lock_init(&ah->txbuflock);
2483  spin_lock_init(&ah->block);
2484  spin_lock_init(&ah->irqlock);
2485 
2486  /* Setup interrupt handler */
2487  ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2488  if (ret) {
2489  ATH5K_ERR(ah, "request_irq failed\n");
2490  goto err;
2491  }
2492 
2493  common = ath5k_hw_common(ah);
2494  common->ops = &ath5k_common_ops;
2495  common->bus_ops = bus_ops;
2496  common->ah = ah;
2497  common->hw = hw;
2498  common->priv = ah;
2499  common->clockrate = 40;
2500 
2501  /*
2502  * Cache line size is used to size and align various
2503  * structures used to communicate with the hardware.
2504  */
2505  ath5k_read_cachesize(common, &csz);
2506  common->cachelsz = csz << 2; /* convert to bytes */
2507 
2508  spin_lock_init(&common->cc_lock);
2509 
2510  /* Initialize device */
2511  ret = ath5k_hw_init(ah);
2512  if (ret)
2513  goto err_irq;
2514 
2515  /* Set up multi-rate retry capabilities */
2516  if (ah->ah_capabilities.cap_has_mrr_support) {
2517  hw->max_rates = 4;
2520  }
2521 
2522  hw->vif_data_size = sizeof(struct ath5k_vif);
2523 
2524  /* Finish private driver data initialization */
2525  ret = ath5k_init(hw);
2526  if (ret)
2527  goto err_ah;
2528 
2529  ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2531  ah->ah_mac_srev,
2532  ah->ah_phy_revision);
2533 
2534  if (!ah->ah_single_chip) {
2535  /* Single chip radio (!RF5111) */
2536  if (ah->ah_radio_5ghz_revision &&
2537  !ah->ah_radio_2ghz_revision) {
2538  /* No 5GHz support -> report 2GHz radio */
2539  if (!test_bit(AR5K_MODE_11A,
2540  ah->ah_capabilities.cap_mode)) {
2541  ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2545  /* No 2GHz support (5110 and some
2546  * 5GHz only cards) -> report 5GHz radio */
2547  } else if (!test_bit(AR5K_MODE_11B,
2548  ah->ah_capabilities.cap_mode)) {
2549  ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2553  /* Multiband radio */
2554  } else {
2555  ATH5K_INFO(ah, "RF%s multiband radio found"
2556  " (0x%x)\n",
2560  }
2561  }
2562  /* Multi chip radio (RF5111 - RF2111) ->
2563  * report both 2GHz/5GHz radios */
2564  else if (ah->ah_radio_5ghz_revision &&
2565  ah->ah_radio_2ghz_revision) {
2566  ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2570  ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2574  }
2575  }
2576 
2578 
2579  /* ready to process interrupts */
2580  __clear_bit(ATH_STAT_INVALID, ah->status);
2581 
2582  return 0;
2583 err_ah:
2584  ath5k_hw_deinit(ah);
2585 err_irq:
2586  free_irq(ah->irq, ah);
2587 err:
2588  return ret;
2589 }
2590 
2591 static int
2592 ath5k_stop_locked(struct ath5k_hw *ah)
2593 {
2594 
2595  ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2596  test_bit(ATH_STAT_INVALID, ah->status));
2597 
2598  /*
2599  * Shutdown the hardware and driver:
2600  * stop output from above
2601  * disable interrupts
2602  * turn off timers
2603  * turn off the radio
2604  * clear transmit machinery
2605  * clear receive machinery
2606  * drain and release tx queues
2607  * reclaim beacon resources
2608  * power down hardware
2609  *
2610  * Note that some of this work is not possible if the
2611  * hardware is gone (invalid).
2612  */
2614 
2615  if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2616  ath5k_led_off(ah);
2617  ath5k_hw_set_imr(ah, 0);
2618  synchronize_irq(ah->irq);
2619  ath5k_rx_stop(ah);
2620  ath5k_hw_dma_stop(ah);
2621  ath5k_drain_tx_buffs(ah);
2623  }
2624 
2625  return 0;
2626 }
2627 
2628 int ath5k_start(struct ieee80211_hw *hw)
2629 {
2630  struct ath5k_hw *ah = hw->priv;
2631  struct ath_common *common = ath5k_hw_common(ah);
2632  int ret, i;
2633 
2634  mutex_lock(&ah->lock);
2635 
2636  ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2637 
2638  /*
2639  * Stop anything previously setup. This is safe
2640  * no matter this is the first time through or not.
2641  */
2642  ath5k_stop_locked(ah);
2643 
2644  /*
2645  * The basic interface to setting the hardware in a good
2646  * state is ``reset''. On return the hardware is known to
2647  * be powered up and with interrupts disabled. This must
2648  * be followed by initialization of the appropriate bits
2649  * and then setup of the interrupt mask.
2650  */
2651  ah->curchan = ah->hw->conf.channel;
2652  ah->imask = AR5K_INT_RXOK
2653  | AR5K_INT_RXERR
2654  | AR5K_INT_RXEOL
2655  | AR5K_INT_RXORN
2656  | AR5K_INT_TXDESC
2657  | AR5K_INT_TXEOL
2658  | AR5K_INT_FATAL
2659  | AR5K_INT_GLOBAL
2660  | AR5K_INT_MIB;
2661 
2662  ret = ath5k_reset(ah, NULL, false);
2663  if (ret)
2664  goto done;
2665 
2666  if (!ath5k_modparam_no_hw_rfkill_switch)
2668 
2669  /*
2670  * Reset the key cache since some parts do not reset the
2671  * contents on initial power up or resume from suspend.
2672  */
2673  for (i = 0; i < common->keymax; i++)
2674  ath_hw_keyreset(common, (u16) i);
2675 
2676  /* Use higher rates for acks instead of base
2677  * rate */
2678  ah->ah_ack_bitrate_high = true;
2679 
2680  for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2681  ah->bslot[i] = NULL;
2682 
2683  ret = 0;
2684 done:
2685  mmiowb();
2686  mutex_unlock(&ah->lock);
2687 
2690 
2691  return ret;
2692 }
2693 
2694 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2695 {
2696  ah->rx_pending = false;
2697  ah->tx_pending = false;
2698  tasklet_kill(&ah->rxtq);
2699  tasklet_kill(&ah->txtq);
2700  tasklet_kill(&ah->beacontq);
2701  tasklet_kill(&ah->ani_tasklet);
2702 }
2703 
2704 /*
2705  * Stop the device, grabbing the top-level lock to protect
2706  * against concurrent entry through ath5k_init (which can happen
2707  * if another thread does a system call and the thread doing the
2708  * stop is preempted).
2709  */
2710 void ath5k_stop(struct ieee80211_hw *hw)
2711 {
2712  struct ath5k_hw *ah = hw->priv;
2713  int ret;
2714 
2715  mutex_lock(&ah->lock);
2716  ret = ath5k_stop_locked(ah);
2717  if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2718  /*
2719  * Don't set the card in full sleep mode!
2720  *
2721  * a) When the device is in this state it must be carefully
2722  * woken up or references to registers in the PCI clock
2723  * domain may freeze the bus (and system). This varies
2724  * by chip and is mostly an issue with newer parts
2725  * (madwifi sources mentioned srev >= 0x78) that go to
2726  * sleep more quickly.
2727  *
2728  * b) On older chips full sleep results a weird behaviour
2729  * during wakeup. I tested various cards with srev < 0x78
2730  * and they don't wake up after module reload, a second
2731  * module reload is needed to bring the card up again.
2732  *
2733  * Until we figure out what's going on don't enable
2734  * full chip reset on any chip (this is what Legacy HAL
2735  * and Sam's HAL do anyway). Instead Perform a full reset
2736  * on the device (same as initial state after attach) and
2737  * leave it idle (keep MAC/BB on warm reset) */
2738  ret = ath5k_hw_on_hold(ah);
2739 
2740  ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2741  "putting device to sleep\n");
2742  }
2743 
2744  mmiowb();
2745  mutex_unlock(&ah->lock);
2746 
2747  ath5k_stop_tasklets(ah);
2748 
2750 
2751  if (!ath5k_modparam_no_hw_rfkill_switch)
2753 }
2754 
2755 /*
2756  * Reset the hardware. If chan is not NULL, then also pause rx/tx
2757  * and change to the given channel.
2758  *
2759  * This should be called with ah->lock.
2760  */
2761 static int
2762 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2763  bool skip_pcu)
2764 {
2765  struct ath_common *common = ath5k_hw_common(ah);
2766  int ret, ani_mode;
2767  bool fast;
2768 
2769  ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2770 
2771  ath5k_hw_set_imr(ah, 0);
2772  synchronize_irq(ah->irq);
2773  ath5k_stop_tasklets(ah);
2774 
2775  /* Save ani mode and disable ANI during
2776  * reset. If we don't we might get false
2777  * PHY error interrupts. */
2778  ani_mode = ah->ani_state.ani_mode;
2780 
2781  /* We are going to empty hw queues
2782  * so we should also free any remaining
2783  * tx buffers */
2784  ath5k_drain_tx_buffs(ah);
2785  if (chan)
2786  ah->curchan = chan;
2787 
2788  fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2789 
2790  ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2791  if (ret) {
2792  ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2793  goto err;
2794  }
2795 
2796  ret = ath5k_rx_start(ah);
2797  if (ret) {
2798  ATH5K_ERR(ah, "can't start recv logic\n");
2799  goto err;
2800  }
2801 
2802  ath5k_ani_init(ah, ani_mode);
2803 
2804  /*
2805  * Set calibration intervals
2806  *
2807  * Note: We don't need to run calibration imediately
2808  * since some initial calibration is done on reset
2809  * even for fast channel switching. Also on scanning
2810  * this will get set again and again and it won't get
2811  * executed unless we connect somewhere and spend some
2812  * time on the channel (that's what calibration needs
2813  * anyway to be accurate).
2814  */
2815  ah->ah_cal_next_full = jiffies +
2817  ah->ah_cal_next_ani = jiffies +
2819  ah->ah_cal_next_short = jiffies +
2821 
2822  ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2823 
2824  /* clear survey data and cycle counters */
2825  memset(&ah->survey, 0, sizeof(ah->survey));
2826  spin_lock_bh(&common->cc_lock);
2828  memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2829  memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2830  spin_unlock_bh(&common->cc_lock);
2831 
2832  /*
2833  * Change channels and update the h/w rate map if we're switching;
2834  * e.g. 11a to 11b/g.
2835  *
2836  * We may be doing a reset in response to an ioctl that changes the
2837  * channel so update any state that might change as a result.
2838  *
2839  * XXX needed?
2840  */
2841 /* ath5k_chan_change(ah, c); */
2842 
2843  ath5k_beacon_config(ah);
2844  /* intrs are enabled by ath5k_beacon_config */
2845 
2847 
2848  return 0;
2849 err:
2850  return ret;
2851 }
2852 
2853 static void ath5k_reset_work(struct work_struct *work)
2854 {
2855  struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2856  reset_work);
2857 
2858  mutex_lock(&ah->lock);
2859  ath5k_reset(ah, NULL, true);
2860  mutex_unlock(&ah->lock);
2861 }
2862 
2863 static int __devinit
2864 ath5k_init(struct ieee80211_hw *hw)
2865 {
2866 
2867  struct ath5k_hw *ah = hw->priv;
2868  struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2869  struct ath5k_txq *txq;
2870  u8 mac[ETH_ALEN] = {};
2871  int ret;
2872 
2873 
2874  /*
2875  * Collect the channel list. The 802.11 layer
2876  * is responsible for filtering this list based
2877  * on settings like the phy mode and regulatory
2878  * domain restrictions.
2879  */
2880  ret = ath5k_setup_bands(hw);
2881  if (ret) {
2882  ATH5K_ERR(ah, "can't get channels\n");
2883  goto err;
2884  }
2885 
2886  /*
2887  * Allocate tx+rx descriptors and populate the lists.
2888  */
2889  ret = ath5k_desc_alloc(ah);
2890  if (ret) {
2891  ATH5K_ERR(ah, "can't allocate descriptors\n");
2892  goto err;
2893  }
2894 
2895  /*
2896  * Allocate hardware transmit queues: one queue for
2897  * beacon frames and one data queue for each QoS
2898  * priority. Note that hw functions handle resetting
2899  * these queues at the needed time.
2900  */
2901  ret = ath5k_beaconq_setup(ah);
2902  if (ret < 0) {
2903  ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2904  goto err_desc;
2905  }
2906  ah->bhalq = ret;
2907  ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2908  if (IS_ERR(ah->cabq)) {
2909  ATH5K_ERR(ah, "can't setup cab queue\n");
2910  ret = PTR_ERR(ah->cabq);
2911  goto err_bhal;
2912  }
2913 
2914  /* 5211 and 5212 usually support 10 queues but we better rely on the
2915  * capability information */
2916  if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2917  /* This order matches mac80211's queue priority, so we can
2918  * directly use the mac80211 queue number without any mapping */
2919  txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2920  if (IS_ERR(txq)) {
2921  ATH5K_ERR(ah, "can't setup xmit queue\n");
2922  ret = PTR_ERR(txq);
2923  goto err_queues;
2924  }
2925  txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2926  if (IS_ERR(txq)) {
2927  ATH5K_ERR(ah, "can't setup xmit queue\n");
2928  ret = PTR_ERR(txq);
2929  goto err_queues;
2930  }
2931  txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2932  if (IS_ERR(txq)) {
2933  ATH5K_ERR(ah, "can't setup xmit queue\n");
2934  ret = PTR_ERR(txq);
2935  goto err_queues;
2936  }
2937  txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2938  if (IS_ERR(txq)) {
2939  ATH5K_ERR(ah, "can't setup xmit queue\n");
2940  ret = PTR_ERR(txq);
2941  goto err_queues;
2942  }
2943  hw->queues = 4;
2944  } else {
2945  /* older hardware (5210) can only support one data queue */
2946  txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2947  if (IS_ERR(txq)) {
2948  ATH5K_ERR(ah, "can't setup xmit queue\n");
2949  ret = PTR_ERR(txq);
2950  goto err_queues;
2951  }
2952  hw->queues = 1;
2953  }
2954 
2955  tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
2956  tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
2957  tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
2958  tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
2959 
2960  INIT_WORK(&ah->reset_work, ath5k_reset_work);
2961  INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
2962  INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
2963 
2964  ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
2965  if (ret) {
2966  ATH5K_ERR(ah, "unable to read address from EEPROM\n");
2967  goto err_queues;
2968  }
2969 
2970  SET_IEEE80211_PERM_ADDR(hw, mac);
2971  /* All MAC address bits matter for ACKs */
2973 
2974  regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2975  ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2976  if (ret) {
2977  ATH5K_ERR(ah, "can't initialize regulatory system\n");
2978  goto err_queues;
2979  }
2980 
2981  ret = ieee80211_register_hw(hw);
2982  if (ret) {
2983  ATH5K_ERR(ah, "can't register ieee80211 hw\n");
2984  goto err_queues;
2985  }
2986 
2987  if (!ath_is_world_regd(regulatory))
2988  regulatory_hint(hw->wiphy, regulatory->alpha2);
2989 
2990  ath5k_init_leds(ah);
2991 
2993 
2994  return 0;
2995 err_queues:
2996  ath5k_txq_release(ah);
2997 err_bhal:
2999 err_desc:
3000  ath5k_desc_free(ah);
3001 err:
3002  return ret;
3003 }
3004 
3005 void
3007 {
3008  struct ieee80211_hw *hw = ah->hw;
3009 
3010  /*
3011  * NB: the order of these is important:
3012  * o call the 802.11 layer before detaching ath5k_hw to
3013  * ensure callbacks into the driver to delete global
3014  * key cache entries can be handled
3015  * o reclaim the tx queue data structures after calling
3016  * the 802.11 layer as we'll get called back to reclaim
3017  * node state and potentially want to use them
3018  * o to cleanup the tx queues the hal is called, so detach
3019  * it last
3020  * XXX: ??? detach ath5k_hw ???
3021  * Other than that, it's straightforward...
3022  */
3024  ath5k_desc_free(ah);
3025  ath5k_txq_release(ah);
3028 
3030  /*
3031  * NB: can't reclaim these until after ieee80211_ifdetach
3032  * returns because we'll get called back to reclaim node
3033  * state and potentially want to use them.
3034  */
3035  ath5k_hw_deinit(ah);
3036  free_irq(ah->irq, ah);
3037 }
3038 
3039 bool
3041 {
3042  struct ath5k_vif_iter_data iter_data;
3043  iter_data.hw_macaddr = NULL;
3044  iter_data.any_assoc = false;
3045  iter_data.need_set_hw_addr = false;
3046  iter_data.found_active = true;
3047 
3049  &iter_data);
3050  return iter_data.any_assoc;
3051 }
3052 
3053 void
3055 {
3056  struct ath5k_hw *ah = hw->priv;
3057  u32 rfilt;
3058  rfilt = ath5k_hw_get_rx_filter(ah);
3059  if (enable)
3060  rfilt |= AR5K_RX_FILTER_BEACON;
3061  else
3062  rfilt &= ~AR5K_RX_FILTER_BEACON;
3063  ath5k_hw_set_rx_filter(ah, rfilt);
3064  ah->filter_flags = rfilt;
3065 }
3066 
3067 void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3068  const char *fmt, ...)
3069 {
3070  struct va_format vaf;
3071  va_list args;
3072 
3073  va_start(args, fmt);
3074 
3075  vaf.fmt = fmt;
3076  vaf.va = &args;
3077 
3078  if (ah && ah->hw)
3079  printk("%s" pr_fmt("%s: %pV"),
3080  level, wiphy_name(ah->hw->wiphy), &vaf);
3081  else
3082  printk("%s" pr_fmt("%pV"), level, &vaf);
3083 
3084  va_end(args);
3085 }