Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ipw2200.c
Go to the documentation of this file.
1 /******************************************************************************
2 
3  Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4 
5  802.11 status code portion of this file from ethereal-0.10.6:
6  Copyright 2000, Axis Communications AB
7  Ethereal - Network traffic analyzer
8  By Gerald Combs <[email protected]>
9  Copyright 1998 Gerald Combs
10 
11  This program is free software; you can redistribute it and/or modify it
12  under the terms of version 2 of the GNU General Public License as
13  published by the Free Software Foundation.
14 
15  This program is distributed in the hope that it will be useful, but WITHOUT
16  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18  more details.
19 
20  You should have received a copy of the GNU General Public License along with
21  this program; if not, write to the Free Software Foundation, Inc., 59
22  Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 
24  The full GNU General Public License is included in this distribution in the
25  file called LICENSE.
26 
27  Contact Information:
28  Intel Linux Wireless <[email protected]>
29  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 
31 ******************************************************************************/
32 
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <net/cfg80211-wext.h>
36 #include "ipw2200.h"
37 #include "ipw.h"
38 
39 
40 #ifndef KBUILD_EXTMOD
41 #define VK "k"
42 #else
43 #define VK
44 #endif
45 
46 #ifdef CONFIG_IPW2200_DEBUG
47 #define VD "d"
48 #else
49 #define VD
50 #endif
51 
52 #ifdef CONFIG_IPW2200_MONITOR
53 #define VM "m"
54 #else
55 #define VM
56 #endif
57 
58 #ifdef CONFIG_IPW2200_PROMISCUOUS
59 #define VP "p"
60 #else
61 #define VP
62 #endif
63 
64 #ifdef CONFIG_IPW2200_RADIOTAP
65 #define VR "r"
66 #else
67 #define VR
68 #endif
69 
70 #ifdef CONFIG_IPW2200_QOS
71 #define VQ "q"
72 #else
73 #define VQ
74 #endif
75 
76 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
77 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
78 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
79 #define DRV_VERSION IPW2200_VERSION
80 
81 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
82 
86 MODULE_LICENSE("GPL");
87 MODULE_FIRMWARE("ipw2200-ibss.fw");
88 #ifdef CONFIG_IPW2200_MONITOR
89 MODULE_FIRMWARE("ipw2200-sniffer.fw");
90 #endif
91 MODULE_FIRMWARE("ipw2200-bss.fw");
92 
93 static int cmdlog = 0;
94 static int debug = 0;
95 static int default_channel = 0;
96 static int network_mode = 0;
97 
98 static u32 ipw_debug_level;
99 static int associate;
100 static int auto_create = 1;
101 static int led_support = 1;
102 static int disable = 0;
103 static int bt_coexist = 0;
104 static int hwcrypto = 0;
105 static int roaming = 1;
106 static const char ipw_modes[] = {
107  'a', 'b', 'g', '?'
108 };
109 static int antenna = CFG_SYS_ANTENNA_BOTH;
110 
111 #ifdef CONFIG_IPW2200_PROMISCUOUS
112 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
113 #endif
114 
115 static struct ieee80211_rate ipw2200_rates[] = {
116  { .bitrate = 10 },
117  { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
118  { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
119  { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
120  { .bitrate = 60 },
121  { .bitrate = 90 },
122  { .bitrate = 120 },
123  { .bitrate = 180 },
124  { .bitrate = 240 },
125  { .bitrate = 360 },
126  { .bitrate = 480 },
127  { .bitrate = 540 }
128 };
129 
130 #define ipw2200_a_rates (ipw2200_rates + 4)
131 #define ipw2200_num_a_rates 8
132 #define ipw2200_bg_rates (ipw2200_rates + 0)
133 #define ipw2200_num_bg_rates 12
134 
135 /* Ugly macro to convert literal channel numbers into their mhz equivalents
136  * There are certianly some conditions that will break this (like feeding it '30')
137  * but they shouldn't arise since nothing talks on channel 30. */
138 #define ieee80211chan2mhz(x) \
139  (((x) <= 14) ? \
140  (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
141  ((x) + 1000) * 5)
142 
143 #ifdef CONFIG_IPW2200_QOS
144 static int qos_enable = 0;
145 static int qos_burst_enable = 0;
146 static int qos_no_ack_mask = 0;
147 static int burst_duration_CCK = 0;
148 static int burst_duration_OFDM = 0;
149 
150 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
159 };
160 
161 static struct libipw_qos_parameters def_qos_parameters_CCK = {
170 };
171 
172 static struct libipw_qos_parameters def_parameters_OFDM = {
181 };
182 
183 static struct libipw_qos_parameters def_parameters_CCK = {
192 };
193 
194 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
195 
196 static int from_priority_to_tx_queue[] = {
199 };
200 
201 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
202 
203 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
204  *qos_param);
205 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
206  *qos_param);
207 #endif /* CONFIG_IPW2200_QOS */
208 
209 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
210 static void ipw_remove_current_network(struct ipw_priv *priv);
211 static void ipw_rx(struct ipw_priv *priv);
212 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
213  struct clx2_tx_queue *txq, int qindex);
214 static int ipw_queue_reset(struct ipw_priv *priv);
215 
216 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
217  int len, int sync);
218 
219 static void ipw_tx_queue_free(struct ipw_priv *);
220 
221 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
222 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
223 static void ipw_rx_queue_replenish(void *);
224 static int ipw_up(struct ipw_priv *);
225 static void ipw_bg_up(struct work_struct *work);
226 static void ipw_down(struct ipw_priv *);
227 static void ipw_bg_down(struct work_struct *work);
228 static int ipw_config(struct ipw_priv *);
229 static int init_supported_rates(struct ipw_priv *priv,
230  struct ipw_supported_rates *prates);
231 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
232 static void ipw_send_wep_keys(struct ipw_priv *, int);
233 
234 static int snprint_line(char *buf, size_t count,
235  const u8 * data, u32 len, u32 ofs)
236 {
237  int out, i, j, l;
238  char c;
239 
240  out = snprintf(buf, count, "%08X", ofs);
241 
242  for (l = 0, i = 0; i < 2; i++) {
243  out += snprintf(buf + out, count - out, " ");
244  for (j = 0; j < 8 && l < len; j++, l++)
245  out += snprintf(buf + out, count - out, "%02X ",
246  data[(i * 8 + j)]);
247  for (; j < 8; j++)
248  out += snprintf(buf + out, count - out, " ");
249  }
250 
251  out += snprintf(buf + out, count - out, " ");
252  for (l = 0, i = 0; i < 2; i++) {
253  out += snprintf(buf + out, count - out, " ");
254  for (j = 0; j < 8 && l < len; j++, l++) {
255  c = data[(i * 8 + j)];
256  if (!isascii(c) || !isprint(c))
257  c = '.';
258 
259  out += snprintf(buf + out, count - out, "%c", c);
260  }
261 
262  for (; j < 8; j++)
263  out += snprintf(buf + out, count - out, " ");
264  }
265 
266  return out;
267 }
268 
269 static void printk_buf(int level, const u8 * data, u32 len)
270 {
271  char line[81];
272  u32 ofs = 0;
273  if (!(ipw_debug_level & level))
274  return;
275 
276  while (len) {
277  snprint_line(line, sizeof(line), &data[ofs],
278  min(len, 16U), ofs);
279  printk(KERN_DEBUG "%s\n", line);
280  ofs += 16;
281  len -= min(len, 16U);
282  }
283 }
284 
285 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
286 {
287  size_t out = size;
288  u32 ofs = 0;
289  int total = 0;
290 
291  while (size && len) {
292  out = snprint_line(output, size, &data[ofs],
293  min_t(size_t, len, 16U), ofs);
294 
295  ofs += 16;
296  output += out;
297  size -= out;
298  len -= min_t(size_t, len, 16U);
299  total += out;
300  }
301  return total;
302 }
303 
304 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
305 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
306 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
307 
308 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
309 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
310 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
311 
312 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
313 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
314 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
315 {
316  IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
317  __LINE__, (u32) (b), (u32) (c));
318  _ipw_write_reg8(a, b, c);
319 }
320 
321 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
322 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
323 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
324 {
325  IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
326  __LINE__, (u32) (b), (u32) (c));
327  _ipw_write_reg16(a, b, c);
328 }
329 
330 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
331 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
332 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
333 {
334  IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
335  __LINE__, (u32) (b), (u32) (c));
336  _ipw_write_reg32(a, b, c);
337 }
338 
339 /* 8-bit direct write (low 4K) */
340 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
341  u8 val)
342 {
343  writeb(val, ipw->hw_base + ofs);
344 }
345 
346 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write8(ipw, ofs, val) do { \
348  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
349  __LINE__, (u32)(ofs), (u32)(val)); \
350  _ipw_write8(ipw, ofs, val); \
351 } while (0)
352 
353 /* 16-bit direct write (low 4K) */
354 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
355  u16 val)
356 {
357  writew(val, ipw->hw_base + ofs);
358 }
359 
360 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write16(ipw, ofs, val) do { \
362  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
363  __LINE__, (u32)(ofs), (u32)(val)); \
364  _ipw_write16(ipw, ofs, val); \
365 } while (0)
366 
367 /* 32-bit direct write (low 4K) */
368 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
369  u32 val)
370 {
371  writel(val, ipw->hw_base + ofs);
372 }
373 
374 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
375 #define ipw_write32(ipw, ofs, val) do { \
376  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
377  __LINE__, (u32)(ofs), (u32)(val)); \
378  _ipw_write32(ipw, ofs, val); \
379 } while (0)
380 
381 /* 8-bit direct read (low 4K) */
382 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
383 {
384  return readb(ipw->hw_base + ofs);
385 }
386 
387 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
388 #define ipw_read8(ipw, ofs) ({ \
389  IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
390  (u32)(ofs)); \
391  _ipw_read8(ipw, ofs); \
392 })
393 
394 /* 16-bit direct read (low 4K) */
395 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
396 {
397  return readw(ipw->hw_base + ofs);
398 }
399 
400 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
401 #define ipw_read16(ipw, ofs) ({ \
402  IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
403  (u32)(ofs)); \
404  _ipw_read16(ipw, ofs); \
405 })
406 
407 /* 32-bit direct read (low 4K) */
408 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
409 {
410  return readl(ipw->hw_base + ofs);
411 }
412 
413 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
414 #define ipw_read32(ipw, ofs) ({ \
415  IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
416  (u32)(ofs)); \
417  _ipw_read32(ipw, ofs); \
418 })
419 
420 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
421 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
422 #define ipw_read_indirect(a, b, c, d) ({ \
423  IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
424  __LINE__, (u32)(b), (u32)(d)); \
425  _ipw_read_indirect(a, b, c, d); \
426 })
427 
428 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
429 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
430  int num);
431 #define ipw_write_indirect(a, b, c, d) do { \
432  IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
433  __LINE__, (u32)(b), (u32)(d)); \
434  _ipw_write_indirect(a, b, c, d); \
435 } while (0)
436 
437 /* 32-bit indirect write (above 4K) */
438 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
439 {
440  IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
441  _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
442  _ipw_write32(priv, IPW_INDIRECT_DATA, value);
443 }
444 
445 /* 8-bit indirect write (above 4K) */
446 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
447 {
448  u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
449  u32 dif_len = reg - aligned_addr;
450 
451  IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
452  _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
453  _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
454 }
455 
456 /* 16-bit indirect write (above 4K) */
457 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
458 {
459  u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
460  u32 dif_len = (reg - aligned_addr) & (~0x1ul);
461 
462  IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
463  _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
464  _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
465 }
466 
467 /* 8-bit indirect read (above 4K) */
468 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
469 {
470  u32 word;
471  _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
472  IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
473  word = _ipw_read32(priv, IPW_INDIRECT_DATA);
474  return (word >> ((reg & 0x3) * 8)) & 0xff;
475 }
476 
477 /* 32-bit indirect read (above 4K) */
478 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
479 {
480  u32 value;
481 
482  IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
483 
484  _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
485  value = _ipw_read32(priv, IPW_INDIRECT_DATA);
486  IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
487  return value;
488 }
489 
490 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
491 /* for area above 1st 4K of SRAM/reg space */
492 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
493  int num)
494 {
495  u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
496  u32 dif_len = addr - aligned_addr;
497  u32 i;
498 
499  IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
500 
501  if (num <= 0) {
502  return;
503  }
504 
505  /* Read the first dword (or portion) byte by byte */
506  if (unlikely(dif_len)) {
507  _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508  /* Start reading at aligned_addr + dif_len */
509  for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
510  *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
511  aligned_addr += 4;
512  }
513 
514  /* Read all of the middle dwords as dwords, with auto-increment */
515  _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
516  for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
517  *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
518 
519  /* Read the last dword (or portion) byte by byte */
520  if (unlikely(num)) {
521  _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
522  for (i = 0; num > 0; i++, num--)
523  *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
524  }
525 }
526 
527 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
528 /* for area above 1st 4K of SRAM/reg space */
529 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
530  int num)
531 {
532  u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
533  u32 dif_len = addr - aligned_addr;
534  u32 i;
535 
536  IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
537 
538  if (num <= 0) {
539  return;
540  }
541 
542  /* Write the first dword (or portion) byte by byte */
543  if (unlikely(dif_len)) {
544  _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545  /* Start writing at aligned_addr + dif_len */
546  for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
547  _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
548  aligned_addr += 4;
549  }
550 
551  /* Write all of the middle dwords as dwords, with auto-increment */
552  _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
553  for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
554  _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
555 
556  /* Write the last dword (or portion) byte by byte */
557  if (unlikely(num)) {
558  _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
559  for (i = 0; num > 0; i++, num--, buf++)
560  _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
561  }
562 }
563 
564 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
565 /* for 1st 4K of SRAM/regs space */
566 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
567  int num)
568 {
569  memcpy_toio((priv->hw_base + addr), buf, num);
570 }
571 
572 /* Set bit(s) in low 4K of SRAM/regs */
573 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
574 {
575  ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
576 }
577 
578 /* Clear bit(s) in low 4K of SRAM/regs */
579 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
580 {
581  ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
582 }
583 
584 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
585 {
586  if (priv->status & STATUS_INT_ENABLED)
587  return;
588  priv->status |= STATUS_INT_ENABLED;
590 }
591 
592 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
593 {
594  if (!(priv->status & STATUS_INT_ENABLED))
595  return;
596  priv->status &= ~STATUS_INT_ENABLED;
598 }
599 
600 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
601 {
602  unsigned long flags;
603 
604  spin_lock_irqsave(&priv->irq_lock, flags);
605  __ipw_enable_interrupts(priv);
606  spin_unlock_irqrestore(&priv->irq_lock, flags);
607 }
608 
609 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
610 {
611  unsigned long flags;
612 
613  spin_lock_irqsave(&priv->irq_lock, flags);
614  __ipw_disable_interrupts(priv);
615  spin_unlock_irqrestore(&priv->irq_lock, flags);
616 }
617 
618 static char *ipw_error_desc(u32 val)
619 {
620  switch (val) {
621  case IPW_FW_ERROR_OK:
622  return "ERROR_OK";
623  case IPW_FW_ERROR_FAIL:
624  return "ERROR_FAIL";
626  return "MEMORY_UNDERFLOW";
628  return "MEMORY_OVERFLOW";
630  return "BAD_PARAM";
632  return "BAD_CHECKSUM";
634  return "NMI_INTERRUPT";
636  return "BAD_DATABASE";
638  return "ALLOC_FAIL";
640  return "DMA_UNDERRUN";
642  return "DMA_STATUS";
644  return "DINO_ERROR";
646  return "EEPROM_ERROR";
648  return "SYSASSERT";
650  return "FATAL_ERROR";
651  default:
652  return "UNKNOWN_ERROR";
653  }
654 }
655 
656 static void ipw_dump_error_log(struct ipw_priv *priv,
657  struct ipw_fw_error *error)
658 {
659  u32 i;
660 
661  if (!error) {
662  IPW_ERROR("Error allocating and capturing error log. "
663  "Nothing to dump.\n");
664  return;
665  }
666 
667  IPW_ERROR("Start IPW Error Log Dump:\n");
668  IPW_ERROR("Status: 0x%08X, Config: %08X\n",
669  error->status, error->config);
670 
671  for (i = 0; i < error->elem_len; i++)
672  IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
673  ipw_error_desc(error->elem[i].desc),
674  error->elem[i].time,
675  error->elem[i].blink1,
676  error->elem[i].blink2,
677  error->elem[i].link1,
678  error->elem[i].link2, error->elem[i].data);
679  for (i = 0; i < error->log_len; i++)
680  IPW_ERROR("%i\t0x%08x\t%i\n",
681  error->log[i].time,
682  error->log[i].data, error->log[i].event);
683 }
684 
685 static inline int ipw_is_init(struct ipw_priv *priv)
686 {
687  return (priv->status & STATUS_INIT) ? 1 : 0;
688 }
689 
690 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
691 {
692  u32 addr, field_info, field_len, field_count, total_len;
693 
694  IPW_DEBUG_ORD("ordinal = %i\n", ord);
695 
696  if (!priv || !val || !len) {
697  IPW_DEBUG_ORD("Invalid argument\n");
698  return -EINVAL;
699  }
700 
701  /* verify device ordinal tables have been initialized */
702  if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
703  IPW_DEBUG_ORD("Access ordinals before initialization\n");
704  return -EINVAL;
705  }
706 
707  switch (IPW_ORD_TABLE_ID_MASK & ord) {
709  /*
710  * TABLE 0: Direct access to a table of 32 bit values
711  *
712  * This is a very simple table with the data directly
713  * read from the table
714  */
715 
716  /* remove the table id from the ordinal */
718 
719  /* boundary check */
720  if (ord > priv->table0_len) {
721  IPW_DEBUG_ORD("ordinal value (%i) longer then "
722  "max (%i)\n", ord, priv->table0_len);
723  return -EINVAL;
724  }
725 
726  /* verify we have enough room to store the value */
727  if (*len < sizeof(u32)) {
728  IPW_DEBUG_ORD("ordinal buffer length too small, "
729  "need %zd\n", sizeof(u32));
730  return -EINVAL;
731  }
732 
733  IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
734  ord, priv->table0_addr + (ord << 2));
735 
736  *len = sizeof(u32);
737  ord <<= 2;
738  *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
739  break;
740 
742  /*
743  * TABLE 1: Indirect access to a table of 32 bit values
744  *
745  * This is a fairly large table of u32 values each
746  * representing starting addr for the data (which is
747  * also a u32)
748  */
749 
750  /* remove the table id from the ordinal */
752 
753  /* boundary check */
754  if (ord > priv->table1_len) {
755  IPW_DEBUG_ORD("ordinal value too long\n");
756  return -EINVAL;
757  }
758 
759  /* verify we have enough room to store the value */
760  if (*len < sizeof(u32)) {
761  IPW_DEBUG_ORD("ordinal buffer length too small, "
762  "need %zd\n", sizeof(u32));
763  return -EINVAL;
764  }
765 
766  *((u32 *) val) =
767  ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
768  *len = sizeof(u32);
769  break;
770 
772  /*
773  * TABLE 2: Indirect access to a table of variable sized values
774  *
775  * This table consist of six values, each containing
776  * - dword containing the starting offset of the data
777  * - dword containing the lengh in the first 16bits
778  * and the count in the second 16bits
779  */
780 
781  /* remove the table id from the ordinal */
783 
784  /* boundary check */
785  if (ord > priv->table2_len) {
786  IPW_DEBUG_ORD("ordinal value too long\n");
787  return -EINVAL;
788  }
789 
790  /* get the address of statistic */
791  addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
792 
793  /* get the second DW of statistics ;
794  * two 16-bit words - first is length, second is count */
795  field_info =
796  ipw_read_reg32(priv,
797  priv->table2_addr + (ord << 3) +
798  sizeof(u32));
799 
800  /* get each entry length */
801  field_len = *((u16 *) & field_info);
802 
803  /* get number of entries */
804  field_count = *(((u16 *) & field_info) + 1);
805 
806  /* abort if not enough memory */
807  total_len = field_len * field_count;
808  if (total_len > *len) {
809  *len = total_len;
810  return -EINVAL;
811  }
812 
813  *len = total_len;
814  if (!total_len)
815  return 0;
816 
817  IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
818  "field_info = 0x%08x\n",
819  addr, total_len, field_info);
820  ipw_read_indirect(priv, addr, val, total_len);
821  break;
822 
823  default:
824  IPW_DEBUG_ORD("Invalid ordinal!\n");
825  return -EINVAL;
826 
827  }
828 
829  return 0;
830 }
831 
832 static void ipw_init_ordinals(struct ipw_priv *priv)
833 {
835  priv->table0_len = ipw_read32(priv, priv->table0_addr);
836 
837  IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
838  priv->table0_addr, priv->table0_len);
839 
841  priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
842 
843  IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
844  priv->table1_addr, priv->table1_len);
845 
847  priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
848  priv->table2_len &= 0x0000ffff; /* use first two bytes */
849 
850  IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
851  priv->table2_addr, priv->table2_len);
852 
853 }
854 
855 static u32 ipw_register_toggle(u32 reg)
856 {
857  reg &= ~IPW_START_STANDBY;
858  if (reg & IPW_GATE_ODMA)
859  reg &= ~IPW_GATE_ODMA;
860  if (reg & IPW_GATE_IDMA)
861  reg &= ~IPW_GATE_IDMA;
862  if (reg & IPW_GATE_ADMA)
863  reg &= ~IPW_GATE_ADMA;
864  return reg;
865 }
866 
867 /*
868  * LED behavior:
869  * - On radio ON, turn on any LEDs that require to be on during start
870  * - On initialization, start unassociated blink
871  * - On association, disable unassociated blink
872  * - On disassociation, start unassociated blink
873  * - On radio OFF, turn off any LEDs started during radio on
874  *
875  */
876 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
877 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
878 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
879 
880 static void ipw_led_link_on(struct ipw_priv *priv)
881 {
882  unsigned long flags;
883  u32 led;
884 
885  /* If configured to not use LEDs, or nic_type is 1,
886  * then we don't toggle a LINK led */
887  if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
888  return;
889 
890  spin_lock_irqsave(&priv->lock, flags);
891 
892  if (!(priv->status & STATUS_RF_KILL_MASK) &&
893  !(priv->status & STATUS_LED_LINK_ON)) {
894  IPW_DEBUG_LED("Link LED On\n");
895  led = ipw_read_reg32(priv, IPW_EVENT_REG);
896  led |= priv->led_association_on;
897 
898  led = ipw_register_toggle(led);
899 
900  IPW_DEBUG_LED("Reg: 0x%08X\n", led);
901  ipw_write_reg32(priv, IPW_EVENT_REG, led);
902 
903  priv->status |= STATUS_LED_LINK_ON;
904 
905  /* If we aren't associated, schedule turning the LED off */
906  if (!(priv->status & STATUS_ASSOCIATED))
909  }
910 
911  spin_unlock_irqrestore(&priv->lock, flags);
912 }
913 
914 static void ipw_bg_led_link_on(struct work_struct *work)
915 {
916  struct ipw_priv *priv =
917  container_of(work, struct ipw_priv, led_link_on.work);
918  mutex_lock(&priv->mutex);
919  ipw_led_link_on(priv);
920  mutex_unlock(&priv->mutex);
921 }
922 
923 static void ipw_led_link_off(struct ipw_priv *priv)
924 {
925  unsigned long flags;
926  u32 led;
927 
928  /* If configured not to use LEDs, or nic type is 1,
929  * then we don't goggle the LINK led. */
930  if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
931  return;
932 
933  spin_lock_irqsave(&priv->lock, flags);
934 
935  if (priv->status & STATUS_LED_LINK_ON) {
936  led = ipw_read_reg32(priv, IPW_EVENT_REG);
937  led &= priv->led_association_off;
938  led = ipw_register_toggle(led);
939 
940  IPW_DEBUG_LED("Reg: 0x%08X\n", led);
941  ipw_write_reg32(priv, IPW_EVENT_REG, led);
942 
943  IPW_DEBUG_LED("Link LED Off\n");
944 
945  priv->status &= ~STATUS_LED_LINK_ON;
946 
947  /* If we aren't associated and the radio is on, schedule
948  * turning the LED on (blink while unassociated) */
949  if (!(priv->status & STATUS_RF_KILL_MASK) &&
950  !(priv->status & STATUS_ASSOCIATED))
953 
954  }
955 
956  spin_unlock_irqrestore(&priv->lock, flags);
957 }
958 
959 static void ipw_bg_led_link_off(struct work_struct *work)
960 {
961  struct ipw_priv *priv =
962  container_of(work, struct ipw_priv, led_link_off.work);
963  mutex_lock(&priv->mutex);
964  ipw_led_link_off(priv);
965  mutex_unlock(&priv->mutex);
966 }
967 
968 static void __ipw_led_activity_on(struct ipw_priv *priv)
969 {
970  u32 led;
971 
972  if (priv->config & CFG_NO_LED)
973  return;
974 
975  if (priv->status & STATUS_RF_KILL_MASK)
976  return;
977 
978  if (!(priv->status & STATUS_LED_ACT_ON)) {
979  led = ipw_read_reg32(priv, IPW_EVENT_REG);
980  led |= priv->led_activity_on;
981 
982  led = ipw_register_toggle(led);
983 
984  IPW_DEBUG_LED("Reg: 0x%08X\n", led);
985  ipw_write_reg32(priv, IPW_EVENT_REG, led);
986 
987  IPW_DEBUG_LED("Activity LED On\n");
988 
989  priv->status |= STATUS_LED_ACT_ON;
990 
993  } else {
994  /* Reschedule LED off for full time period */
997  }
998 }
999 
1000 #if 0
1001 void ipw_led_activity_on(struct ipw_priv *priv)
1002 {
1003  unsigned long flags;
1004  spin_lock_irqsave(&priv->lock, flags);
1005  __ipw_led_activity_on(priv);
1006  spin_unlock_irqrestore(&priv->lock, flags);
1007 }
1008 #endif /* 0 */
1009 
1010 static void ipw_led_activity_off(struct ipw_priv *priv)
1011 {
1012  unsigned long flags;
1013  u32 led;
1014 
1015  if (priv->config & CFG_NO_LED)
1016  return;
1017 
1018  spin_lock_irqsave(&priv->lock, flags);
1019 
1020  if (priv->status & STATUS_LED_ACT_ON) {
1021  led = ipw_read_reg32(priv, IPW_EVENT_REG);
1022  led &= priv->led_activity_off;
1023 
1024  led = ipw_register_toggle(led);
1025 
1026  IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1027  ipw_write_reg32(priv, IPW_EVENT_REG, led);
1028 
1029  IPW_DEBUG_LED("Activity LED Off\n");
1030 
1031  priv->status &= ~STATUS_LED_ACT_ON;
1032  }
1033 
1034  spin_unlock_irqrestore(&priv->lock, flags);
1035 }
1036 
1037 static void ipw_bg_led_activity_off(struct work_struct *work)
1038 {
1039  struct ipw_priv *priv =
1040  container_of(work, struct ipw_priv, led_act_off.work);
1041  mutex_lock(&priv->mutex);
1042  ipw_led_activity_off(priv);
1043  mutex_unlock(&priv->mutex);
1044 }
1045 
1046 static void ipw_led_band_on(struct ipw_priv *priv)
1047 {
1048  unsigned long flags;
1049  u32 led;
1050 
1051  /* Only nic type 1 supports mode LEDs */
1052  if (priv->config & CFG_NO_LED ||
1053  priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1054  return;
1055 
1056  spin_lock_irqsave(&priv->lock, flags);
1057 
1058  led = ipw_read_reg32(priv, IPW_EVENT_REG);
1059  if (priv->assoc_network->mode == IEEE_A) {
1060  led |= priv->led_ofdm_on;
1061  led &= priv->led_association_off;
1062  IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1063  } else if (priv->assoc_network->mode == IEEE_G) {
1064  led |= priv->led_ofdm_on;
1065  led |= priv->led_association_on;
1066  IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1067  } else {
1068  led &= priv->led_ofdm_off;
1069  led |= priv->led_association_on;
1070  IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1071  }
1072 
1073  led = ipw_register_toggle(led);
1074 
1075  IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1076  ipw_write_reg32(priv, IPW_EVENT_REG, led);
1077 
1078  spin_unlock_irqrestore(&priv->lock, flags);
1079 }
1080 
1081 static void ipw_led_band_off(struct ipw_priv *priv)
1082 {
1083  unsigned long flags;
1084  u32 led;
1085 
1086  /* Only nic type 1 supports mode LEDs */
1087  if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1088  return;
1089 
1090  spin_lock_irqsave(&priv->lock, flags);
1091 
1092  led = ipw_read_reg32(priv, IPW_EVENT_REG);
1093  led &= priv->led_ofdm_off;
1094  led &= priv->led_association_off;
1095 
1096  led = ipw_register_toggle(led);
1097 
1098  IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1099  ipw_write_reg32(priv, IPW_EVENT_REG, led);
1100 
1101  spin_unlock_irqrestore(&priv->lock, flags);
1102 }
1103 
1104 static void ipw_led_radio_on(struct ipw_priv *priv)
1105 {
1106  ipw_led_link_on(priv);
1107 }
1108 
1109 static void ipw_led_radio_off(struct ipw_priv *priv)
1110 {
1111  ipw_led_activity_off(priv);
1112  ipw_led_link_off(priv);
1113 }
1114 
1115 static void ipw_led_link_up(struct ipw_priv *priv)
1116 {
1117  /* Set the Link Led on for all nic types */
1118  ipw_led_link_on(priv);
1119 }
1120 
1121 static void ipw_led_link_down(struct ipw_priv *priv)
1122 {
1123  ipw_led_activity_off(priv);
1124  ipw_led_link_off(priv);
1125 
1126  if (priv->status & STATUS_RF_KILL_MASK)
1127  ipw_led_radio_off(priv);
1128 }
1129 
1130 static void ipw_led_init(struct ipw_priv *priv)
1131 {
1132  priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1133 
1134  /* Set the default PINs for the link and activity leds */
1137 
1140 
1141  /* Set the default PINs for the OFDM leds */
1142  priv->led_ofdm_on = IPW_OFDM_LED;
1143  priv->led_ofdm_off = ~(IPW_OFDM_LED);
1144 
1145  switch (priv->nic_type) {
1146  case EEPROM_NIC_TYPE_1:
1147  /* In this NIC type, the LEDs are reversed.... */
1152 
1153  if (!(priv->config & CFG_NO_LED))
1154  ipw_led_band_on(priv);
1155 
1156  /* And we don't blink link LEDs for this nic, so
1157  * just return here */
1158  return;
1159 
1160  case EEPROM_NIC_TYPE_3:
1161  case EEPROM_NIC_TYPE_2:
1162  case EEPROM_NIC_TYPE_4:
1163  case EEPROM_NIC_TYPE_0:
1164  break;
1165 
1166  default:
1167  IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1168  priv->nic_type);
1169  priv->nic_type = EEPROM_NIC_TYPE_0;
1170  break;
1171  }
1172 
1173  if (!(priv->config & CFG_NO_LED)) {
1174  if (priv->status & STATUS_ASSOCIATED)
1175  ipw_led_link_on(priv);
1176  else
1177  ipw_led_link_off(priv);
1178  }
1179 }
1180 
1181 static void ipw_led_shutdown(struct ipw_priv *priv)
1182 {
1183  ipw_led_activity_off(priv);
1184  ipw_led_link_off(priv);
1185  ipw_led_band_off(priv);
1189 }
1190 
1191 /*
1192  * The following adds a new attribute to the sysfs representation
1193  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1194  * used for controlling the debug level.
1195  *
1196  * See the level definitions in ipw for details.
1197  */
1198 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1199 {
1200  return sprintf(buf, "0x%08X\n", ipw_debug_level);
1201 }
1202 
1203 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1204  size_t count)
1205 {
1206  char *p = (char *)buf;
1207  u32 val;
1208 
1209  if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1210  p++;
1211  if (p[0] == 'x' || p[0] == 'X')
1212  p++;
1213  val = simple_strtoul(p, &p, 16);
1214  } else
1215  val = simple_strtoul(p, &p, 10);
1216  if (p == buf)
1218  ": %s is not in hex or decimal form.\n", buf);
1219  else
1220  ipw_debug_level = val;
1221 
1222  return strnlen(buf, count);
1223 }
1224 
1225 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1226  show_debug_level, store_debug_level);
1227 
1228 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1229 {
1230  /* length = 1st dword in log */
1231  return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1232 }
1233 
1234 static void ipw_capture_event_log(struct ipw_priv *priv,
1235  u32 log_len, struct ipw_event *log)
1236 {
1237  u32 base;
1238 
1239  if (log_len) {
1240  base = ipw_read32(priv, IPW_EVENT_LOG);
1241  ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1242  (u8 *) log, sizeof(*log) * log_len);
1243  }
1244 }
1245 
1246 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1247 {
1248  struct ipw_fw_error *error;
1249  u32 log_len = ipw_get_event_log_len(priv);
1250  u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1251  u32 elem_len = ipw_read_reg32(priv, base);
1252 
1253  error = kmalloc(sizeof(*error) +
1254  sizeof(*error->elem) * elem_len +
1255  sizeof(*error->log) * log_len, GFP_ATOMIC);
1256  if (!error) {
1257  IPW_ERROR("Memory allocation for firmware error log "
1258  "failed.\n");
1259  return NULL;
1260  }
1261  error->jiffies = jiffies;
1262  error->status = priv->status;
1263  error->config = priv->config;
1264  error->elem_len = elem_len;
1265  error->log_len = log_len;
1266  error->elem = (struct ipw_error_elem *)error->payload;
1267  error->log = (struct ipw_event *)(error->elem + elem_len);
1268 
1269  ipw_capture_event_log(priv, log_len, error->log);
1270 
1271  if (elem_len)
1272  ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1273  sizeof(*error->elem) * elem_len);
1274 
1275  return error;
1276 }
1277 
1278 static ssize_t show_event_log(struct device *d,
1279  struct device_attribute *attr, char *buf)
1280 {
1281  struct ipw_priv *priv = dev_get_drvdata(d);
1282  u32 log_len = ipw_get_event_log_len(priv);
1283  u32 log_size;
1284  struct ipw_event *log;
1285  u32 len = 0, i;
1286 
1287  /* not using min() because of its strict type checking */
1288  log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1289  sizeof(*log) * log_len : PAGE_SIZE;
1290  log = kzalloc(log_size, GFP_KERNEL);
1291  if (!log) {
1292  IPW_ERROR("Unable to allocate memory for log\n");
1293  return 0;
1294  }
1295  log_len = log_size / sizeof(*log);
1296  ipw_capture_event_log(priv, log_len, log);
1297 
1298  len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1299  for (i = 0; i < log_len; i++)
1300  len += snprintf(buf + len, PAGE_SIZE - len,
1301  "\n%08X%08X%08X",
1302  log[i].time, log[i].event, log[i].data);
1303  len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1304  kfree(log);
1305  return len;
1306 }
1307 
1308 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1309 
1310 static ssize_t show_error(struct device *d,
1311  struct device_attribute *attr, char *buf)
1312 {
1313  struct ipw_priv *priv = dev_get_drvdata(d);
1314  u32 len = 0, i;
1315  if (!priv->error)
1316  return 0;
1317  len += snprintf(buf + len, PAGE_SIZE - len,
1318  "%08lX%08X%08X%08X",
1319  priv->error->jiffies,
1320  priv->error->status,
1321  priv->error->config, priv->error->elem_len);
1322  for (i = 0; i < priv->error->elem_len; i++)
1323  len += snprintf(buf + len, PAGE_SIZE - len,
1324  "\n%08X%08X%08X%08X%08X%08X%08X",
1325  priv->error->elem[i].time,
1326  priv->error->elem[i].desc,
1327  priv->error->elem[i].blink1,
1328  priv->error->elem[i].blink2,
1329  priv->error->elem[i].link1,
1330  priv->error->elem[i].link2,
1331  priv->error->elem[i].data);
1332 
1333  len += snprintf(buf + len, PAGE_SIZE - len,
1334  "\n%08X", priv->error->log_len);
1335  for (i = 0; i < priv->error->log_len; i++)
1336  len += snprintf(buf + len, PAGE_SIZE - len,
1337  "\n%08X%08X%08X",
1338  priv->error->log[i].time,
1339  priv->error->log[i].event,
1340  priv->error->log[i].data);
1341  len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1342  return len;
1343 }
1344 
1345 static ssize_t clear_error(struct device *d,
1346  struct device_attribute *attr,
1347  const char *buf, size_t count)
1348 {
1349  struct ipw_priv *priv = dev_get_drvdata(d);
1350 
1351  kfree(priv->error);
1352  priv->error = NULL;
1353  return count;
1354 }
1355 
1356 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1357 
1358 static ssize_t show_cmd_log(struct device *d,
1359  struct device_attribute *attr, char *buf)
1360 {
1361  struct ipw_priv *priv = dev_get_drvdata(d);
1362  u32 len = 0, i;
1363  if (!priv->cmdlog)
1364  return 0;
1365  for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1366  (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1367  i = (i + 1) % priv->cmdlog_len) {
1368  len +=
1369  snprintf(buf + len, PAGE_SIZE - len,
1370  "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1371  priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1372  priv->cmdlog[i].cmd.len);
1373  len +=
1374  snprintk_buf(buf + len, PAGE_SIZE - len,
1375  (u8 *) priv->cmdlog[i].cmd.param,
1376  priv->cmdlog[i].cmd.len);
1377  len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1378  }
1379  len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1380  return len;
1381 }
1382 
1383 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1384 
1385 #ifdef CONFIG_IPW2200_PROMISCUOUS
1386 static void ipw_prom_free(struct ipw_priv *priv);
1387 static int ipw_prom_alloc(struct ipw_priv *priv);
1388 static ssize_t store_rtap_iface(struct device *d,
1389  struct device_attribute *attr,
1390  const char *buf, size_t count)
1391 {
1392  struct ipw_priv *priv = dev_get_drvdata(d);
1393  int rc = 0;
1394 
1395  if (count < 1)
1396  return -EINVAL;
1397 
1398  switch (buf[0]) {
1399  case '0':
1400  if (!rtap_iface)
1401  return count;
1402 
1403  if (netif_running(priv->prom_net_dev)) {
1404  IPW_WARNING("Interface is up. Cannot unregister.\n");
1405  return count;
1406  }
1407 
1408  ipw_prom_free(priv);
1409  rtap_iface = 0;
1410  break;
1411 
1412  case '1':
1413  if (rtap_iface)
1414  return count;
1415 
1416  rc = ipw_prom_alloc(priv);
1417  if (!rc)
1418  rtap_iface = 1;
1419  break;
1420 
1421  default:
1422  return -EINVAL;
1423  }
1424 
1425  if (rc) {
1426  IPW_ERROR("Failed to register promiscuous network "
1427  "device (error %d).\n", rc);
1428  }
1429 
1430  return count;
1431 }
1432 
1433 static ssize_t show_rtap_iface(struct device *d,
1434  struct device_attribute *attr,
1435  char *buf)
1436 {
1437  struct ipw_priv *priv = dev_get_drvdata(d);
1438  if (rtap_iface)
1439  return sprintf(buf, "%s", priv->prom_net_dev->name);
1440  else {
1441  buf[0] = '-';
1442  buf[1] = '1';
1443  buf[2] = '\0';
1444  return 3;
1445  }
1446 }
1447 
1448 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1449  store_rtap_iface);
1450 
1451 static ssize_t store_rtap_filter(struct device *d,
1452  struct device_attribute *attr,
1453  const char *buf, size_t count)
1454 {
1455  struct ipw_priv *priv = dev_get_drvdata(d);
1456 
1457  if (!priv->prom_priv) {
1458  IPW_ERROR("Attempting to set filter without "
1459  "rtap_iface enabled.\n");
1460  return -EPERM;
1461  }
1462 
1463  priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1464 
1465  IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1466  BIT_ARG16(priv->prom_priv->filter));
1467 
1468  return count;
1469 }
1470 
1471 static ssize_t show_rtap_filter(struct device *d,
1472  struct device_attribute *attr,
1473  char *buf)
1474 {
1475  struct ipw_priv *priv = dev_get_drvdata(d);
1476  return sprintf(buf, "0x%04X",
1477  priv->prom_priv ? priv->prom_priv->filter : 0);
1478 }
1479 
1480 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1481  store_rtap_filter);
1482 #endif
1483 
1484 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1485  char *buf)
1486 {
1487  struct ipw_priv *priv = dev_get_drvdata(d);
1488  return sprintf(buf, "%d\n", priv->ieee->scan_age);
1489 }
1490 
1491 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1492  const char *buf, size_t count)
1493 {
1494  struct ipw_priv *priv = dev_get_drvdata(d);
1495  struct net_device *dev = priv->net_dev;
1496  char buffer[] = "00000000";
1497  unsigned long len =
1498  (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1499  unsigned long val;
1500  char *p = buffer;
1501 
1502  IPW_DEBUG_INFO("enter\n");
1503 
1504  strncpy(buffer, buf, len);
1505  buffer[len] = 0;
1506 
1507  if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1508  p++;
1509  if (p[0] == 'x' || p[0] == 'X')
1510  p++;
1511  val = simple_strtoul(p, &p, 16);
1512  } else
1513  val = simple_strtoul(p, &p, 10);
1514  if (p == buffer) {
1515  IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1516  } else {
1517  priv->ieee->scan_age = val;
1518  IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1519  }
1520 
1521  IPW_DEBUG_INFO("exit\n");
1522  return len;
1523 }
1524 
1525 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1526 
1527 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1528  char *buf)
1529 {
1530  struct ipw_priv *priv = dev_get_drvdata(d);
1531  return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1532 }
1533 
1534 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1535  const char *buf, size_t count)
1536 {
1537  struct ipw_priv *priv = dev_get_drvdata(d);
1538 
1539  IPW_DEBUG_INFO("enter\n");
1540 
1541  if (count == 0)
1542  return 0;
1543 
1544  if (*buf == 0) {
1545  IPW_DEBUG_LED("Disabling LED control.\n");
1546  priv->config |= CFG_NO_LED;
1547  ipw_led_shutdown(priv);
1548  } else {
1549  IPW_DEBUG_LED("Enabling LED control.\n");
1550  priv->config &= ~CFG_NO_LED;
1551  ipw_led_init(priv);
1552  }
1553 
1554  IPW_DEBUG_INFO("exit\n");
1555  return count;
1556 }
1557 
1558 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1559 
1560 static ssize_t show_status(struct device *d,
1561  struct device_attribute *attr, char *buf)
1562 {
1563  struct ipw_priv *p = dev_get_drvdata(d);
1564  return sprintf(buf, "0x%08x\n", (int)p->status);
1565 }
1566 
1567 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1568 
1569 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1570  char *buf)
1571 {
1572  struct ipw_priv *p = dev_get_drvdata(d);
1573  return sprintf(buf, "0x%08x\n", (int)p->config);
1574 }
1575 
1576 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1577 
1578 static ssize_t show_nic_type(struct device *d,
1579  struct device_attribute *attr, char *buf)
1580 {
1581  struct ipw_priv *priv = dev_get_drvdata(d);
1582  return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1583 }
1584 
1585 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1586 
1587 static ssize_t show_ucode_version(struct device *d,
1588  struct device_attribute *attr, char *buf)
1589 {
1590  u32 len = sizeof(u32), tmp = 0;
1591  struct ipw_priv *p = dev_get_drvdata(d);
1592 
1593  if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1594  return 0;
1595 
1596  return sprintf(buf, "0x%08x\n", tmp);
1597 }
1598 
1599 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1600 
1601 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1602  char *buf)
1603 {
1604  u32 len = sizeof(u32), tmp = 0;
1605  struct ipw_priv *p = dev_get_drvdata(d);
1606 
1607  if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1608  return 0;
1609 
1610  return sprintf(buf, "0x%08x\n", tmp);
1611 }
1612 
1613 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1614 
1615 /*
1616  * Add a device attribute to view/control the delay between eeprom
1617  * operations.
1618  */
1619 static ssize_t show_eeprom_delay(struct device *d,
1620  struct device_attribute *attr, char *buf)
1621 {
1622  struct ipw_priv *p = dev_get_drvdata(d);
1623  int n = p->eeprom_delay;
1624  return sprintf(buf, "%i\n", n);
1625 }
1626 static ssize_t store_eeprom_delay(struct device *d,
1627  struct device_attribute *attr,
1628  const char *buf, size_t count)
1629 {
1630  struct ipw_priv *p = dev_get_drvdata(d);
1631  sscanf(buf, "%i", &p->eeprom_delay);
1632  return strnlen(buf, count);
1633 }
1634 
1636  show_eeprom_delay, store_eeprom_delay);
1637 
1638 static ssize_t show_command_event_reg(struct device *d,
1639  struct device_attribute *attr, char *buf)
1640 {
1641  u32 reg = 0;
1642  struct ipw_priv *p = dev_get_drvdata(d);
1643 
1645  return sprintf(buf, "0x%08x\n", reg);
1646 }
1647 static ssize_t store_command_event_reg(struct device *d,
1648  struct device_attribute *attr,
1649  const char *buf, size_t count)
1650 {
1651  u32 reg;
1652  struct ipw_priv *p = dev_get_drvdata(d);
1653 
1654  sscanf(buf, "%x", &reg);
1655  ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1656  return strnlen(buf, count);
1657 }
1658 
1659 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1660  show_command_event_reg, store_command_event_reg);
1661 
1662 static ssize_t show_mem_gpio_reg(struct device *d,
1663  struct device_attribute *attr, char *buf)
1664 {
1665  u32 reg = 0;
1666  struct ipw_priv *p = dev_get_drvdata(d);
1667 
1668  reg = ipw_read_reg32(p, 0x301100);
1669  return sprintf(buf, "0x%08x\n", reg);
1670 }
1671 static ssize_t store_mem_gpio_reg(struct device *d,
1672  struct device_attribute *attr,
1673  const char *buf, size_t count)
1674 {
1675  u32 reg;
1676  struct ipw_priv *p = dev_get_drvdata(d);
1677 
1678  sscanf(buf, "%x", &reg);
1679  ipw_write_reg32(p, 0x301100, reg);
1680  return strnlen(buf, count);
1681 }
1682 
1683 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1684  show_mem_gpio_reg, store_mem_gpio_reg);
1685 
1686 static ssize_t show_indirect_dword(struct device *d,
1687  struct device_attribute *attr, char *buf)
1688 {
1689  u32 reg = 0;
1690  struct ipw_priv *priv = dev_get_drvdata(d);
1691 
1692  if (priv->status & STATUS_INDIRECT_DWORD)
1693  reg = ipw_read_reg32(priv, priv->indirect_dword);
1694  else
1695  reg = 0;
1696 
1697  return sprintf(buf, "0x%08x\n", reg);
1698 }
1699 static ssize_t store_indirect_dword(struct device *d,
1700  struct device_attribute *attr,
1701  const char *buf, size_t count)
1702 {
1703  struct ipw_priv *priv = dev_get_drvdata(d);
1704 
1705  sscanf(buf, "%x", &priv->indirect_dword);
1706  priv->status |= STATUS_INDIRECT_DWORD;
1707  return strnlen(buf, count);
1708 }
1709 
1711  show_indirect_dword, store_indirect_dword);
1712 
1713 static ssize_t show_indirect_byte(struct device *d,
1714  struct device_attribute *attr, char *buf)
1715 {
1716  u8 reg = 0;
1717  struct ipw_priv *priv = dev_get_drvdata(d);
1718 
1719  if (priv->status & STATUS_INDIRECT_BYTE)
1720  reg = ipw_read_reg8(priv, priv->indirect_byte);
1721  else
1722  reg = 0;
1723 
1724  return sprintf(buf, "0x%02x\n", reg);
1725 }
1726 static ssize_t store_indirect_byte(struct device *d,
1727  struct device_attribute *attr,
1728  const char *buf, size_t count)
1729 {
1730  struct ipw_priv *priv = dev_get_drvdata(d);
1731 
1732  sscanf(buf, "%x", &priv->indirect_byte);
1733  priv->status |= STATUS_INDIRECT_BYTE;
1734  return strnlen(buf, count);
1735 }
1736 
1738  show_indirect_byte, store_indirect_byte);
1739 
1740 static ssize_t show_direct_dword(struct device *d,
1741  struct device_attribute *attr, char *buf)
1742 {
1743  u32 reg = 0;
1744  struct ipw_priv *priv = dev_get_drvdata(d);
1745 
1746  if (priv->status & STATUS_DIRECT_DWORD)
1747  reg = ipw_read32(priv, priv->direct_dword);
1748  else
1749  reg = 0;
1750 
1751  return sprintf(buf, "0x%08x\n", reg);
1752 }
1753 static ssize_t store_direct_dword(struct device *d,
1754  struct device_attribute *attr,
1755  const char *buf, size_t count)
1756 {
1757  struct ipw_priv *priv = dev_get_drvdata(d);
1758 
1759  sscanf(buf, "%x", &priv->direct_dword);
1760  priv->status |= STATUS_DIRECT_DWORD;
1761  return strnlen(buf, count);
1762 }
1763 
1765  show_direct_dword, store_direct_dword);
1766 
1767 static int rf_kill_active(struct ipw_priv *priv)
1768 {
1769  if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1770  priv->status |= STATUS_RF_KILL_HW;
1771  wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1772  } else {
1773  priv->status &= ~STATUS_RF_KILL_HW;
1774  wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1775  }
1776 
1777  return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1778 }
1779 
1780 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1781  char *buf)
1782 {
1783  /* 0 - RF kill not enabled
1784  1 - SW based RF kill active (sysfs)
1785  2 - HW based RF kill active
1786  3 - Both HW and SW baed RF kill active */
1787  struct ipw_priv *priv = dev_get_drvdata(d);
1788  int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1789  (rf_kill_active(priv) ? 0x2 : 0x0);
1790  return sprintf(buf, "%i\n", val);
1791 }
1792 
1793 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1794 {
1795  if ((disable_radio ? 1 : 0) ==
1796  ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1797  return 0;
1798 
1799  IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1800  disable_radio ? "OFF" : "ON");
1801 
1802  if (disable_radio) {
1803  priv->status |= STATUS_RF_KILL_SW;
1804 
1809  schedule_work(&priv->down);
1810  } else {
1811  priv->status &= ~STATUS_RF_KILL_SW;
1812  if (rf_kill_active(priv)) {
1813  IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1814  "disabled by HW switch\n");
1815  /* Make sure the RF_KILL check timer is running */
1816  cancel_delayed_work(&priv->rf_kill);
1818  round_jiffies_relative(2 * HZ));
1819  } else
1820  schedule_work(&priv->up);
1821  }
1822 
1823  return 1;
1824 }
1825 
1826 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1827  const char *buf, size_t count)
1828 {
1829  struct ipw_priv *priv = dev_get_drvdata(d);
1830 
1831  ipw_radio_kill_sw(priv, buf[0] == '1');
1832 
1833  return count;
1834 }
1835 
1836 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1837 
1838 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1839  char *buf)
1840 {
1841  struct ipw_priv *priv = dev_get_drvdata(d);
1842  int pos = 0, len = 0;
1843  if (priv->config & CFG_SPEED_SCAN) {
1844  while (priv->speed_scan[pos] != 0)
1845  len += sprintf(&buf[len], "%d ",
1846  priv->speed_scan[pos++]);
1847  return len + sprintf(&buf[len], "\n");
1848  }
1849 
1850  return sprintf(buf, "0\n");
1851 }
1852 
1853 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1854  const char *buf, size_t count)
1855 {
1856  struct ipw_priv *priv = dev_get_drvdata(d);
1857  int channel, pos = 0;
1858  const char *p = buf;
1859 
1860  /* list of space separated channels to scan, optionally ending with 0 */
1861  while ((channel = simple_strtol(p, NULL, 0))) {
1862  if (pos == MAX_SPEED_SCAN - 1) {
1863  priv->speed_scan[pos] = 0;
1864  break;
1865  }
1866 
1867  if (libipw_is_valid_channel(priv->ieee, channel))
1868  priv->speed_scan[pos++] = channel;
1869  else
1870  IPW_WARNING("Skipping invalid channel request: %d\n",
1871  channel);
1872  p = strchr(p, ' ');
1873  if (!p)
1874  break;
1875  while (*p == ' ' || *p == '\t')
1876  p++;
1877  }
1878 
1879  if (pos == 0)
1880  priv->config &= ~CFG_SPEED_SCAN;
1881  else {
1882  priv->speed_scan_pos = 0;
1883  priv->config |= CFG_SPEED_SCAN;
1884  }
1885 
1886  return count;
1887 }
1888 
1889 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1890  store_speed_scan);
1891 
1892 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1893  char *buf)
1894 {
1895  struct ipw_priv *priv = dev_get_drvdata(d);
1896  return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1897 }
1898 
1899 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1900  const char *buf, size_t count)
1901 {
1902  struct ipw_priv *priv = dev_get_drvdata(d);
1903  if (buf[0] == '1')
1904  priv->config |= CFG_NET_STATS;
1905  else
1906  priv->config &= ~CFG_NET_STATS;
1907 
1908  return count;
1909 }
1910 
1911 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1912  show_net_stats, store_net_stats);
1913 
1914 static ssize_t show_channels(struct device *d,
1915  struct device_attribute *attr,
1916  char *buf)
1917 {
1918  struct ipw_priv *priv = dev_get_drvdata(d);
1919  const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1920  int len = 0, i;
1921 
1922  len = sprintf(&buf[len],
1923  "Displaying %d channels in 2.4Ghz band "
1924  "(802.11bg):\n", geo->bg_channels);
1925 
1926  for (i = 0; i < geo->bg_channels; i++) {
1927  len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1928  geo->bg[i].channel,
1929  geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1930  " (radar spectrum)" : "",
1931  ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1932  (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1933  ? "" : ", IBSS",
1934  geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1935  "passive only" : "active/passive",
1936  geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1937  "B" : "B/G");
1938  }
1939 
1940  len += sprintf(&buf[len],
1941  "Displaying %d channels in 5.2Ghz band "
1942  "(802.11a):\n", geo->a_channels);
1943  for (i = 0; i < geo->a_channels; i++) {
1944  len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1945  geo->a[i].channel,
1946  geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1947  " (radar spectrum)" : "",
1948  ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1949  (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1950  ? "" : ", IBSS",
1951  geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1952  "passive only" : "active/passive");
1953  }
1954 
1955  return len;
1956 }
1957 
1958 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1959 
1960 static void notify_wx_assoc_event(struct ipw_priv *priv)
1961 {
1962  union iwreq_data wrqu;
1963  wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1964  if (priv->status & STATUS_ASSOCIATED)
1965  memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1966  else
1967  memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1968  wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1969 }
1970 
1971 static void ipw_irq_tasklet(struct ipw_priv *priv)
1972 {
1973  u32 inta, inta_mask, handled = 0;
1974  unsigned long flags;
1975  int rc = 0;
1976 
1977  spin_lock_irqsave(&priv->irq_lock, flags);
1978 
1979  inta = ipw_read32(priv, IPW_INTA_RW);
1980  inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1981 
1982  if (inta == 0xFFFFFFFF) {
1983  /* Hardware disappeared */
1984  IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1985  /* Only handle the cached INTA values */
1986  inta = 0;
1987  }
1988  inta &= (IPW_INTA_MASK_ALL & inta_mask);
1989 
1990  /* Add any cached INTA values that need to be handled */
1991  inta |= priv->isr_inta;
1992 
1993  spin_unlock_irqrestore(&priv->irq_lock, flags);
1994 
1995  spin_lock_irqsave(&priv->lock, flags);
1996 
1997  /* handle all the justifications for the interrupt */
1998  if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1999  ipw_rx(priv);
2000  handled |= IPW_INTA_BIT_RX_TRANSFER;
2001  }
2002 
2003  if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
2004  IPW_DEBUG_HC("Command completed.\n");
2005  rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
2006  priv->status &= ~STATUS_HCMD_ACTIVE;
2008  handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
2009  }
2010 
2011  if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
2012  IPW_DEBUG_TX("TX_QUEUE_1\n");
2013  rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2014  handled |= IPW_INTA_BIT_TX_QUEUE_1;
2015  }
2016 
2017  if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2018  IPW_DEBUG_TX("TX_QUEUE_2\n");
2019  rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2020  handled |= IPW_INTA_BIT_TX_QUEUE_2;
2021  }
2022 
2023  if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2024  IPW_DEBUG_TX("TX_QUEUE_3\n");
2025  rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2026  handled |= IPW_INTA_BIT_TX_QUEUE_3;
2027  }
2028 
2029  if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2030  IPW_DEBUG_TX("TX_QUEUE_4\n");
2031  rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2032  handled |= IPW_INTA_BIT_TX_QUEUE_4;
2033  }
2034 
2035  if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2036  IPW_WARNING("STATUS_CHANGE\n");
2037  handled |= IPW_INTA_BIT_STATUS_CHANGE;
2038  }
2039 
2041  IPW_WARNING("TX_PERIOD_EXPIRED\n");
2043  }
2044 
2046  IPW_WARNING("HOST_CMD_DONE\n");
2048  }
2049 
2051  IPW_WARNING("FW_INITIALIZATION_DONE\n");
2053  }
2054 
2056  IPW_WARNING("PHY_OFF_DONE\n");
2058  }
2059 
2060  if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2061  IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2062  priv->status |= STATUS_RF_KILL_HW;
2063  wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2070  schedule_work(&priv->link_down);
2071  schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2072  handled |= IPW_INTA_BIT_RF_KILL_DONE;
2073  }
2074 
2075  if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2076  IPW_WARNING("Firmware error detected. Restarting.\n");
2077  if (priv->error) {
2078  IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2079  if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2080  struct ipw_fw_error *error =
2081  ipw_alloc_error_log(priv);
2082  ipw_dump_error_log(priv, error);
2083  kfree(error);
2084  }
2085  } else {
2086  priv->error = ipw_alloc_error_log(priv);
2087  if (priv->error)
2088  IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2089  else
2090  IPW_DEBUG_FW("Error allocating sysfs 'error' "
2091  "log.\n");
2092  if (ipw_debug_level & IPW_DL_FW_ERRORS)
2093  ipw_dump_error_log(priv, priv->error);
2094  }
2095 
2096  /* XXX: If hardware encryption is for WPA/WPA2,
2097  * we have to notify the supplicant. */
2098  if (priv->ieee->sec.encrypt) {
2099  priv->status &= ~STATUS_ASSOCIATED;
2100  notify_wx_assoc_event(priv);
2101  }
2102 
2103  /* Keep the restart process from trying to send host
2104  * commands by clearing the INIT status bit */
2105  priv->status &= ~STATUS_INIT;
2106 
2107  /* Cancel currently queued command. */
2108  priv->status &= ~STATUS_HCMD_ACTIVE;
2110 
2112  handled |= IPW_INTA_BIT_FATAL_ERROR;
2113  }
2114 
2115  if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2116  IPW_ERROR("Parity error\n");
2117  handled |= IPW_INTA_BIT_PARITY_ERROR;
2118  }
2119 
2120  if (handled != inta) {
2121  IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2122  }
2123 
2124  spin_unlock_irqrestore(&priv->lock, flags);
2125 
2126  /* enable all interrupts */
2127  ipw_enable_interrupts(priv);
2128 }
2129 
2130 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2131 static char *get_cmd_string(u8 cmd)
2132 {
2133  switch (cmd) {
2138  IPW_CMD(SSID);
2140  IPW_CMD(PORT_TYPE);
2144  IPW_CMD(WEP_KEY);
2145  IPW_CMD(TGI_TX_KEY);
2146  IPW_CMD(SCAN_REQUEST);
2147  IPW_CMD(SCAN_REQUEST_EXT);
2148  IPW_CMD(ASSOCIATE);
2150  IPW_CMD(SCAN_ABORT);
2151  IPW_CMD(TX_FLUSH);
2152  IPW_CMD(QOS_PARAMETERS);
2153  IPW_CMD(DINO_CONFIG);
2154  IPW_CMD(RSN_CAPABILITIES);
2155  IPW_CMD(RX_KEY);
2157  IPW_CMD(SEED_NUMBER);
2158  IPW_CMD(TX_POWER);
2159  IPW_CMD(COUNTRY_INFO);
2160  IPW_CMD(AIRONET_INFO);
2161  IPW_CMD(AP_TX_POWER);
2162  IPW_CMD(CCKM_INFO);
2163  IPW_CMD(CCX_VER_INFO);
2164  IPW_CMD(SET_CALIBRATION);
2165  IPW_CMD(SENSITIVITY_CALIB);
2167  IPW_CMD(IPW_PRE_POWER_DOWN);
2168  IPW_CMD(VAP_BEACON_TEMPLATE);
2169  IPW_CMD(VAP_DTIM_PERIOD);
2170  IPW_CMD(EXT_SUPPORTED_RATES);
2171  IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2172  IPW_CMD(VAP_QUIET_INTERVALS);
2173  IPW_CMD(VAP_CHANNEL_SWITCH);
2174  IPW_CMD(VAP_MANDATORY_CHANNELS);
2175  IPW_CMD(VAP_CELL_PWR_LIMIT);
2176  IPW_CMD(VAP_CF_PARAM_SET);
2177  IPW_CMD(VAP_SET_BEACONING_STATE);
2178  IPW_CMD(MEASUREMENT);
2179  IPW_CMD(POWER_CAPABILITY);
2180  IPW_CMD(SUPPORTED_CHANNELS);
2181  IPW_CMD(TPC_REPORT);
2182  IPW_CMD(WME_INFO);
2183  IPW_CMD(PRODUCTION_COMMAND);
2184  default:
2185  return "UNKNOWN";
2186  }
2187 }
2188 
2189 #define HOST_COMPLETE_TIMEOUT HZ
2190 
2191 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2192 {
2193  int rc = 0;
2194  unsigned long flags;
2195  unsigned long now, end;
2196 
2197  spin_lock_irqsave(&priv->lock, flags);
2198  if (priv->status & STATUS_HCMD_ACTIVE) {
2199  IPW_ERROR("Failed to send %s: Already sending a command.\n",
2200  get_cmd_string(cmd->cmd));
2201  spin_unlock_irqrestore(&priv->lock, flags);
2202  return -EAGAIN;
2203  }
2204 
2205  priv->status |= STATUS_HCMD_ACTIVE;
2206 
2207  if (priv->cmdlog) {
2208  priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2209  priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2210  priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2211  memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2212  cmd->len);
2213  priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2214  }
2215 
2216  IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2217  get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2218  priv->status);
2219 
2220 #ifndef DEBUG_CMD_WEP_KEY
2221  if (cmd->cmd == IPW_CMD_WEP_KEY)
2222  IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2223  else
2224 #endif
2225  printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2226 
2227  rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2228  if (rc) {
2229  priv->status &= ~STATUS_HCMD_ACTIVE;
2230  IPW_ERROR("Failed to send %s: Reason %d\n",
2231  get_cmd_string(cmd->cmd), rc);
2232  spin_unlock_irqrestore(&priv->lock, flags);
2233  goto exit;
2234  }
2235  spin_unlock_irqrestore(&priv->lock, flags);
2236 
2237  now = jiffies;
2238  end = now + HOST_COMPLETE_TIMEOUT;
2239 again:
2241  !(priv->
2243  end - now);
2244  if (rc < 0) {
2245  now = jiffies;
2246  if (time_before(now, end))
2247  goto again;
2248  rc = 0;
2249  }
2250 
2251  if (rc == 0) {
2252  spin_lock_irqsave(&priv->lock, flags);
2253  if (priv->status & STATUS_HCMD_ACTIVE) {
2254  IPW_ERROR("Failed to send %s: Command timed out.\n",
2255  get_cmd_string(cmd->cmd));
2256  priv->status &= ~STATUS_HCMD_ACTIVE;
2257  spin_unlock_irqrestore(&priv->lock, flags);
2258  rc = -EIO;
2259  goto exit;
2260  }
2261  spin_unlock_irqrestore(&priv->lock, flags);
2262  } else
2263  rc = 0;
2264 
2265  if (priv->status & STATUS_RF_KILL_HW) {
2266  IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2267  get_cmd_string(cmd->cmd));
2268  rc = -EIO;
2269  goto exit;
2270  }
2271 
2272  exit:
2273  if (priv->cmdlog) {
2274  priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2275  priv->cmdlog_pos %= priv->cmdlog_len;
2276  }
2277  return rc;
2278 }
2279 
2280 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2281 {
2282  struct host_cmd cmd = {
2283  .cmd = command,
2284  };
2285 
2286  return __ipw_send_cmd(priv, &cmd);
2287 }
2288 
2289 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2290  void *data)
2291 {
2292  struct host_cmd cmd = {
2293  .cmd = command,
2294  .len = len,
2295  .param = data,
2296  };
2297 
2298  return __ipw_send_cmd(priv, &cmd);
2299 }
2300 
2301 static int ipw_send_host_complete(struct ipw_priv *priv)
2302 {
2303  if (!priv) {
2304  IPW_ERROR("Invalid args\n");
2305  return -1;
2306  }
2307 
2308  return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2309 }
2310 
2311 static int ipw_send_system_config(struct ipw_priv *priv)
2312 {
2313  return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2314  sizeof(priv->sys_config),
2315  &priv->sys_config);
2316 }
2317 
2318 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2319 {
2320  if (!priv || !ssid) {
2321  IPW_ERROR("Invalid args\n");
2322  return -1;
2323  }
2324 
2325  return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2326  ssid);
2327 }
2328 
2329 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2330 {
2331  if (!priv || !mac) {
2332  IPW_ERROR("Invalid args\n");
2333  return -1;
2334  }
2335 
2336  IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2337  priv->net_dev->name, mac);
2338 
2339  return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2340 }
2341 
2342 static void ipw_adapter_restart(void *adapter)
2343 {
2344  struct ipw_priv *priv = adapter;
2345 
2346  if (priv->status & STATUS_RF_KILL_MASK)
2347  return;
2348 
2349  ipw_down(priv);
2350 
2351  if (priv->assoc_network &&
2352  (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2353  ipw_remove_current_network(priv);
2354 
2355  if (ipw_up(priv)) {
2356  IPW_ERROR("Failed to up device\n");
2357  return;
2358  }
2359 }
2360 
2361 static void ipw_bg_adapter_restart(struct work_struct *work)
2362 {
2363  struct ipw_priv *priv =
2364  container_of(work, struct ipw_priv, adapter_restart);
2365  mutex_lock(&priv->mutex);
2366  ipw_adapter_restart(priv);
2367  mutex_unlock(&priv->mutex);
2368 }
2369 
2370 static void ipw_abort_scan(struct ipw_priv *priv);
2371 
2372 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2373 
2374 static void ipw_scan_check(void *data)
2375 {
2376  struct ipw_priv *priv = data;
2377 
2378  if (priv->status & STATUS_SCAN_ABORTING) {
2379  IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2380  "adapter after (%dms).\n",
2383  } else if (priv->status & STATUS_SCANNING) {
2384  IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2385  "after (%dms).\n",
2387  ipw_abort_scan(priv);
2389  }
2390 }
2391 
2392 static void ipw_bg_scan_check(struct work_struct *work)
2393 {
2394  struct ipw_priv *priv =
2395  container_of(work, struct ipw_priv, scan_check.work);
2396  mutex_lock(&priv->mutex);
2397  ipw_scan_check(priv);
2398  mutex_unlock(&priv->mutex);
2399 }
2400 
2401 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2402  struct ipw_scan_request_ext *request)
2403 {
2404  return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2405  sizeof(*request), request);
2406 }
2407 
2408 static int ipw_send_scan_abort(struct ipw_priv *priv)
2409 {
2410  if (!priv) {
2411  IPW_ERROR("Invalid args\n");
2412  return -1;
2413  }
2414 
2415  return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2416 }
2417 
2418 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2419 {
2420  struct ipw_sensitivity_calib calib = {
2421  .beacon_rssi_raw = cpu_to_le16(sens),
2422  };
2423 
2424  return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2425  &calib);
2426 }
2427 
2428 static int ipw_send_associate(struct ipw_priv *priv,
2429  struct ipw_associate *associate)
2430 {
2431  if (!priv || !associate) {
2432  IPW_ERROR("Invalid args\n");
2433  return -1;
2434  }
2435 
2436  return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2437  associate);
2438 }
2439 
2440 static int ipw_send_supported_rates(struct ipw_priv *priv,
2441  struct ipw_supported_rates *rates)
2442 {
2443  if (!priv || !rates) {
2444  IPW_ERROR("Invalid args\n");
2445  return -1;
2446  }
2447 
2448  return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2449  rates);
2450 }
2451 
2452 static int ipw_set_random_seed(struct ipw_priv *priv)
2453 {
2454  u32 val;
2455 
2456  if (!priv) {
2457  IPW_ERROR("Invalid args\n");
2458  return -1;
2459  }
2460 
2461  get_random_bytes(&val, sizeof(val));
2462 
2463  return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2464 }
2465 
2466 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2467 {
2468  __le32 v = cpu_to_le32(phy_off);
2469  if (!priv) {
2470  IPW_ERROR("Invalid args\n");
2471  return -1;
2472  }
2473 
2474  return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2475 }
2476 
2477 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2478 {
2479  if (!priv || !power) {
2480  IPW_ERROR("Invalid args\n");
2481  return -1;
2482  }
2483 
2484  return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2485 }
2486 
2487 static int ipw_set_tx_power(struct ipw_priv *priv)
2488 {
2489  const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2490  struct ipw_tx_power tx_power;
2491  s8 max_power;
2492  int i;
2493 
2494  memset(&tx_power, 0, sizeof(tx_power));
2495 
2496  /* configure device for 'G' band */
2497  tx_power.ieee_mode = IPW_G_MODE;
2498  tx_power.num_channels = geo->bg_channels;
2499  for (i = 0; i < geo->bg_channels; i++) {
2500  max_power = geo->bg[i].max_power;
2501  tx_power.channels_tx_power[i].channel_number =
2502  geo->bg[i].channel;
2503  tx_power.channels_tx_power[i].tx_power = max_power ?
2504  min(max_power, priv->tx_power) : priv->tx_power;
2505  }
2506  if (ipw_send_tx_power(priv, &tx_power))
2507  return -EIO;
2508 
2509  /* configure device to also handle 'B' band */
2510  tx_power.ieee_mode = IPW_B_MODE;
2511  if (ipw_send_tx_power(priv, &tx_power))
2512  return -EIO;
2513 
2514  /* configure device to also handle 'A' band */
2515  if (priv->ieee->abg_true) {
2516  tx_power.ieee_mode = IPW_A_MODE;
2517  tx_power.num_channels = geo->a_channels;
2518  for (i = 0; i < tx_power.num_channels; i++) {
2519  max_power = geo->a[i].max_power;
2520  tx_power.channels_tx_power[i].channel_number =
2521  geo->a[i].channel;
2522  tx_power.channels_tx_power[i].tx_power = max_power ?
2523  min(max_power, priv->tx_power) : priv->tx_power;
2524  }
2525  if (ipw_send_tx_power(priv, &tx_power))
2526  return -EIO;
2527  }
2528  return 0;
2529 }
2530 
2531 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2532 {
2533  struct ipw_rts_threshold rts_threshold = {
2534  .rts_threshold = cpu_to_le16(rts),
2535  };
2536 
2537  if (!priv) {
2538  IPW_ERROR("Invalid args\n");
2539  return -1;
2540  }
2541 
2542  return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2543  sizeof(rts_threshold), &rts_threshold);
2544 }
2545 
2546 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2547 {
2549  .frag_threshold = cpu_to_le16(frag),
2550  };
2551 
2552  if (!priv) {
2553  IPW_ERROR("Invalid args\n");
2554  return -1;
2555  }
2556 
2557  return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2558  sizeof(frag_threshold), &frag_threshold);
2559 }
2560 
2561 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2562 {
2563  __le32 param;
2564 
2565  if (!priv) {
2566  IPW_ERROR("Invalid args\n");
2567  return -1;
2568  }
2569 
2570  /* If on battery, set to 3, if AC set to CAM, else user
2571  * level */
2572  switch (mode) {
2573  case IPW_POWER_BATTERY:
2574  param = cpu_to_le32(IPW_POWER_INDEX_3);
2575  break;
2576  case IPW_POWER_AC:
2578  break;
2579  default:
2580  param = cpu_to_le32(mode);
2581  break;
2582  }
2583 
2584  return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2585  &param);
2586 }
2587 
2588 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2589 {
2590  struct ipw_retry_limit retry_limit = {
2591  .short_retry_limit = slimit,
2592  .long_retry_limit = llimit
2593  };
2594 
2595  if (!priv) {
2596  IPW_ERROR("Invalid args\n");
2597  return -1;
2598  }
2599 
2600  return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2601  &retry_limit);
2602 }
2603 
2604 /*
2605  * The IPW device contains a Microwire compatible EEPROM that stores
2606  * various data like the MAC address. Usually the firmware has exclusive
2607  * access to the eeprom, but during device initialization (before the
2608  * device driver has sent the HostComplete command to the firmware) the
2609  * device driver has read access to the EEPROM by way of indirect addressing
2610  * through a couple of memory mapped registers.
2611  *
2612  * The following is a simplified implementation for pulling data out of the
2613  * the eeprom, along with some helper functions to find information in
2614  * the per device private data's copy of the eeprom.
2615  *
2616  * NOTE: To better understand how these functions work (i.e what is a chip
2617  * select and why do have to keep driving the eeprom clock?), read
2618  * just about any data sheet for a Microwire compatible EEPROM.
2619  */
2620 
2621 /* write a 32 bit value into the indirect accessor register */
2622 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2623 {
2624  ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2625 
2626  /* the eeprom requires some time to complete the operation */
2627  udelay(p->eeprom_delay);
2628 }
2629 
2630 /* perform a chip select operation */
2631 static void eeprom_cs(struct ipw_priv *priv)
2632 {
2633  eeprom_write_reg(priv, 0);
2634  eeprom_write_reg(priv, EEPROM_BIT_CS);
2635  eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2636  eeprom_write_reg(priv, EEPROM_BIT_CS);
2637 }
2638 
2639 /* perform a chip select operation */
2640 static void eeprom_disable_cs(struct ipw_priv *priv)
2641 {
2642  eeprom_write_reg(priv, EEPROM_BIT_CS);
2643  eeprom_write_reg(priv, 0);
2644  eeprom_write_reg(priv, EEPROM_BIT_SK);
2645 }
2646 
2647 /* push a single bit down to the eeprom */
2648 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2649 {
2650  int d = (bit ? EEPROM_BIT_DI : 0);
2651  eeprom_write_reg(p, EEPROM_BIT_CS | d);
2652  eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2653 }
2654 
2655 /* push an opcode followed by an address down to the eeprom */
2656 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2657 {
2658  int i;
2659 
2660  eeprom_cs(priv);
2661  eeprom_write_bit(priv, 1);
2662  eeprom_write_bit(priv, op & 2);
2663  eeprom_write_bit(priv, op & 1);
2664  for (i = 7; i >= 0; i--) {
2665  eeprom_write_bit(priv, addr & (1 << i));
2666  }
2667 }
2668 
2669 /* pull 16 bits off the eeprom, one bit at a time */
2670 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2671 {
2672  int i;
2673  u16 r = 0;
2674 
2675  /* Send READ Opcode */
2676  eeprom_op(priv, EEPROM_CMD_READ, addr);
2677 
2678  /* Send dummy bit */
2679  eeprom_write_reg(priv, EEPROM_BIT_CS);
2680 
2681  /* Read the byte off the eeprom one bit at a time */
2682  for (i = 0; i < 16; i++) {
2683  u32 data = 0;
2684  eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2685  eeprom_write_reg(priv, EEPROM_BIT_CS);
2687  r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2688  }
2689 
2690  /* Send another dummy bit */
2691  eeprom_write_reg(priv, 0);
2692  eeprom_disable_cs(priv);
2693 
2694  return r;
2695 }
2696 
2697 /* helper function for pulling the mac address out of the private */
2698 /* data's copy of the eeprom data */
2699 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2700 {
2701  memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2702 }
2703 
2704 static void ipw_read_eeprom(struct ipw_priv *priv)
2705 {
2706  int i;
2707  __le16 *eeprom = (__le16 *) priv->eeprom;
2708 
2709  IPW_DEBUG_TRACE(">>\n");
2710 
2711  /* read entire contents of eeprom into private buffer */
2712  for (i = 0; i < 128; i++)
2713  eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2714 
2715  IPW_DEBUG_TRACE("<<\n");
2716 }
2717 
2718 /*
2719  * Either the device driver (i.e. the host) or the firmware can
2720  * load eeprom data into the designated region in SRAM. If neither
2721  * happens then the FW will shutdown with a fatal error.
2722  *
2723  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2724  * bit needs region of shared SRAM needs to be non-zero.
2725  */
2726 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2727 {
2728  int i;
2729 
2730  IPW_DEBUG_TRACE(">>\n");
2731 
2732  /*
2733  If the data looks correct, then copy it to our private
2734  copy. Otherwise let the firmware know to perform the operation
2735  on its own.
2736  */
2737  if (priv->eeprom[EEPROM_VERSION] != 0) {
2738  IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2739 
2740  /* write the eeprom data to sram */
2741  for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2742  ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2743 
2744  /* Do not load eeprom data on fatal error or suspend */
2746  } else {
2747  IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2748 
2749  /* Load eeprom data on fatal error or suspend */
2751  }
2752 
2753  IPW_DEBUG_TRACE("<<\n");
2754 }
2755 
2756 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2757 {
2758  count >>= 2;
2759  if (!count)
2760  return;
2761  _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2762  while (count--)
2763  _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2764 }
2765 
2766 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2767 {
2768  ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2770  sizeof(struct command_block));
2771 }
2772 
2773 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2774 { /* start dma engine but no transfers yet */
2775 
2776  IPW_DEBUG_FW(">> :\n");
2777 
2778  /* Start the dma */
2779  ipw_fw_dma_reset_command_blocks(priv);
2780 
2781  /* Write CB base address */
2782  ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2783 
2784  IPW_DEBUG_FW("<< :\n");
2785  return 0;
2786 }
2787 
2788 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2789 {
2790  u32 control = 0;
2791 
2792  IPW_DEBUG_FW(">> :\n");
2793 
2794  /* set the Stop and Abort bit */
2796  ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2797  priv->sram_desc.last_cb_index = 0;
2798 
2799  IPW_DEBUG_FW("<<\n");
2800 }
2801 
2802 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2803  struct command_block *cb)
2804 {
2805  u32 address =
2807  (sizeof(struct command_block) * index);
2808  IPW_DEBUG_FW(">> :\n");
2809 
2810  ipw_write_indirect(priv, address, (u8 *) cb,
2811  (int)sizeof(struct command_block));
2812 
2813  IPW_DEBUG_FW("<< :\n");
2814  return 0;
2815 
2816 }
2817 
2818 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2819 {
2820  u32 control = 0;
2821  u32 index = 0;
2822 
2823  IPW_DEBUG_FW(">> :\n");
2824 
2825  for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2826  ipw_fw_dma_write_command_block(priv, index,
2827  &priv->sram_desc.cb_list[index]);
2828 
2829  /* Enable the DMA in the CSR register */
2830  ipw_clear_bit(priv, IPW_RESET_REG,
2833 
2834  /* Set the Start bit. */
2836  ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2837 
2838  IPW_DEBUG_FW("<< :\n");
2839  return 0;
2840 }
2841 
2842 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2843 {
2844  u32 address;
2845  u32 register_value = 0;
2846  u32 cb_fields_address = 0;
2847 
2848  IPW_DEBUG_FW(">> :\n");
2849  address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2850  IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2851 
2852  /* Read the DMA Controlor register */
2853  register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2854  IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2855 
2856  /* Print the CB values */
2857  cb_fields_address = address;
2858  register_value = ipw_read_reg32(priv, cb_fields_address);
2859  IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2860 
2861  cb_fields_address += sizeof(u32);
2862  register_value = ipw_read_reg32(priv, cb_fields_address);
2863  IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2864 
2865  cb_fields_address += sizeof(u32);
2866  register_value = ipw_read_reg32(priv, cb_fields_address);
2867  IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2868  register_value);
2869 
2870  cb_fields_address += sizeof(u32);
2871  register_value = ipw_read_reg32(priv, cb_fields_address);
2872  IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2873 
2874  IPW_DEBUG_FW(">> :\n");
2875 }
2876 
2877 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2878 {
2879  u32 current_cb_address = 0;
2880  u32 current_cb_index = 0;
2881 
2882  IPW_DEBUG_FW("<< :\n");
2883  current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2884 
2885  current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2886  sizeof(struct command_block);
2887 
2888  IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2889  current_cb_index, current_cb_address);
2890 
2891  IPW_DEBUG_FW(">> :\n");
2892  return current_cb_index;
2893 
2894 }
2895 
2896 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2897  u32 src_address,
2898  u32 dest_address,
2899  u32 length,
2900  int interrupt_enabled, int is_last)
2901 {
2902 
2903  u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2906  struct command_block *cb;
2907  u32 last_cb_element = 0;
2908 
2909  IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2910  src_address, dest_address, length);
2911 
2912  if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2913  return -1;
2914 
2915  last_cb_element = priv->sram_desc.last_cb_index;
2916  cb = &priv->sram_desc.cb_list[last_cb_element];
2917  priv->sram_desc.last_cb_index++;
2918 
2919  /* Calculate the new CB control word */
2920  if (interrupt_enabled)
2921  control |= CB_INT_ENABLED;
2922 
2923  if (is_last)
2924  control |= CB_LAST_VALID;
2925 
2926  control |= length;
2927 
2928  /* Calculate the CB Element's checksum value */
2929  cb->status = control ^ src_address ^ dest_address;
2930 
2931  /* Copy the Source and Destination addresses */
2932  cb->dest_addr = dest_address;
2933  cb->source_addr = src_address;
2934 
2935  /* Copy the Control Word last */
2936  cb->control = control;
2937 
2938  return 0;
2939 }
2940 
2941 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2942  int nr, u32 dest_address, u32 len)
2943 {
2944  int ret, i;
2945  u32 size;
2946 
2947  IPW_DEBUG_FW(">>\n");
2948  IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2949  nr, dest_address, len);
2950 
2951  for (i = 0; i < nr; i++) {
2952  size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2953  ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2954  dest_address +
2955  i * CB_MAX_LENGTH, size,
2956  0, 0);
2957  if (ret) {
2958  IPW_DEBUG_FW_INFO(": Failed\n");
2959  return -1;
2960  } else
2961  IPW_DEBUG_FW_INFO(": Added new cb\n");
2962  }
2963 
2964  IPW_DEBUG_FW("<<\n");
2965  return 0;
2966 }
2967 
2968 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2969 {
2970  u32 current_index = 0, previous_index;
2971  u32 watchdog = 0;
2972 
2973  IPW_DEBUG_FW(">> :\n");
2974 
2975  current_index = ipw_fw_dma_command_block_index(priv);
2976  IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2977  (int)priv->sram_desc.last_cb_index);
2978 
2979  while (current_index < priv->sram_desc.last_cb_index) {
2980  udelay(50);
2981  previous_index = current_index;
2982  current_index = ipw_fw_dma_command_block_index(priv);
2983 
2984  if (previous_index < current_index) {
2985  watchdog = 0;
2986  continue;
2987  }
2988  if (++watchdog > 400) {
2989  IPW_DEBUG_FW_INFO("Timeout\n");
2990  ipw_fw_dma_dump_command_block(priv);
2991  ipw_fw_dma_abort(priv);
2992  return -1;
2993  }
2994  }
2995 
2996  ipw_fw_dma_abort(priv);
2997 
2998  /*Disable the DMA in the CSR register */
2999  ipw_set_bit(priv, IPW_RESET_REG,
3001 
3002  IPW_DEBUG_FW("<< dmaWaitSync\n");
3003  return 0;
3004 }
3005 
3006 static void ipw_remove_current_network(struct ipw_priv *priv)
3007 {
3008  struct list_head *element, *safe;
3009  struct libipw_network *network = NULL;
3010  unsigned long flags;
3011 
3012  spin_lock_irqsave(&priv->ieee->lock, flags);
3013  list_for_each_safe(element, safe, &priv->ieee->network_list) {
3014  network = list_entry(element, struct libipw_network, list);
3015  if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
3016  list_del(element);
3017  list_add_tail(&network->list,
3018  &priv->ieee->network_free_list);
3019  }
3020  }
3021  spin_unlock_irqrestore(&priv->ieee->lock, flags);
3022 }
3023 
3033 static inline int ipw_alive(struct ipw_priv *priv)
3034 {
3035  return ipw_read32(priv, 0x90) == 0xd55555d5;
3036 }
3037 
3038 /* timeout in msec, attempted in 10-msec quanta */
3039 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3040  int timeout)
3041 {
3042  int i = 0;
3043 
3044  do {
3045  if ((ipw_read32(priv, addr) & mask) == mask)
3046  return i;
3047  mdelay(10);
3048  i += 10;
3049  } while (i < timeout);
3050 
3051  return -ETIME;
3052 }
3053 
3054 /* These functions load the firmware and micro code for the operation of
3055  * the ipw hardware. It assumes the buffer has all the bits for the
3056  * image and the caller is handling the memory allocation and clean up.
3057  */
3058 
3059 static int ipw_stop_master(struct ipw_priv *priv)
3060 {
3061  int rc;
3062 
3063  IPW_DEBUG_TRACE(">>\n");
3064  /* stop master. typical delay - 0 */
3065  ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3066 
3067  /* timeout is in msec, polled in 10-msec quanta */
3068  rc = ipw_poll_bit(priv, IPW_RESET_REG,
3070  if (rc < 0) {
3071  IPW_ERROR("wait for stop master failed after 100ms\n");
3072  return -1;
3073  }
3074 
3075  IPW_DEBUG_INFO("stop master %dms\n", rc);
3076 
3077  return rc;
3078 }
3079 
3080 static void ipw_arc_release(struct ipw_priv *priv)
3081 {
3082  IPW_DEBUG_TRACE(">>\n");
3083  mdelay(5);
3084 
3085  ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3086 
3087  /* no one knows timing, for safety add some delay */
3088  mdelay(5);
3089 }
3090 
3091 struct fw_chunk {
3094 };
3095 
3096 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3097 {
3098  int rc = 0, i, addr;
3099  u8 cr = 0;
3100  __le16 *image;
3101 
3102  image = (__le16 *) data;
3103 
3104  IPW_DEBUG_TRACE(">>\n");
3105 
3106  rc = ipw_stop_master(priv);
3107 
3108  if (rc < 0)
3109  return rc;
3110 
3111  for (addr = IPW_SHARED_LOWER_BOUND;
3112  addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3113  ipw_write32(priv, addr, 0);
3114  }
3115 
3116  /* no ucode (yet) */
3117  memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3118  /* destroy DMA queues */
3119  /* reset sequence */
3120 
3121  ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3122  ipw_arc_release(priv);
3123  ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3124  mdelay(1);
3125 
3126  /* reset PHY */
3127  ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3128  mdelay(1);
3129 
3130  ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3131  mdelay(1);
3132 
3133  /* enable ucode store */
3134  ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3135  ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3136  mdelay(1);
3137 
3138  /* write ucode */
3146  /* load new ipw uCode */
3147  for (i = 0; i < len / 2; i++)
3148  ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3149  le16_to_cpu(image[i]));
3150 
3151  /* enable DINO */
3152  ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3153  ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3154 
3155  /* this is where the igx / win driver deveates from the VAP driver. */
3156 
3157  /* wait for alive response */
3158  for (i = 0; i < 100; i++) {
3159  /* poll for incoming data */
3161  if (cr & DINO_RXFIFO_DATA)
3162  break;
3163  mdelay(1);
3164  }
3165 
3166  if (cr & DINO_RXFIFO_DATA) {
3167  /* alive_command_responce size is NOT multiple of 4 */
3168  __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3169 
3170  for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3171  response_buffer[i] =
3174  memcpy(&priv->dino_alive, response_buffer,
3175  sizeof(priv->dino_alive));
3176  if (priv->dino_alive.alive_command == 1
3177  && priv->dino_alive.ucode_valid == 1) {
3178  rc = 0;
3180  ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3181  "of %02d/%02d/%02d %02d:%02d\n",
3182  priv->dino_alive.software_revision,
3183  priv->dino_alive.software_revision,
3184  priv->dino_alive.device_identifier,
3185  priv->dino_alive.device_identifier,
3186  priv->dino_alive.time_stamp[0],
3187  priv->dino_alive.time_stamp[1],
3188  priv->dino_alive.time_stamp[2],
3189  priv->dino_alive.time_stamp[3],
3190  priv->dino_alive.time_stamp[4]);
3191  } else {
3192  IPW_DEBUG_INFO("Microcode is not alive\n");
3193  rc = -EINVAL;
3194  }
3195  } else {
3196  IPW_DEBUG_INFO("No alive response from DINO\n");
3197  rc = -ETIME;
3198  }
3199 
3200  /* disable DINO, otherwise for some reason
3201  firmware have problem getting alive resp. */
3202  ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3203 
3204  return rc;
3205 }
3206 
3207 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3208 {
3209  int ret = -1;
3210  int offset = 0;
3211  struct fw_chunk *chunk;
3212  int total_nr = 0;
3213  int i;
3214  struct pci_pool *pool;
3215  void **virts;
3216  dma_addr_t *phys;
3217 
3218  IPW_DEBUG_TRACE("<< :\n");
3219 
3220  virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3221  GFP_KERNEL);
3222  if (!virts)
3223  return -ENOMEM;
3224 
3226  GFP_KERNEL);
3227  if (!phys) {
3228  kfree(virts);
3229  return -ENOMEM;
3230  }
3231  pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0);
3232  if (!pool) {
3233  IPW_ERROR("pci_pool_create failed\n");
3234  kfree(phys);
3235  kfree(virts);
3236  return -ENOMEM;
3237  }
3238 
3239  /* Start the Dma */
3240  ret = ipw_fw_dma_enable(priv);
3241 
3242  /* the DMA is already ready this would be a bug. */
3243  BUG_ON(priv->sram_desc.last_cb_index > 0);
3244 
3245  do {
3246  u32 chunk_len;
3247  u8 *start;
3248  int size;
3249  int nr = 0;
3250 
3251  chunk = (struct fw_chunk *)(data + offset);
3252  offset += sizeof(struct fw_chunk);
3253  chunk_len = le32_to_cpu(chunk->length);
3254  start = data + offset;
3255 
3256  nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3257  for (i = 0; i < nr; i++) {
3258  virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL,
3259  &phys[total_nr]);
3260  if (!virts[total_nr]) {
3261  ret = -ENOMEM;
3262  goto out;
3263  }
3264  size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3265  CB_MAX_LENGTH);
3266  memcpy(virts[total_nr], start, size);
3267  start += size;
3268  total_nr++;
3269  /* We don't support fw chunk larger than 64*8K */
3270  BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3271  }
3272 
3273  /* build DMA packet and queue up for sending */
3274  /* dma to chunk->address, the chunk->length bytes from data +
3275  * offeset*/
3276  /* Dma loading */
3277  ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3278  nr, le32_to_cpu(chunk->address),
3279  chunk_len);
3280  if (ret) {
3281  IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3282  goto out;
3283  }
3284 
3285  offset += chunk_len;
3286  } while (offset < len);
3287 
3288  /* Run the DMA and wait for the answer */
3289  ret = ipw_fw_dma_kick(priv);
3290  if (ret) {
3291  IPW_ERROR("dmaKick Failed\n");
3292  goto out;
3293  }
3294 
3295  ret = ipw_fw_dma_wait(priv);
3296  if (ret) {
3297  IPW_ERROR("dmaWaitSync Failed\n");
3298  goto out;
3299  }
3300  out:
3301  for (i = 0; i < total_nr; i++)
3302  pci_pool_free(pool, virts[i], phys[i]);
3303 
3304  pci_pool_destroy(pool);
3305  kfree(phys);
3306  kfree(virts);
3307 
3308  return ret;
3309 }
3310 
3311 /* stop nic */
3312 static int ipw_stop_nic(struct ipw_priv *priv)
3313 {
3314  int rc = 0;
3315 
3316  /* stop */
3318 
3319  rc = ipw_poll_bit(priv, IPW_RESET_REG,
3321  if (rc < 0) {
3322  IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3323  return rc;
3324  }
3325 
3326  ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3327 
3328  return rc;
3329 }
3330 
3331 static void ipw_start_nic(struct ipw_priv *priv)
3332 {
3333  IPW_DEBUG_TRACE(">>\n");
3334 
3335  /* prvHwStartNic release ARC */
3336  ipw_clear_bit(priv, IPW_RESET_REG,
3340 
3341  /* enable power management */
3342  ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3344 
3345  IPW_DEBUG_TRACE("<<\n");
3346 }
3347 
3348 static int ipw_init_nic(struct ipw_priv *priv)
3349 {
3350  int rc;
3351 
3352  IPW_DEBUG_TRACE(">>\n");
3353  /* reset */
3354  /*prvHwInitNic */
3355  /* set "initialization complete" bit to move adapter to D0 state */
3356  ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3357 
3358  /* low-level PLL activation */
3361 
3362  /* wait for clock stabilization */
3363  rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3365  if (rc < 0)
3366  IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3367 
3368  /* assert SW reset */
3369  ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3370 
3371  udelay(10);
3372 
3373  /* set "initialization complete" bit to move adapter to D0 state */
3374  ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3375 
3376  IPW_DEBUG_TRACE(">>\n");
3377  return 0;
3378 }
3379 
3380 /* Call this function from process context, it will sleep in request_firmware.
3381  * Probe is an ok place to call this from.
3382  */
3383 static int ipw_reset_nic(struct ipw_priv *priv)
3384 {
3385  int rc = 0;
3386  unsigned long flags;
3387 
3388  IPW_DEBUG_TRACE(">>\n");
3389 
3390  rc = ipw_init_nic(priv);
3391 
3392  spin_lock_irqsave(&priv->lock, flags);
3393  /* Clear the 'host command active' bit... */
3394  priv->status &= ~STATUS_HCMD_ACTIVE;
3398  spin_unlock_irqrestore(&priv->lock, flags);
3399 
3400  IPW_DEBUG_TRACE("<<\n");
3401  return rc;
3402 }
3403 
3404 
3405 struct ipw_fw {
3410  u8 data[0];
3411 };
3412 
3413 static int ipw_get_fw(struct ipw_priv *priv,
3414  const struct firmware **raw, const char *name)
3415 {
3416  struct ipw_fw *fw;
3417  int rc;
3418 
3419  /* ask firmware_class module to get the boot firmware off disk */
3420  rc = request_firmware(raw, name, &priv->pci_dev->dev);
3421  if (rc < 0) {
3422  IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3423  return rc;
3424  }
3425 
3426  if ((*raw)->size < sizeof(*fw)) {
3427  IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3428  return -EINVAL;
3429  }
3430 
3431  fw = (void *)(*raw)->data;
3432 
3433  if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3434  le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3435  IPW_ERROR("%s is too small or corrupt (%zd)\n",
3436  name, (*raw)->size);
3437  return -EINVAL;
3438  }
3439 
3440  IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3441  name,
3442  le32_to_cpu(fw->ver) >> 16,
3443  le32_to_cpu(fw->ver) & 0xff,
3444  (*raw)->size - sizeof(*fw));
3445  return 0;
3446 }
3447 
3448 #define IPW_RX_BUF_SIZE (3000)
3449 
3450 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3451  struct ipw_rx_queue *rxq)
3452 {
3453  unsigned long flags;
3454  int i;
3455 
3456  spin_lock_irqsave(&rxq->lock, flags);
3457 
3458  INIT_LIST_HEAD(&rxq->rx_free);
3459  INIT_LIST_HEAD(&rxq->rx_used);
3460 
3461  /* Fill the rx_used queue with _all_ of the Rx buffers */
3462  for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3463  /* In the reset function, these buffers may have been allocated
3464  * to an SKB, so we need to unmap and free potential storage */
3465  if (rxq->pool[i].skb != NULL) {
3466  pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3468  dev_kfree_skb(rxq->pool[i].skb);
3469  rxq->pool[i].skb = NULL;
3470  }
3471  list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3472  }
3473 
3474  /* Set us so that we have processed and used all buffers, but have
3475  * not restocked the Rx queue with fresh buffers */
3476  rxq->read = rxq->write = 0;
3477  rxq->free_count = 0;
3478  spin_unlock_irqrestore(&rxq->lock, flags);
3479 }
3480 
3481 #ifdef CONFIG_PM
3482 static int fw_loaded = 0;
3483 static const struct firmware *raw = NULL;
3484 
3485 static void free_firmware(void)
3486 {
3487  if (fw_loaded) {
3488  release_firmware(raw);
3489  raw = NULL;
3490  fw_loaded = 0;
3491  }
3492 }
3493 #else
3494 #define free_firmware() do {} while (0)
3495 #endif
3496 
3497 static int ipw_load(struct ipw_priv *priv)
3498 {
3499 #ifndef CONFIG_PM
3500  const struct firmware *raw = NULL;
3501 #endif
3502  struct ipw_fw *fw;
3503  u8 *boot_img, *ucode_img, *fw_img;
3504  u8 *name = NULL;
3505  int rc = 0, retries = 3;
3506 
3507  switch (priv->ieee->iw_mode) {
3508  case IW_MODE_ADHOC:
3509  name = "ipw2200-ibss.fw";
3510  break;
3511 #ifdef CONFIG_IPW2200_MONITOR
3512  case IW_MODE_MONITOR:
3513  name = "ipw2200-sniffer.fw";
3514  break;
3515 #endif
3516  case IW_MODE_INFRA:
3517  name = "ipw2200-bss.fw";
3518  break;
3519  }
3520 
3521  if (!name) {
3522  rc = -EINVAL;
3523  goto error;
3524  }
3525 
3526 #ifdef CONFIG_PM
3527  if (!fw_loaded) {
3528 #endif
3529  rc = ipw_get_fw(priv, &raw, name);
3530  if (rc < 0)
3531  goto error;
3532 #ifdef CONFIG_PM
3533  }
3534 #endif
3535 
3536  fw = (void *)raw->data;
3537  boot_img = &fw->data[0];
3538  ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3539  fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3540  le32_to_cpu(fw->ucode_size)];
3541 
3542  if (rc < 0)
3543  goto error;
3544 
3545  if (!priv->rxq)
3546  priv->rxq = ipw_rx_queue_alloc(priv);
3547  else
3548  ipw_rx_queue_reset(priv, priv->rxq);
3549  if (!priv->rxq) {
3550  IPW_ERROR("Unable to initialize Rx queue\n");
3551  goto error;
3552  }
3553 
3554  retry:
3555  /* Ensure interrupts are disabled */
3557  priv->status &= ~STATUS_INT_ENABLED;
3558 
3559  /* ack pending interrupts */
3561 
3562  ipw_stop_nic(priv);
3563 
3564  rc = ipw_reset_nic(priv);
3565  if (rc < 0) {
3566  IPW_ERROR("Unable to reset NIC\n");
3567  goto error;
3568  }
3569 
3570  ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3572 
3573  /* DMA the initial boot firmware into the device */
3574  rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3575  if (rc < 0) {
3576  IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3577  goto error;
3578  }
3579 
3580  /* kick start the device */
3581  ipw_start_nic(priv);
3582 
3583  /* wait for the device to finish its initial startup sequence */
3584  rc = ipw_poll_bit(priv, IPW_INTA_RW,
3585  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3586  if (rc < 0) {
3587  IPW_ERROR("device failed to boot initial fw image\n");
3588  goto error;
3589  }
3590  IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3591 
3592  /* ack fw init done interrupt */
3593  ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3594 
3595  /* DMA the ucode into the device */
3596  rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3597  if (rc < 0) {
3598  IPW_ERROR("Unable to load ucode: %d\n", rc);
3599  goto error;
3600  }
3601 
3602  /* stop nic */
3603  ipw_stop_nic(priv);
3604 
3605  /* DMA bss firmware into the device */
3606  rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3607  if (rc < 0) {
3608  IPW_ERROR("Unable to load firmware: %d\n", rc);
3609  goto error;
3610  }
3611 #ifdef CONFIG_PM
3612  fw_loaded = 1;
3613 #endif
3614 
3616 
3617  rc = ipw_queue_reset(priv);
3618  if (rc < 0) {
3619  IPW_ERROR("Unable to initialize queues\n");
3620  goto error;
3621  }
3622 
3623  /* Ensure interrupts are disabled */
3625  /* ack pending interrupts */
3627 
3628  /* kick start the device */
3629  ipw_start_nic(priv);
3630 
3631  if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3632  if (retries > 0) {
3633  IPW_WARNING("Parity error. Retrying init.\n");
3634  retries--;
3635  goto retry;
3636  }
3637 
3638  IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3639  rc = -EIO;
3640  goto error;
3641  }
3642 
3643  /* wait for the device */
3644  rc = ipw_poll_bit(priv, IPW_INTA_RW,
3645  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3646  if (rc < 0) {
3647  IPW_ERROR("device failed to start within 500ms\n");
3648  goto error;
3649  }
3650  IPW_DEBUG_INFO("device response after %dms\n", rc);
3651 
3652  /* ack fw init done interrupt */
3653  ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3654 
3655  /* read eeprom data */
3656  priv->eeprom_delay = 1;
3657  ipw_read_eeprom(priv);
3658  /* initialize the eeprom region of sram */
3659  ipw_eeprom_init_sram(priv);
3660 
3661  /* enable interrupts */
3662  ipw_enable_interrupts(priv);
3663 
3664  /* Ensure our queue has valid packets */
3665  ipw_rx_queue_replenish(priv);
3666 
3667  ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3668 
3669  /* ack pending interrupts */
3671 
3672 #ifndef CONFIG_PM
3673  release_firmware(raw);
3674 #endif
3675  return 0;
3676 
3677  error:
3678  if (priv->rxq) {
3679  ipw_rx_queue_free(priv, priv->rxq);
3680  priv->rxq = NULL;
3681  }
3682  ipw_tx_queue_free(priv);
3683  release_firmware(raw);
3684 #ifdef CONFIG_PM
3685  fw_loaded = 0;
3686  raw = NULL;
3687 #endif
3688 
3689  return rc;
3690 }
3691 
3722 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3723 {
3724  int s = q->read - q->write;
3725  if (s <= 0)
3726  s += RX_QUEUE_SIZE;
3727  /* keep some buffer to not confuse full and empty queue */
3728  s -= 2;
3729  if (s < 0)
3730  s = 0;
3731  return s;
3732 }
3733 
3734 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3735 {
3736  int s = q->last_used - q->first_empty;
3737  if (s <= 0)
3738  s += q->n_bd;
3739  s -= 2; /* keep some reserve to not confuse empty and full situations */
3740  if (s < 0)
3741  s = 0;
3742  return s;
3743 }
3744 
3745 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3746 {
3747  return (++index == n_bd) ? 0 : index;
3748 }
3749 
3764 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3765  int count, u32 read, u32 write, u32 base, u32 size)
3766 {
3767  q->n_bd = count;
3768 
3769  q->low_mark = q->n_bd / 4;
3770  if (q->low_mark < 4)
3771  q->low_mark = 4;
3772 
3773  q->high_mark = q->n_bd / 8;
3774  if (q->high_mark < 2)
3775  q->high_mark = 2;
3776 
3777  q->first_empty = q->last_used = 0;
3778  q->reg_r = read;
3779  q->reg_w = write;
3780 
3781  ipw_write32(priv, base, q->dma_addr);
3782  ipw_write32(priv, size, count);
3783  ipw_write32(priv, read, 0);
3784  ipw_write32(priv, write, 0);
3785 
3786  _ipw_read32(priv, 0x90);
3787 }
3788 
3789 static int ipw_queue_tx_init(struct ipw_priv *priv,
3790  struct clx2_tx_queue *q,
3791  int count, u32 read, u32 write, u32 base, u32 size)
3792 {
3793  struct pci_dev *dev = priv->pci_dev;
3794 
3795  q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3796  if (!q->txb) {
3797  IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3798  return -ENOMEM;
3799  }
3800 
3801  q->bd =
3802  pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3803  if (!q->bd) {
3804  IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3805  sizeof(q->bd[0]) * count);
3806  kfree(q->txb);
3807  q->txb = NULL;
3808  return -ENOMEM;
3809  }
3810 
3811  ipw_queue_init(priv, &q->q, count, read, write, base, size);
3812  return 0;
3813 }
3814 
3822 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3823  struct clx2_tx_queue *txq)
3824 {
3825  struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3826  struct pci_dev *dev = priv->pci_dev;
3827  int i;
3828 
3829  /* classify bd */
3830  if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3831  /* nothing to cleanup after for host commands */
3832  return;
3833 
3834  /* sanity check */
3835  if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3836  IPW_ERROR("Too many chunks: %i\n",
3837  le32_to_cpu(bd->u.data.num_chunks));
3839  return;
3840  }
3841 
3842  /* unmap chunks if any */
3843  for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3844  pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3845  le16_to_cpu(bd->u.data.chunk_len[i]),
3847  if (txq->txb[txq->q.last_used]) {
3848  libipw_txb_free(txq->txb[txq->q.last_used]);
3849  txq->txb[txq->q.last_used] = NULL;
3850  }
3851  }
3852 }
3853 
3863 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3864 {
3865  struct clx2_queue *q = &txq->q;
3866  struct pci_dev *dev = priv->pci_dev;
3867 
3868  if (q->n_bd == 0)
3869  return;
3870 
3871  /* first, empty all BD's */
3872  for (; q->first_empty != q->last_used;
3873  q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3874  ipw_queue_tx_free_tfd(priv, txq);
3875  }
3876 
3877  /* free buffers belonging to queue itself */
3878  pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3879  q->dma_addr);
3880  kfree(txq->txb);
3881 
3882  /* 0 fill whole structure */
3883  memset(txq, 0, sizeof(*txq));
3884 }
3885 
3891 static void ipw_tx_queue_free(struct ipw_priv *priv)
3892 {
3893  /* Tx CMD queue */
3894  ipw_queue_tx_free(priv, &priv->txq_cmd);
3895 
3896  /* Tx queues */
3897  ipw_queue_tx_free(priv, &priv->txq[0]);
3898  ipw_queue_tx_free(priv, &priv->txq[1]);
3899  ipw_queue_tx_free(priv, &priv->txq[2]);
3900  ipw_queue_tx_free(priv, &priv->txq[3]);
3901 }
3902 
3903 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3904 {
3905  /* First 3 bytes are manufacturer */
3906  bssid[0] = priv->mac_addr[0];
3907  bssid[1] = priv->mac_addr[1];
3908  bssid[2] = priv->mac_addr[2];
3909 
3910  /* Last bytes are random */
3911  get_random_bytes(&bssid[3], ETH_ALEN - 3);
3912 
3913  bssid[0] &= 0xfe; /* clear multicast bit */
3914  bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3915 }
3916 
3917 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3918 {
3919  struct ipw_station_entry entry;
3920  int i;
3921 
3922  for (i = 0; i < priv->num_stations; i++) {
3923  if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3924  /* Another node is active in network */
3925  priv->missed_adhoc_beacons = 0;
3926  if (!(priv->config & CFG_STATIC_CHANNEL))
3927  /* when other nodes drop out, we drop out */
3928  priv->config &= ~CFG_ADHOC_PERSIST;
3929 
3930  return i;
3931  }
3932  }
3933 
3934  if (i == MAX_STATIONS)
3935  return IPW_INVALID_STATION;
3936 
3937  IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3938 
3939  entry.reserved = 0;
3940  entry.support_mode = 0;
3941  memcpy(entry.mac_addr, bssid, ETH_ALEN);
3942  memcpy(priv->stations[i], bssid, ETH_ALEN);
3943  ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3944  &entry, sizeof(entry));
3945  priv->num_stations++;
3946 
3947  return i;
3948 }
3949 
3950 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3951 {
3952  int i;
3953 
3954  for (i = 0; i < priv->num_stations; i++)
3955  if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3956  return i;
3957 
3958  return IPW_INVALID_STATION;
3959 }
3960 
3961 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3962 {
3963  int err;
3964 
3965  if (priv->status & STATUS_ASSOCIATING) {
3966  IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3967  schedule_work(&priv->disassociate);
3968  return;
3969  }
3970 
3971  if (!(priv->status & STATUS_ASSOCIATED)) {
3972  IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3973  return;
3974  }
3975 
3976  IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3977  "on channel %d.\n",
3978  priv->assoc_request.bssid,
3979  priv->assoc_request.channel);
3980 
3982  priv->status |= STATUS_DISASSOCIATING;
3983 
3984  if (quiet)
3985  priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3986  else
3987  priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3988 
3989  err = ipw_send_associate(priv, &priv->assoc_request);
3990  if (err) {
3991  IPW_DEBUG_HC("Attempt to send [dis]associate command "
3992  "failed.\n");
3993  return;
3994  }
3995 
3996 }
3997 
3998 static int ipw_disassociate(void *data)
3999 {
4000  struct ipw_priv *priv = data;
4001  if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
4002  return 0;
4003  ipw_send_disassociate(data, 0);
4004  netif_carrier_off(priv->net_dev);
4005  return 1;
4006 }
4007 
4008 static void ipw_bg_disassociate(struct work_struct *work)
4009 {
4010  struct ipw_priv *priv =
4011  container_of(work, struct ipw_priv, disassociate);
4012  mutex_lock(&priv->mutex);
4013  ipw_disassociate(priv);
4014  mutex_unlock(&priv->mutex);
4015 }
4016 
4017 static void ipw_system_config(struct work_struct *work)
4018 {
4019  struct ipw_priv *priv =
4020  container_of(work, struct ipw_priv, system_config);
4021 
4022 #ifdef CONFIG_IPW2200_PROMISCUOUS
4023  if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4024  priv->sys_config.accept_all_data_frames = 1;
4025  priv->sys_config.accept_non_directed_frames = 1;
4026  priv->sys_config.accept_all_mgmt_bcpr = 1;
4027  priv->sys_config.accept_all_mgmt_frames = 1;
4028  }
4029 #endif
4030 
4031  ipw_send_system_config(priv);
4032 }
4033 
4036  const char *reason;
4037 };
4038 
4039 static const struct ipw_status_code ipw_status_codes[] = {
4040  {0x00, "Successful"},
4041  {0x01, "Unspecified failure"},
4042  {0x0A, "Cannot support all requested capabilities in the "
4043  "Capability information field"},
4044  {0x0B, "Reassociation denied due to inability to confirm that "
4045  "association exists"},
4046  {0x0C, "Association denied due to reason outside the scope of this "
4047  "standard"},
4048  {0x0D,
4049  "Responding station does not support the specified authentication "
4050  "algorithm"},
4051  {0x0E,
4052  "Received an Authentication frame with authentication sequence "
4053  "transaction sequence number out of expected sequence"},
4054  {0x0F, "Authentication rejected because of challenge failure"},
4055  {0x10, "Authentication rejected due to timeout waiting for next "
4056  "frame in sequence"},
4057  {0x11, "Association denied because AP is unable to handle additional "
4058  "associated stations"},
4059  {0x12,
4060  "Association denied due to requesting station not supporting all "
4061  "of the datarates in the BSSBasicServiceSet Parameter"},
4062  {0x13,
4063  "Association denied due to requesting station not supporting "
4064  "short preamble operation"},
4065  {0x14,
4066  "Association denied due to requesting station not supporting "
4067  "PBCC encoding"},
4068  {0x15,
4069  "Association denied due to requesting station not supporting "
4070  "channel agility"},
4071  {0x19,
4072  "Association denied due to requesting station not supporting "
4073  "short slot operation"},
4074  {0x1A,
4075  "Association denied due to requesting station not supporting "
4076  "DSSS-OFDM operation"},
4077  {0x28, "Invalid Information Element"},
4078  {0x29, "Group Cipher is not valid"},
4079  {0x2A, "Pairwise Cipher is not valid"},
4080  {0x2B, "AKMP is not valid"},
4081  {0x2C, "Unsupported RSN IE version"},
4082  {0x2D, "Invalid RSN IE Capabilities"},
4083  {0x2E, "Cipher suite is rejected per security policy"},
4084 };
4085 
4086 static const char *ipw_get_status_code(u16 status)
4087 {
4088  int i;
4089  for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4090  if (ipw_status_codes[i].status == (status & 0xff))
4091  return ipw_status_codes[i].reason;
4092  return "Unknown status value.";
4093 }
4094 
4095 static void inline average_init(struct average *avg)
4096 {
4097  memset(avg, 0, sizeof(*avg));
4098 }
4099 
4100 #define DEPTH_RSSI 8
4101 #define DEPTH_NOISE 16
4102 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4103 {
4104  return ((depth-1)*prev_avg + val)/depth;
4105 }
4106 
4107 static void average_add(struct average *avg, s16 val)
4108 {
4109  avg->sum -= avg->entries[avg->pos];
4110  avg->sum += val;
4111  avg->entries[avg->pos++] = val;
4112  if (unlikely(avg->pos == AVG_ENTRIES)) {
4113  avg->init = 1;
4114  avg->pos = 0;
4115  }
4116 }
4117 
4118 static s16 average_value(struct average *avg)
4119 {
4120  if (!unlikely(avg->init)) {
4121  if (avg->pos)
4122  return avg->sum / avg->pos;
4123  return 0;
4124  }
4125 
4126  return avg->sum / AVG_ENTRIES;
4127 }
4128 
4129 static void ipw_reset_stats(struct ipw_priv *priv)
4130 {
4131  u32 len = sizeof(u32);
4132 
4133  priv->quality = 0;
4134 
4135  average_init(&priv->average_missed_beacons);
4136  priv->exp_avg_rssi = -60;
4137  priv->exp_avg_noise = -85 + 0x100;
4138 
4139  priv->last_rate = 0;
4140  priv->last_missed_beacons = 0;
4141  priv->last_rx_packets = 0;
4142  priv->last_tx_packets = 0;
4143  priv->last_tx_failures = 0;
4144 
4145  /* Firmware managed, reset only when NIC is restarted, so we have to
4146  * normalize on the current value */
4147  ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4148  &priv->last_rx_err, &len);
4149  ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4150  &priv->last_tx_failures, &len);
4151 
4152  /* Driver managed, reset with each association */
4153  priv->missed_adhoc_beacons = 0;
4154  priv->missed_beacons = 0;
4155  priv->tx_packets = 0;
4156  priv->rx_packets = 0;
4157 
4158 }
4159 
4160 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4161 {
4162  u32 i = 0x80000000;
4163  u32 mask = priv->rates_mask;
4164  /* If currently associated in B mode, restrict the maximum
4165  * rate match to B rates */
4166  if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4167  mask &= LIBIPW_CCK_RATES_MASK;
4168 
4169  /* TODO: Verify that the rate is supported by the current rates
4170  * list. */
4171 
4172  while (i && !(mask & i))
4173  i >>= 1;
4174  switch (i) {
4176  return 1000000;
4178  return 2000000;
4180  return 5500000;
4182  return 6000000;
4184  return 9000000;
4186  return 11000000;
4188  return 12000000;
4190  return 18000000;
4192  return 24000000;
4194  return 36000000;
4196  return 48000000;
4198  return 54000000;
4199  }
4200 
4201  if (priv->ieee->mode == IEEE_B)
4202  return 11000000;
4203  else
4204  return 54000000;
4205 }
4206 
4207 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4208 {
4209  u32 rate, len = sizeof(rate);
4210  int err;
4211 
4212  if (!(priv->status & STATUS_ASSOCIATED))
4213  return 0;
4214 
4216  err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4217  &len);
4218  if (err) {
4219  IPW_DEBUG_INFO("failed querying ordinals.\n");
4220  return 0;
4221  }
4222  } else
4223  return ipw_get_max_rate(priv);
4224 
4225  switch (rate) {
4226  case IPW_TX_RATE_1MB:
4227  return 1000000;
4228  case IPW_TX_RATE_2MB:
4229  return 2000000;
4230  case IPW_TX_RATE_5MB:
4231  return 5500000;
4232  case IPW_TX_RATE_6MB:
4233  return 6000000;
4234  case IPW_TX_RATE_9MB:
4235  return 9000000;
4236  case IPW_TX_RATE_11MB:
4237  return 11000000;
4238  case IPW_TX_RATE_12MB:
4239  return 12000000;
4240  case IPW_TX_RATE_18MB:
4241  return 18000000;
4242  case IPW_TX_RATE_24MB:
4243  return 24000000;
4244  case IPW_TX_RATE_36MB:
4245  return 36000000;
4246  case IPW_TX_RATE_48MB:
4247  return 48000000;
4248  case IPW_TX_RATE_54MB:
4249  return 54000000;
4250  }
4251 
4252  return 0;
4253 }
4254 
4255 #define IPW_STATS_INTERVAL (2 * HZ)
4256 static void ipw_gather_stats(struct ipw_priv *priv)
4257 {
4258  u32 rx_err, rx_err_delta, rx_packets_delta;
4259  u32 tx_failures, tx_failures_delta, tx_packets_delta;
4260  u32 missed_beacons_percent, missed_beacons_delta;
4261  u32 quality = 0;
4262  u32 len = sizeof(u32);
4263  s16 rssi;
4264  u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4265  rate_quality;
4266  u32 max_rate;
4267 
4268  if (!(priv->status & STATUS_ASSOCIATED)) {
4269  priv->quality = 0;
4270  return;
4271  }
4272 
4273  /* Update the statistics */
4274  ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4275  &priv->missed_beacons, &len);
4276  missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4277  priv->last_missed_beacons = priv->missed_beacons;
4278  if (priv->assoc_request.beacon_interval) {
4279  missed_beacons_percent = missed_beacons_delta *
4280  (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4281  (IPW_STATS_INTERVAL * 10);
4282  } else {
4283  missed_beacons_percent = 0;
4284  }
4285  average_add(&priv->average_missed_beacons, missed_beacons_percent);
4286 
4287  ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4288  rx_err_delta = rx_err - priv->last_rx_err;
4289  priv->last_rx_err = rx_err;
4290 
4291  ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4292  tx_failures_delta = tx_failures - priv->last_tx_failures;
4293  priv->last_tx_failures = tx_failures;
4294 
4295  rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4296  priv->last_rx_packets = priv->rx_packets;
4297 
4298  tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4299  priv->last_tx_packets = priv->tx_packets;
4300 
4301  /* Calculate quality based on the following:
4302  *
4303  * Missed beacon: 100% = 0, 0% = 70% missed
4304  * Rate: 60% = 1Mbs, 100% = Max
4305  * Rx and Tx errors represent a straight % of total Rx/Tx
4306  * RSSI: 100% = > -50, 0% = < -80
4307  * Rx errors: 100% = 0, 0% = 50% missed
4308  *
4309  * The lowest computed quality is used.
4310  *
4311  */
4312 #define BEACON_THRESHOLD 5
4313  beacon_quality = 100 - missed_beacons_percent;
4314  if (beacon_quality < BEACON_THRESHOLD)
4315  beacon_quality = 0;
4316  else
4317  beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4318  (100 - BEACON_THRESHOLD);
4319  IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4320  beacon_quality, missed_beacons_percent);
4321 
4322  priv->last_rate = ipw_get_current_rate(priv);
4323  max_rate = ipw_get_max_rate(priv);
4324  rate_quality = priv->last_rate * 40 / max_rate + 60;
4325  IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4326  rate_quality, priv->last_rate / 1000000);
4327 
4328  if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4329  rx_quality = 100 - (rx_err_delta * 100) /
4330  (rx_packets_delta + rx_err_delta);
4331  else
4332  rx_quality = 100;
4333  IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4334  rx_quality, rx_err_delta, rx_packets_delta);
4335 
4336  if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4337  tx_quality = 100 - (tx_failures_delta * 100) /
4338  (tx_packets_delta + tx_failures_delta);
4339  else
4340  tx_quality = 100;
4341  IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4342  tx_quality, tx_failures_delta, tx_packets_delta);
4343 
4344  rssi = priv->exp_avg_rssi;
4345  signal_quality =
4346  (100 *
4347  (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4348  (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4349  (priv->ieee->perfect_rssi - rssi) *
4350  (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4351  62 * (priv->ieee->perfect_rssi - rssi))) /
4352  ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4353  (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4354  if (signal_quality > 100)
4355  signal_quality = 100;
4356  else if (signal_quality < 1)
4357  signal_quality = 0;
4358 
4359  IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4360  signal_quality, rssi);
4361 
4362  quality = min(rx_quality, signal_quality);
4363  quality = min(tx_quality, quality);
4364  quality = min(rate_quality, quality);
4365  quality = min(beacon_quality, quality);
4366  if (quality == beacon_quality)
4367  IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4368  quality);
4369  if (quality == rate_quality)
4370  IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4371  quality);
4372  if (quality == tx_quality)
4373  IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4374  quality);
4375  if (quality == rx_quality)
4376  IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4377  quality);
4378  if (quality == signal_quality)
4379  IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4380  quality);
4381 
4382  priv->quality = quality;
4383 
4385 }
4386 
4387 static void ipw_bg_gather_stats(struct work_struct *work)
4388 {
4389  struct ipw_priv *priv =
4390  container_of(work, struct ipw_priv, gather_stats.work);
4391  mutex_lock(&priv->mutex);
4392  ipw_gather_stats(priv);
4393  mutex_unlock(&priv->mutex);
4394 }
4395 
4396 /* Missed beacon behavior:
4397  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4398  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4399  * Above disassociate threshold, give up and stop scanning.
4400  * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4401 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4402  int missed_count)
4403 {
4404  priv->notif_missed_beacons = missed_count;
4405 
4406  if (missed_count > priv->disassociate_threshold &&
4407  priv->status & STATUS_ASSOCIATED) {
4408  /* If associated and we've hit the missed
4409  * beacon threshold, disassociate, turn
4410  * off roaming, and abort any active scans */
4413  "Missed beacon: %d - disassociate\n", missed_count);
4414  priv->status &= ~STATUS_ROAMING;
4415  if (priv->status & STATUS_SCANNING) {
4417  IPW_DL_STATE,
4418  "Aborting scan with missed beacon.\n");
4419  schedule_work(&priv->abort_scan);
4420  }
4421 
4422  schedule_work(&priv->disassociate);
4423  return;
4424  }
4425 
4426  if (priv->status & STATUS_ROAMING) {
4427  /* If we are currently roaming, then just
4428  * print a debug statement... */
4430  "Missed beacon: %d - roam in progress\n",
4431  missed_count);
4432  return;
4433  }
4434 
4435  if (roaming &&
4436  (missed_count > priv->roaming_threshold &&
4437  missed_count <= priv->disassociate_threshold)) {
4438  /* If we are not already roaming, set the ROAM
4439  * bit in the status and kick off a scan.
4440  * This can happen several times before we reach
4441  * disassociate_threshold. */
4443  "Missed beacon: %d - initiate "
4444  "roaming\n", missed_count);
4445  if (!(priv->status & STATUS_ROAMING)) {
4446  priv->status |= STATUS_ROAMING;
4447  if (!(priv->status & STATUS_SCANNING))
4449  }
4450  return;
4451  }
4452 
4453  if (priv->status & STATUS_SCANNING &&
4454  missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4455  /* Stop scan to keep fw from getting
4456  * stuck (only if we aren't roaming --
4457  * otherwise we'll never scan more than 2 or 3
4458  * channels..) */
4460  "Aborting scan with missed beacon.\n");
4461  schedule_work(&priv->abort_scan);
4462  }
4463 
4464  IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4465 }
4466 
4467 static void ipw_scan_event(struct work_struct *work)
4468 {
4469  union iwreq_data wrqu;
4470 
4471  struct ipw_priv *priv =
4472  container_of(work, struct ipw_priv, scan_event.work);
4473 
4474  wrqu.data.length = 0;
4475  wrqu.data.flags = 0;
4476  wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4477 }
4478 
4479 static void handle_scan_event(struct ipw_priv *priv)
4480 {
4481  /* Only userspace-requested scan completion events go out immediately */
4482  if (!priv->user_requested_scan) {
4483  if (!delayed_work_pending(&priv->scan_event))
4486  } else {
4487  union iwreq_data wrqu;
4488 
4489  priv->user_requested_scan = 0;
4491 
4492  wrqu.data.length = 0;
4493  wrqu.data.flags = 0;
4494  wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4495  }
4496 }
4497 
4502 static void ipw_rx_notification(struct ipw_priv *priv,
4503  struct ipw_rx_notification *notif)
4504 {
4505  DECLARE_SSID_BUF(ssid);
4506  u16 size = le16_to_cpu(notif->size);
4507 
4508  IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4509 
4510  switch (notif->subtype) {
4512  struct notif_association *assoc = &notif->u.assoc;
4513 
4514  switch (assoc->state) {
4515  case CMAS_ASSOCIATED:{
4517  IPW_DL_ASSOC,
4518  "associated: '%s' %pM\n",
4519  print_ssid(ssid, priv->essid,
4520  priv->essid_len),
4521  priv->bssid);
4522 
4523  switch (priv->ieee->iw_mode) {
4524  case IW_MODE_INFRA:
4525  memcpy(priv->ieee->bssid,
4526  priv->bssid, ETH_ALEN);
4527  break;
4528 
4529  case IW_MODE_ADHOC:
4530  memcpy(priv->ieee->bssid,
4531  priv->bssid, ETH_ALEN);
4532 
4533  /* clear out the station table */
4534  priv->num_stations = 0;
4535 
4537  ("queueing adhoc check\n");
4539  &priv->adhoc_check,
4540  le16_to_cpu(priv->
4541  assoc_request.
4542  beacon_interval));
4543  break;
4544  }
4545 
4546  priv->status &= ~STATUS_ASSOCIATING;
4547  priv->status |= STATUS_ASSOCIATED;
4548  schedule_work(&priv->system_config);
4549 
4550 #ifdef CONFIG_IPW2200_QOS
4551 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4552  le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4553  if ((priv->status & STATUS_AUTH) &&
4554  (IPW_GET_PACKET_STYPE(&notif->u.raw)
4556  if ((sizeof
4557  (struct
4559  <= size)
4560  && (size <= 2314)) {
4561  struct
4563  stats = {
4564  .len = size - 1,
4565  };
4566 
4568  ("QoS Associate "
4569  "size %d\n", size);
4570  libipw_rx_mgt(priv->
4571  ieee,
4572  (struct
4574  *)
4575  &notif->u.raw, &stats);
4576  }
4577  }
4578 #endif
4579 
4580  schedule_work(&priv->link_up);
4581 
4582  break;
4583  }
4584 
4585  case CMAS_AUTHENTICATED:{
4586  if (priv->
4587  status & (STATUS_ASSOCIATED |
4588  STATUS_AUTH)) {
4589  struct notif_authenticate *auth
4590  = &notif->u.auth;
4592  IPW_DL_STATE |
4593  IPW_DL_ASSOC,
4594  "deauthenticated: '%s' "
4595  "%pM"
4596  ": (0x%04X) - %s\n",
4597  print_ssid(ssid,
4598  priv->
4599  essid,
4600  priv->
4601  essid_len),
4602  priv->bssid,
4603  le16_to_cpu(auth->status),
4604  ipw_get_status_code
4605  (le16_to_cpu
4606  (auth->status)));
4607 
4608  priv->status &=
4609  ~(STATUS_ASSOCIATING |
4610  STATUS_AUTH |
4612 
4613  schedule_work(&priv->link_down);
4614  break;
4615  }
4616 
4618  IPW_DL_ASSOC,
4619  "authenticated: '%s' %pM\n",
4620  print_ssid(ssid, priv->essid,
4621  priv->essid_len),
4622  priv->bssid);
4623  break;
4624  }
4625 
4626  case CMAS_INIT:{
4627  if (priv->status & STATUS_AUTH) {
4628  struct
4630  *resp;
4631  resp =
4632  (struct
4634  *)&notif->u.raw;
4636  IPW_DL_STATE |
4637  IPW_DL_ASSOC,
4638  "association failed (0x%04X): %s\n",
4639  le16_to_cpu(resp->status),
4640  ipw_get_status_code
4641  (le16_to_cpu
4642  (resp->status)));
4643  }
4644 
4646  IPW_DL_ASSOC,
4647  "disassociated: '%s' %pM\n",
4648  print_ssid(ssid, priv->essid,
4649  priv->essid_len),
4650  priv->bssid);
4651 
4652  priv->status &=
4656  if (priv->assoc_network
4657  && (priv->assoc_network->
4658  capability &
4660  ipw_remove_current_network
4661  (priv);
4662 
4663  schedule_work(&priv->link_down);
4664 
4665  break;
4666  }
4667 
4668  case CMAS_RX_ASSOC_RESP:
4669  break;
4670 
4671  default:
4672  IPW_ERROR("assoc: unknown (%d)\n",
4673  assoc->state);
4674  break;
4675  }
4676 
4677  break;
4678  }
4679 
4681  struct notif_authenticate *auth = &notif->u.auth;
4682  switch (auth->state) {
4683  case CMAS_AUTHENTICATED:
4685  "authenticated: '%s' %pM\n",
4686  print_ssid(ssid, priv->essid,
4687  priv->essid_len),
4688  priv->bssid);
4689  priv->status |= STATUS_AUTH;
4690  break;
4691 
4692  case CMAS_INIT:
4693  if (priv->status & STATUS_AUTH) {
4695  IPW_DL_ASSOC,
4696  "authentication failed (0x%04X): %s\n",
4697  le16_to_cpu(auth->status),
4698  ipw_get_status_code(le16_to_cpu
4699  (auth->
4700  status)));
4701  }
4703  IPW_DL_ASSOC,
4704  "deauthenticated: '%s' %pM\n",
4705  print_ssid(ssid, priv->essid,
4706  priv->essid_len),
4707  priv->bssid);
4708 
4709  priv->status &= ~(STATUS_ASSOCIATING |
4710  STATUS_AUTH |
4712 
4713  schedule_work(&priv->link_down);
4714  break;
4715 
4716  case CMAS_TX_AUTH_SEQ_1:
4718  IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4719  break;
4720  case CMAS_RX_AUTH_SEQ_2:
4722  IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4723  break;
4724  case CMAS_AUTH_SEQ_1_PASS:
4726  IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4727  break;
4728  case CMAS_AUTH_SEQ_1_FAIL:
4730  IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4731  break;
4732  case CMAS_TX_AUTH_SEQ_3:
4734  IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4735  break;
4736  case CMAS_RX_AUTH_SEQ_4:
4738  IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4739  break;
4740  case CMAS_AUTH_SEQ_2_PASS:
4742  IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4743  break;
4744  case CMAS_AUTH_SEQ_2_FAIL:
4746  IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4747  break;
4748  case CMAS_TX_ASSOC:
4750  IPW_DL_ASSOC, "TX_ASSOC\n");
4751  break;
4752  case CMAS_RX_ASSOC_RESP:
4754  IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4755 
4756  break;
4757  case CMAS_ASSOCIATED:
4759  IPW_DL_ASSOC, "ASSOCIATED\n");
4760  break;
4761  default:
4762  IPW_DEBUG_NOTIF("auth: failure - %d\n",
4763  auth->state);
4764  break;
4765  }
4766  break;
4767  }
4768 
4770  struct notif_channel_result *x =
4771  &notif->u.channel_result;
4772 
4773  if (size == sizeof(*x)) {
4774  IPW_DEBUG_SCAN("Scan result for channel %d\n",
4775  x->channel_num);
4776  } else {
4777  IPW_DEBUG_SCAN("Scan result of wrong size %d "
4778  "(should be %zd)\n",
4779  size, sizeof(*x));
4780  }
4781  break;
4782  }
4783 
4785  struct notif_scan_complete *x = &notif->u.scan_complete;
4786  if (size == sizeof(*x)) {
4788  ("Scan completed: type %d, %d channels, "
4789  "%d status\n", x->scan_type,
4790  x->num_channels, x->status);
4791  } else {
4792  IPW_ERROR("Scan completed of wrong size %d "
4793  "(should be %zd)\n",
4794  size, sizeof(*x));
4795  }
4796 
4797  priv->status &=
4799 
4802 
4803  if (priv->status & STATUS_EXIT_PENDING)
4804  break;
4805 
4806  priv->ieee->scans++;
4807 
4808 #ifdef CONFIG_IPW2200_MONITOR
4809  if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4810  priv->status |= STATUS_SCAN_FORCED;
4812  break;
4813  }
4814  priv->status &= ~STATUS_SCAN_FORCED;
4815 #endif /* CONFIG_IPW2200_MONITOR */
4816 
4817  /* Do queued direct scans first */
4818  if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4820 
4821  if (!(priv->status & (STATUS_ASSOCIATED |
4823  STATUS_ROAMING |
4825  schedule_work(&priv->associate);
4826  else if (priv->status & STATUS_ROAMING) {
4828  /* If a scan completed and we are in roam mode, then
4829  * the scan that completed was the one requested as a
4830  * result of entering roam... so, schedule the
4831  * roam work */
4832  schedule_work(&priv->roam);
4833  else
4834  /* Don't schedule if we aborted the scan */
4835  priv->status &= ~STATUS_ROAMING;
4836  } else if (priv->status & STATUS_SCAN_PENDING)
4838  else if (priv->config & CFG_BACKGROUND_SCAN
4839  && priv->status & STATUS_ASSOCIATED)
4842 
4843  /* Send an empty event to user space.
4844  * We don't send the received data on the event because
4845  * it would require us to do complex transcoding, and
4846  * we want to minimise the work done in the irq handler
4847  * Use a request to extract the data.
4848  * Also, we generate this even for any scan, regardless
4849  * on how the scan was initiated. User space can just
4850  * sync on periodic scan to get fresh data...
4851  * Jean II */
4853  handle_scan_event(priv);
4854  break;
4855  }
4856 
4858  struct notif_frag_length *x = &notif->u.frag_len;
4859 
4860  if (size == sizeof(*x))
4861  IPW_ERROR("Frag length: %d\n",
4862  le16_to_cpu(x->frag_length));
4863  else
4864  IPW_ERROR("Frag length of wrong size %d "
4865  "(should be %zd)\n",
4866  size, sizeof(*x));
4867  break;
4868  }
4869 
4871  struct notif_link_deterioration *x =
4872  &notif->u.link_deterioration;
4873 
4874  if (size == sizeof(*x)) {
4876  "link deterioration: type %d, cnt %d\n",
4878  x->silence_count);
4879  memcpy(&priv->last_link_deterioration, x,
4880  sizeof(*x));
4881  } else {
4882  IPW_ERROR("Link Deterioration of wrong size %d "
4883  "(should be %zd)\n",
4884  size, sizeof(*x));
4885  }
4886  break;
4887  }
4888 
4890  IPW_ERROR("Dino config\n");
4891  if (priv->hcmd
4892  && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4893  IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4894 
4895  break;
4896  }
4897 
4899  struct notif_beacon_state *x = &notif->u.beacon_state;
4900  if (size != sizeof(*x)) {
4901  IPW_ERROR
4902  ("Beacon state of wrong size %d (should "
4903  "be %zd)\n", size, sizeof(*x));
4904  break;
4905  }
4906 
4907  if (le32_to_cpu(x->state) ==
4909  ipw_handle_missed_beacon(priv,
4910  le32_to_cpu(x->
4911  number));
4912 
4913  break;
4914  }
4915 
4917  struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4918  if (size == sizeof(*x)) {
4919  IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4920  "0x%02x station %d\n",
4921  x->key_state, x->security_type,
4922  x->station_index);
4923  break;
4924  }
4925 
4926  IPW_ERROR
4927  ("TGi Tx Key of wrong size %d (should be %zd)\n",
4928  size, sizeof(*x));
4929  break;
4930  }
4931 
4933  struct notif_calibration *x = &notif->u.calibration;
4934 
4935  if (size == sizeof(*x)) {
4936  memcpy(&priv->calib, x, sizeof(*x));
4937  IPW_DEBUG_INFO("TODO: Calibration\n");
4938  break;
4939  }
4940 
4941  IPW_ERROR
4942  ("Calibration of wrong size %d (should be %zd)\n",
4943  size, sizeof(*x));
4944  break;
4945  }
4946 
4948  if (size == sizeof(u32)) {
4949  priv->exp_avg_noise =
4950  exponential_average(priv->exp_avg_noise,
4951  (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4952  DEPTH_NOISE);
4953  break;
4954  }
4955 
4956  IPW_ERROR
4957  ("Noise stat is wrong size %d (should be %zd)\n",
4958  size, sizeof(u32));
4959  break;
4960  }
4961 
4962  default:
4963  IPW_DEBUG_NOTIF("Unknown notification: "
4964  "subtype=%d,flags=0x%2x,size=%d\n",
4965  notif->subtype, notif->flags, size);
4966  }
4967 }
4968 
4975 static int ipw_queue_reset(struct ipw_priv *priv)
4976 {
4977  int rc = 0;
4979  int nTx = 64, nTxCmd = 8;
4980  ipw_tx_queue_free(priv);
4981  /* Tx CMD queue */
4982  rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4987  if (rc) {
4988  IPW_ERROR("Tx Cmd queue init failed\n");
4989  goto error;
4990  }
4991  /* Tx queue(s) */
4992  rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4996  if (rc) {
4997  IPW_ERROR("Tx 0 queue init failed\n");
4998  goto error;
4999  }
5000  rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
5004  if (rc) {
5005  IPW_ERROR("Tx 1 queue init failed\n");
5006  goto error;
5007  }
5008  rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
5012  if (rc) {
5013  IPW_ERROR("Tx 2 queue init failed\n");
5014  goto error;
5015  }
5016  rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
5020  if (rc) {
5021  IPW_ERROR("Tx 3 queue init failed\n");
5022  goto error;
5023  }
5024  /* statistics */
5025  priv->rx_bufs_min = 0;
5026  priv->rx_pend_max = 0;
5027  return rc;
5028 
5029  error:
5030  ipw_tx_queue_free(priv);
5031  return rc;
5032 }
5033 
5047 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5048  struct clx2_tx_queue *txq, int qindex)
5049 {
5050  u32 hw_tail;
5051  int used;
5052  struct clx2_queue *q = &txq->q;
5053 
5054  hw_tail = ipw_read32(priv, q->reg_r);
5055  if (hw_tail >= q->n_bd) {
5056  IPW_ERROR
5057  ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5058  hw_tail, q->n_bd);
5059  goto done;
5060  }
5061  for (; q->last_used != hw_tail;
5062  q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5063  ipw_queue_tx_free_tfd(priv, txq);
5064  priv->tx_packets++;
5065  }
5066  done:
5067  if ((ipw_tx_queue_space(q) > q->low_mark) &&
5068  (qindex >= 0))
5069  netif_wake_queue(priv->net_dev);
5070  used = q->first_empty - q->last_used;
5071  if (used < 0)
5072  used += q->n_bd;
5073 
5074  return used;
5075 }
5076 
5077 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5078  int len, int sync)
5079 {
5080  struct clx2_tx_queue *txq = &priv->txq_cmd;
5081  struct clx2_queue *q = &txq->q;
5082  struct tfd_frame *tfd;
5083 
5084  if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5085  IPW_ERROR("No space for Tx\n");
5086  return -EBUSY;
5087  }
5088 
5089  tfd = &txq->bd[q->first_empty];
5090  txq->txb[q->first_empty] = NULL;
5091 
5092  memset(tfd, 0, sizeof(*tfd));
5093  tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5094  tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5095  priv->hcmd_seq++;
5096  tfd->u.cmd.index = hcmd;
5097  tfd->u.cmd.length = len;
5098  memcpy(tfd->u.cmd.payload, buf, len);
5099  q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5100  ipw_write32(priv, q->reg_w, q->first_empty);
5101  _ipw_read32(priv, 0x90);
5102 
5103  return 0;
5104 }
5105 
5106 /*
5107  * Rx theory of operation
5108  *
5109  * The host allocates 32 DMA target addresses and passes the host address
5110  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5111  * 0 to 31
5112  *
5113  * Rx Queue Indexes
5114  * The host/firmware share two index registers for managing the Rx buffers.
5115  *
5116  * The READ index maps to the first position that the firmware may be writing
5117  * to -- the driver can read up to (but not including) this position and get
5118  * good data.
5119  * The READ index is managed by the firmware once the card is enabled.
5120  *
5121  * The WRITE index maps to the last position the driver has read from -- the
5122  * position preceding WRITE is the last slot the firmware can place a packet.
5123  *
5124  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5125  * WRITE = READ.
5126  *
5127  * During initialization the host sets up the READ queue position to the first
5128  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5129  *
5130  * When the firmware places a packet in a buffer it will advance the READ index
5131  * and fire the RX interrupt. The driver can then query the READ index and
5132  * process as many packets as possible, moving the WRITE index forward as it
5133  * resets the Rx queue buffers with new memory.
5134  *
5135  * The management in the driver is as follows:
5136  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5137  * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5138  * to replensish the ipw->rxq->rx_free.
5139  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5140  * ipw->rxq is replenished and the READ INDEX is updated (updating the
5141  * 'processed' and 'read' driver indexes as well)
5142  * + A received packet is processed and handed to the kernel network stack,
5143  * detached from the ipw->rxq. The driver 'processed' index is updated.
5144  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5145  * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5146  * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5147  * were enough free buffers and RX_STALLED is set it is cleared.
5148  *
5149  *
5150  * Driver sequence:
5151  *
5152  * ipw_rx_queue_alloc() Allocates rx_free
5153  * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5154  * ipw_rx_queue_restock
5155  * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5156  * queue, updates firmware pointers, and updates
5157  * the WRITE index. If insufficient rx_free buffers
5158  * are available, schedules ipw_rx_queue_replenish
5159  *
5160  * -- enable interrupts --
5161  * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5162  * READ INDEX, detaching the SKB from the pool.
5163  * Moves the packet buffer from queue to rx_used.
5164  * Calls ipw_rx_queue_restock to refill any empty
5165  * slots.
5166  * ...
5167  *
5168  */
5169 
5170 /*
5171  * If there are slots in the RX queue that need to be restocked,
5172  * and we have free pre-allocated buffers, fill the ranks as much
5173  * as we can pulling from rx_free.
5174  *
5175  * This moves the 'write' index forward to catch up with 'processed', and
5176  * also updates the memory address in the firmware to reference the new
5177  * target buffer.
5178  */
5179 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5180 {
5181  struct ipw_rx_queue *rxq = priv->rxq;
5182  struct list_head *element;
5183  struct ipw_rx_mem_buffer *rxb;
5184  unsigned long flags;
5185  int write;
5186 
5187  spin_lock_irqsave(&rxq->lock, flags);
5188  write = rxq->write;
5189  while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5190  element = rxq->rx_free.next;
5191  rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5192  list_del(element);
5193 
5195  rxb->dma_addr);
5196  rxq->queue[rxq->write] = rxb;
5197  rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5198  rxq->free_count--;
5199  }
5200  spin_unlock_irqrestore(&rxq->lock, flags);
5201 
5202  /* If the pre-allocated buffer pool is dropping low, schedule to
5203  * refill it */
5204  if (rxq->free_count <= RX_LOW_WATERMARK)
5205  schedule_work(&priv->rx_replenish);
5206 
5207  /* If we've added more space for the firmware to place data, tell it */
5208  if (write != rxq->write)
5209  ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5210 }
5211 
5212 /*
5213  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5214  * Also restock the Rx queue via ipw_rx_queue_restock.
5215  *
5216  * This is called as a scheduled work item (except for during intialization)
5217  */
5218 static void ipw_rx_queue_replenish(void *data)
5219 {
5220  struct ipw_priv *priv = data;
5221  struct ipw_rx_queue *rxq = priv->rxq;
5222  struct list_head *element;
5223  struct ipw_rx_mem_buffer *rxb;
5224  unsigned long flags;
5225 
5226  spin_lock_irqsave(&rxq->lock, flags);
5227  while (!list_empty(&rxq->rx_used)) {
5228  element = rxq->rx_used.next;
5229  rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5230  rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5231  if (!rxb->skb) {
5232  printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5233  priv->net_dev->name);
5234  /* We don't reschedule replenish work here -- we will
5235  * call the restock method and if it still needs
5236  * more buffers it will schedule replenish */
5237  break;
5238  }
5239  list_del(element);
5240 
5241  rxb->dma_addr =
5242  pci_map_single(priv->pci_dev, rxb->skb->data,
5244 
5245  list_add_tail(&rxb->list, &rxq->rx_free);
5246  rxq->free_count++;
5247  }
5248  spin_unlock_irqrestore(&rxq->lock, flags);
5249 
5250  ipw_rx_queue_restock(priv);
5251 }
5252 
5253 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5254 {
5255  struct ipw_priv *priv =
5256  container_of(work, struct ipw_priv, rx_replenish);
5257  mutex_lock(&priv->mutex);
5258  ipw_rx_queue_replenish(priv);
5259  mutex_unlock(&priv->mutex);
5260 }
5261 
5262 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5263  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5264  * This free routine walks the list of POOL entries and if SKB is set to
5265  * non NULL it is unmapped and freed
5266  */
5267 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5268 {
5269  int i;
5270 
5271  if (!rxq)
5272  return;
5273 
5274  for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5275  if (rxq->pool[i].skb != NULL) {
5276  pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5278  dev_kfree_skb(rxq->pool[i].skb);
5279  }
5280  }
5281 
5282  kfree(rxq);
5283 }
5284 
5285 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5286 {
5287  struct ipw_rx_queue *rxq;
5288  int i;
5289 
5290  rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5291  if (unlikely(!rxq)) {
5292  IPW_ERROR("memory allocation failed\n");
5293  return NULL;
5294  }
5295  spin_lock_init(&rxq->lock);
5296  INIT_LIST_HEAD(&rxq->rx_free);
5297  INIT_LIST_HEAD(&rxq->rx_used);
5298 
5299  /* Fill the rx_used queue with _all_ of the Rx buffers */
5300  for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5301  list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5302 
5303  /* Set us so that we have processed and used all buffers, but have
5304  * not restocked the Rx queue with fresh buffers */
5305  rxq->read = rxq->write = 0;
5306  rxq->free_count = 0;
5307 
5308  return rxq;
5309 }
5310 
5311 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5312 {
5313  rate &= ~LIBIPW_BASIC_RATE_MASK;
5314  if (ieee_mode == IEEE_A) {
5315  switch (rate) {
5316  case LIBIPW_OFDM_RATE_6MB:
5317  return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5318  1 : 0;
5319  case LIBIPW_OFDM_RATE_9MB:
5320  return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5321  1 : 0;
5322  case LIBIPW_OFDM_RATE_12MB:
5323  return priv->
5324  rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5325  case LIBIPW_OFDM_RATE_18MB:
5326  return priv->
5327  rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5328  case LIBIPW_OFDM_RATE_24MB:
5329  return priv->
5330  rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5331  case LIBIPW_OFDM_RATE_36MB:
5332  return priv->
5333  rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5334  case LIBIPW_OFDM_RATE_48MB:
5335  return priv->
5336  rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5337  case LIBIPW_OFDM_RATE_54MB:
5338  return priv->
5339  rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5340  default:
5341  return 0;
5342  }
5343  }
5344 
5345  /* B and G mixed */
5346  switch (rate) {
5347  case LIBIPW_CCK_RATE_1MB:
5348  return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5349  case LIBIPW_CCK_RATE_2MB:
5350  return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5351  case LIBIPW_CCK_RATE_5MB:
5352  return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5353  case LIBIPW_CCK_RATE_11MB:
5354  return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5355  }
5356 
5357  /* If we are limited to B modulations, bail at this point */
5358  if (ieee_mode == IEEE_B)
5359  return 0;
5360 
5361  /* G */
5362  switch (rate) {
5363  case LIBIPW_OFDM_RATE_6MB:
5364  return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5365  case LIBIPW_OFDM_RATE_9MB:
5366  return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5367  case LIBIPW_OFDM_RATE_12MB:
5368  return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5369  case LIBIPW_OFDM_RATE_18MB:
5370  return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5371  case LIBIPW_OFDM_RATE_24MB:
5372  return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5373  case LIBIPW_OFDM_RATE_36MB:
5374  return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5375  case LIBIPW_OFDM_RATE_48MB:
5376  return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5377  case LIBIPW_OFDM_RATE_54MB:
5378  return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5379  }
5380 
5381  return 0;
5382 }
5383 
5384 static int ipw_compatible_rates(struct ipw_priv *priv,
5385  const struct libipw_network *network,
5386  struct ipw_supported_rates *rates)
5387 {
5388  int num_rates, i;
5389 
5390  memset(rates, 0, sizeof(*rates));
5391  num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5392  rates->num_rates = 0;
5393  for (i = 0; i < num_rates; i++) {
5394  if (!ipw_is_rate_in_mask(priv, network->mode,
5395  network->rates[i])) {
5396 
5397  if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5398  IPW_DEBUG_SCAN("Adding masked mandatory "
5399  "rate %02X\n",
5400  network->rates[i]);
5401  rates->supported_rates[rates->num_rates++] =
5402  network->rates[i];
5403  continue;
5404  }
5405 
5406  IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5407  network->rates[i], priv->rates_mask);
5408  continue;
5409  }
5410 
5411  rates->supported_rates[rates->num_rates++] = network->rates[i];
5412  }
5413 
5414  num_rates = min(network->rates_ex_len,
5415  (u8) (IPW_MAX_RATES - num_rates));
5416  for (i = 0; i < num_rates; i++) {
5417  if (!ipw_is_rate_in_mask(priv, network->mode,
5418  network->rates_ex[i])) {
5419  if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5420  IPW_DEBUG_SCAN("Adding masked mandatory "
5421  "rate %02X\n",
5422  network->rates_ex[i]);
5423  rates->supported_rates[rates->num_rates++] =
5424  network->rates[i];
5425  continue;
5426  }
5427 
5428  IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5429  network->rates_ex[i], priv->rates_mask);
5430  continue;
5431  }
5432 
5433  rates->supported_rates[rates->num_rates++] =
5434  network->rates_ex[i];
5435  }
5436 
5437  return 1;
5438 }
5439 
5440 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5441  const struct ipw_supported_rates *src)
5442 {
5443  u8 i;
5444  for (i = 0; i < src->num_rates; i++)
5445  dest->supported_rates[i] = src->supported_rates[i];
5446  dest->num_rates = src->num_rates;
5447 }
5448 
5449 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5450  * mask should ever be used -- right now all callers to add the scan rates are
5451  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5452 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5453  u8 modulation, u32 rate_mask)
5454 {
5455  u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5457 
5458  if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5459  rates->supported_rates[rates->num_rates++] =
5461 
5462  if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5463  rates->supported_rates[rates->num_rates++] =
5465 
5466  if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5467  rates->supported_rates[rates->num_rates++] = basic_mask |
5469 
5470  if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5471  rates->supported_rates[rates->num_rates++] = basic_mask |
5473 }
5474 
5475 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5476  u8 modulation, u32 rate_mask)
5477 {
5478  u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5480 
5481  if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5482  rates->supported_rates[rates->num_rates++] = basic_mask |
5484 
5485  if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5486  rates->supported_rates[rates->num_rates++] =
5488 
5489  if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5490  rates->supported_rates[rates->num_rates++] = basic_mask |
5492 
5493  if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5494  rates->supported_rates[rates->num_rates++] =
5496 
5497  if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5498  rates->supported_rates[rates->num_rates++] = basic_mask |
5500 
5501  if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5502  rates->supported_rates[rates->num_rates++] =
5504 
5505  if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5506  rates->supported_rates[rates->num_rates++] =
5508 
5509  if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5510  rates->supported_rates[rates->num_rates++] =
5512 }
5513 
5516  struct ipw_supported_rates rates;
5517 };
5518 
5519 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5520  struct ipw_network_match *match,
5521  struct libipw_network *network,
5522  int roaming)
5523 {
5524  struct ipw_supported_rates rates;
5525  DECLARE_SSID_BUF(ssid);
5526 
5527  /* Verify that this network's capability is compatible with the
5528  * current mode (AdHoc or Infrastructure) */
5529  if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5530  !(network->capability & WLAN_CAPABILITY_IBSS))) {
5531  IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5532  "capability mismatch.\n",
5533  print_ssid(ssid, network->ssid,
5534  network->ssid_len),
5535  network->bssid);
5536  return 0;
5537  }
5538 
5539  if (unlikely(roaming)) {
5540  /* If we are roaming, then ensure check if this is a valid
5541  * network to try and roam to */
5542  if ((network->ssid_len != match->network->ssid_len) ||
5543  memcmp(network->ssid, match->network->ssid,
5544  network->ssid_len)) {
5545  IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5546  "because of non-network ESSID.\n",
5547  print_ssid(ssid, network->ssid,
5548  network->ssid_len),
5549  network->bssid);
5550  return 0;
5551  }
5552  } else {
5553  /* If an ESSID has been configured then compare the broadcast
5554  * ESSID to ours */
5555  if ((priv->config & CFG_STATIC_ESSID) &&
5556  ((network->ssid_len != priv->essid_len) ||
5557  memcmp(network->ssid, priv->essid,
5558  min(network->ssid_len, priv->essid_len)))) {
5559  char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5560 
5561  strncpy(escaped,
5562  print_ssid(ssid, network->ssid,
5563  network->ssid_len),
5564  sizeof(escaped));
5565  IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5566  "because of ESSID mismatch: '%s'.\n",
5567  escaped, network->bssid,
5568  print_ssid(ssid, priv->essid,
5569  priv->essid_len));
5570  return 0;
5571  }
5572  }
5573 
5574  /* If the old network rate is better than this one, don't bother
5575  * testing everything else. */
5576 
5577  if (network->time_stamp[0] < match->network->time_stamp[0]) {
5578  IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5579  "current network.\n",
5580  print_ssid(ssid, match->network->ssid,
5581  match->network->ssid_len));
5582  return 0;
5583  } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5584  IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5585  "current network.\n",
5586  print_ssid(ssid, match->network->ssid,
5587  match->network->ssid_len));
5588  return 0;
5589  }
5590 
5591  /* Now go through and see if the requested network is valid... */
5592  if (priv->ieee->scan_age != 0 &&
5593  time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5594  IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5595  "because of age: %ums.\n",
5596  print_ssid(ssid, network->ssid,
5597  network->ssid_len),
5598  network->bssid,
5599  jiffies_to_msecs(jiffies -
5600  network->last_scanned));
5601  return 0;
5602  }
5603 
5604  if ((priv->config & CFG_STATIC_CHANNEL) &&
5605  (network->channel != priv->channel)) {
5606  IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5607  "because of channel mismatch: %d != %d.\n",
5608  print_ssid(ssid, network->ssid,
5609  network->ssid_len),
5610  network->bssid,
5611  network->channel, priv->channel);
5612  return 0;
5613  }
5614 
5615  /* Verify privacy compatibility */
5616  if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5617  ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5618  IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5619  "because of privacy mismatch: %s != %s.\n",
5620  print_ssid(ssid, network->ssid,
5621  network->ssid_len),
5622  network->bssid,
5623  priv->
5624  capability & CAP_PRIVACY_ON ? "on" : "off",
5625  network->
5627  "off");
5628  return 0;
5629  }
5630 
5631  if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5632  IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5633  "because of the same BSSID match: %pM"
5634  ".\n", print_ssid(ssid, network->ssid,
5635  network->ssid_len),
5636  network->bssid,
5637  priv->bssid);
5638  return 0;
5639  }
5640 
5641  /* Filter out any incompatible freq / mode combinations */
5642  if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5643  IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5644  "because of invalid frequency/mode "
5645  "combination.\n",
5646  print_ssid(ssid, network->ssid,
5647  network->ssid_len),
5648  network->bssid);
5649  return 0;
5650  }
5651 
5652  /* Ensure that the rates supported by the driver are compatible with
5653  * this AP, including verification of basic rates (mandatory) */
5654  if (!ipw_compatible_rates(priv, network, &rates)) {
5655  IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5656  "because configured rate mask excludes "
5657  "AP mandatory rate.\n",
5658  print_ssid(ssid, network->ssid,
5659  network->ssid_len),
5660  network->bssid);
5661  return 0;
5662  }
5663 
5664  if (rates.num_rates == 0) {
5665  IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5666  "because of no compatible rates.\n",
5667  print_ssid(ssid, network->ssid,
5668  network->ssid_len),
5669  network->bssid);
5670  return 0;
5671  }
5672 
5673  /* TODO: Perform any further minimal comparititive tests. We do not
5674  * want to put too much policy logic here; intelligent scan selection
5675  * should occur within a generic IEEE 802.11 user space tool. */
5676 
5677  /* Set up 'new' AP to this network */
5678  ipw_copy_rates(&match->rates, &rates);
5679  match->network = network;
5680  IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5681  print_ssid(ssid, network->ssid, network->ssid_len),
5682  network->bssid);
5683 
5684  return 1;
5685 }
5686 
5687 static void ipw_merge_adhoc_network(struct work_struct *work)
5688 {
5689  DECLARE_SSID_BUF(ssid);
5690  struct ipw_priv *priv =
5691  container_of(work, struct ipw_priv, merge_networks);
5692  struct libipw_network *network = NULL;
5693  struct ipw_network_match match = {
5694  .network = priv->assoc_network
5695  };
5696 
5697  if ((priv->status & STATUS_ASSOCIATED) &&
5698  (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5699  /* First pass through ROAM process -- look for a better
5700  * network */
5701  unsigned long flags;
5702 
5703  spin_lock_irqsave(&priv->ieee->lock, flags);
5704  list_for_each_entry(network, &priv->ieee->network_list, list) {
5705  if (network != priv->assoc_network)
5706  ipw_find_adhoc_network(priv, &match, network,
5707  1);
5708  }
5709  spin_unlock_irqrestore(&priv->ieee->lock, flags);
5710 
5711  if (match.network == priv->assoc_network) {
5712  IPW_DEBUG_MERGE("No better ADHOC in this network to "
5713  "merge to.\n");
5714  return;
5715  }
5716 
5717  mutex_lock(&priv->mutex);
5718  if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5719  IPW_DEBUG_MERGE("remove network %s\n",
5720  print_ssid(ssid, priv->essid,
5721  priv->essid_len));
5722  ipw_remove_current_network(priv);
5723  }
5724 
5725  ipw_disassociate(priv);
5726  priv->assoc_network = match.network;
5727  mutex_unlock(&priv->mutex);
5728  return;
5729  }
5730 }
5731 
5732 static int ipw_best_network(struct ipw_priv *priv,
5733  struct ipw_network_match *match,
5734  struct libipw_network *network, int roaming)
5735 {
5736  struct ipw_supported_rates rates;
5737  DECLARE_SSID_BUF(ssid);
5738 
5739  /* Verify that this network's capability is compatible with the
5740  * current mode (AdHoc or Infrastructure) */
5741  if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5742  !(network->capability & WLAN_CAPABILITY_ESS)) ||
5743  (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5744  !(network->capability & WLAN_CAPABILITY_IBSS))) {
5745  IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5746  "capability mismatch.\n",
5747  print_ssid(ssid, network->ssid,
5748  network->ssid_len),
5749  network->bssid);
5750  return 0;
5751  }
5752 
5753  if (unlikely(roaming)) {
5754  /* If we are roaming, then ensure check if this is a valid
5755  * network to try and roam to */
5756  if ((network->ssid_len != match->network->ssid_len) ||
5757  memcmp(network->ssid, match->network->ssid,
5758  network->ssid_len)) {
5759  IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5760  "because of non-network ESSID.\n",
5761  print_ssid(ssid, network->ssid,
5762  network->ssid_len),
5763  network->bssid);
5764  return 0;
5765  }
5766  } else {
5767  /* If an ESSID has been configured then compare the broadcast
5768  * ESSID to ours */
5769  if ((priv->config & CFG_STATIC_ESSID) &&
5770  ((network->ssid_len != priv->essid_len) ||
5771  memcmp(network->ssid, priv->essid,
5772  min(network->ssid_len, priv->essid_len)))) {
5773  char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5774  strncpy(escaped,
5775  print_ssid(ssid, network->ssid,
5776  network->ssid_len),
5777  sizeof(escaped));
5778  IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5779  "because of ESSID mismatch: '%s'.\n",
5780  escaped, network->bssid,
5781  print_ssid(ssid, priv->essid,
5782  priv->essid_len));
5783  return 0;
5784  }
5785  }
5786 
5787  /* If the old network rate is better than this one, don't bother
5788  * testing everything else. */
5789  if (match->network && match->network->stats.rssi > network->stats.rssi) {
5790  char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5791  strncpy(escaped,
5792  print_ssid(ssid, network->ssid, network->ssid_len),
5793  sizeof(escaped));
5794  IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5795  "'%s (%pM)' has a stronger signal.\n",
5796  escaped, network->bssid,
5797  print_ssid(ssid, match->network->ssid,
5798  match->network->ssid_len),
5799  match->network->bssid);
5800  return 0;
5801  }
5802 
5803  /* If this network has already had an association attempt within the
5804  * last 3 seconds, do not try and associate again... */
5805  if (network->last_associate &&
5806  time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5807  IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5808  "because of storming (%ums since last "
5809  "assoc attempt).\n",
5810  print_ssid(ssid, network->ssid,
5811  network->ssid_len),
5812  network->bssid,
5813  jiffies_to_msecs(jiffies -
5814  network->last_associate));
5815  return 0;
5816  }
5817 
5818  /* Now go through and see if the requested network is valid... */
5819  if (priv->ieee->scan_age != 0 &&
5820  time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5821  IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5822  "because of age: %ums.\n",
5823  print_ssid(ssid, network->ssid,
5824  network->ssid_len),
5825  network->bssid,
5826  jiffies_to_msecs(jiffies -
5827  network->last_scanned));
5828  return 0;
5829  }
5830 
5831  if ((priv->config & CFG_STATIC_CHANNEL) &&
5832  (network->channel != priv->channel)) {
5833  IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5834  "because of channel mismatch: %d != %d.\n",
5835  print_ssid(ssid, network->ssid,
5836  network->ssid_len),
5837  network->bssid,
5838  network->channel, priv->channel);
5839  return 0;
5840  }
5841 
5842  /* Verify privacy compatibility */
5843  if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5844  ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5845  IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5846  "because of privacy mismatch: %s != %s.\n",
5847  print_ssid(ssid, network->ssid,
5848  network->ssid_len),
5849  network->bssid,
5850  priv->capability & CAP_PRIVACY_ON ? "on" :
5851  "off",
5852  network->capability &
5853  WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5854  return 0;
5855  }
5856 
5857  if ((priv->config & CFG_STATIC_BSSID) &&
5858  memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5859  IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5860  "because of BSSID mismatch: %pM.\n",
5861  print_ssid(ssid, network->ssid,
5862  network->ssid_len),
5863  network->bssid, priv->bssid);
5864  return 0;
5865  }
5866 
5867  /* Filter out any incompatible freq / mode combinations */
5868  if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5869  IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5870  "because of invalid frequency/mode "
5871  "combination.\n",
5872  print_ssid(ssid, network->ssid,
5873  network->ssid_len),
5874  network->bssid);
5875  return 0;
5876  }
5877 
5878  /* Filter out invalid channel in current GEO */
5879  if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5880  IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5881  "because of invalid channel in current GEO\n",
5882  print_ssid(ssid, network->ssid,
5883  network->ssid_len),
5884  network->bssid);
5885  return 0;
5886  }
5887 
5888  /* Ensure that the rates supported by the driver are compatible with
5889  * this AP, including verification of basic rates (mandatory) */
5890  if (!ipw_compatible_rates(priv, network, &rates)) {
5891  IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5892  "because configured rate mask excludes "
5893  "AP mandatory rate.\n",
5894  print_ssid(ssid, network->ssid,
5895  network->ssid_len),
5896  network->bssid);
5897  return 0;
5898  }
5899 
5900  if (rates.num_rates == 0) {
5901  IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5902  "because of no compatible rates.\n",
5903  print_ssid(ssid, network->ssid,
5904  network->ssid_len),
5905  network->bssid);
5906  return 0;
5907  }
5908 
5909  /* TODO: Perform any further minimal comparititive tests. We do not
5910  * want to put too much policy logic here; intelligent scan selection
5911  * should occur within a generic IEEE 802.11 user space tool. */
5912 
5913  /* Set up 'new' AP to this network */
5914  ipw_copy_rates(&match->rates, &rates);
5915  match->network = network;
5916 
5917  IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5918  print_ssid(ssid, network->ssid, network->ssid_len),
5919  network->bssid);
5920 
5921  return 1;
5922 }
5923 
5924 static void ipw_adhoc_create(struct ipw_priv *priv,
5925  struct libipw_network *network)
5926 {
5927  const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5928  int i;
5929 
5930  /*
5931  * For the purposes of scanning, we can set our wireless mode
5932  * to trigger scans across combinations of bands, but when it
5933  * comes to creating a new ad-hoc network, we have tell the FW
5934  * exactly which band to use.
5935  *
5936  * We also have the possibility of an invalid channel for the
5937  * chossen band. Attempting to create a new ad-hoc network
5938  * with an invalid channel for wireless mode will trigger a
5939  * FW fatal error.
5940  *
5941  */
5942  switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5943  case LIBIPW_52GHZ_BAND:
5944  network->mode = IEEE_A;
5945  i = libipw_channel_to_index(priv->ieee, priv->channel);
5946  BUG_ON(i == -1);
5947  if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5948  IPW_WARNING("Overriding invalid channel\n");
5949  priv->channel = geo->a[0].channel;
5950  }
5951  break;
5952 
5953  case LIBIPW_24GHZ_BAND:
5954  if (priv->ieee->mode & IEEE_G)
5955  network->mode = IEEE_G;
5956  else
5957  network->mode = IEEE_B;
5958  i = libipw_channel_to_index(priv->ieee, priv->channel);
5959  BUG_ON(i == -1);
5960  if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5961  IPW_WARNING("Overriding invalid channel\n");
5962  priv->channel = geo->bg[0].channel;
5963  }
5964  break;
5965 
5966  default:
5967  IPW_WARNING("Overriding invalid channel\n");
5968  if (priv->ieee->mode & IEEE_A) {
5969  network->mode = IEEE_A;
5970  priv->channel = geo->a[0].channel;
5971  } else if (priv->ieee->mode & IEEE_G) {
5972  network->mode = IEEE_G;
5973  priv->channel = geo->bg[0].channel;
5974  } else {
5975  network->mode = IEEE_B;
5976  priv->channel = geo->bg[0].channel;
5977  }
5978  break;
5979  }
5980 
5981  network->channel = priv->channel;
5982  priv->config |= CFG_ADHOC_PERSIST;
5983  ipw_create_bssid(priv, network->bssid);
5984  network->ssid_len = priv->essid_len;
5985  memcpy(network->ssid, priv->essid, priv->essid_len);
5986  memset(&network->stats, 0, sizeof(network->stats));
5987  network->capability = WLAN_CAPABILITY_IBSS;
5988  if (!(priv->config & CFG_PREAMBLE_LONG))
5990  if (priv->capability & CAP_PRIVACY_ON)
5991  network->capability |= WLAN_CAPABILITY_PRIVACY;
5992  network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5993  memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5994  network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5995  memcpy(network->rates_ex,
5996  &priv->rates.supported_rates[network->rates_len],
5997  network->rates_ex_len);
5998  network->last_scanned = 0;
5999  network->flags = 0;
6000  network->last_associate = 0;
6001  network->time_stamp[0] = 0;
6002  network->time_stamp[1] = 0;
6003  network->beacon_interval = 100; /* Default */
6004  network->listen_interval = 10; /* Default */
6005  network->atim_window = 0; /* Default */
6006  network->wpa_ie_len = 0;
6007  network->rsn_ie_len = 0;
6008 }
6009 
6010 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
6011 {
6012  struct ipw_tgi_tx_key key;
6013 
6014  if (!(priv->ieee->sec.flags & (1 << index)))
6015  return;
6016 
6017  key.key_id = index;
6018  memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
6019  key.security_type = type;
6020  key.station_index = 0; /* always 0 for BSS */
6021  key.flags = 0;
6022  /* 0 for new key; previous value of counter (after fatal error) */
6023  key.tx_counter[0] = cpu_to_le32(0);
6024  key.tx_counter[1] = cpu_to_le32(0);
6025 
6026  ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
6027 }
6028 
6029 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
6030 {
6031  struct ipw_wep_key key;
6032  int i;
6033 
6034  key.cmd_id = DINO_CMD_WEP_KEY;
6035  key.seq_num = 0;
6036 
6037  /* Note: AES keys cannot be set for multiple times.
6038  * Only set it at the first time. */
6039  for (i = 0; i < 4; i++) {
6040  key.key_index = i | type;
6041  if (!(priv->ieee->sec.flags & (1 << i))) {
6042  key.key_size = 0;
6043  continue;
6044  }
6045 
6046  key.key_size = priv->ieee->sec.key_sizes[i];
6047  memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
6048 
6049  ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
6050  }
6051 }
6052 
6053 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
6054 {
6055  if (priv->ieee->host_encrypt)
6056  return;
6057 
6058  switch (level) {
6059  case SEC_LEVEL_3:
6060  priv->sys_config.disable_unicast_decryption = 0;
6061  priv->ieee->host_decrypt = 0;
6062  break;
6063  case SEC_LEVEL_2:
6064  priv->sys_config.disable_unicast_decryption = 1;
6065  priv->ieee->host_decrypt = 1;
6066  break;
6067  case SEC_LEVEL_1:
6068  priv->sys_config.disable_unicast_decryption = 0;
6069  priv->ieee->host_decrypt = 0;
6070  break;
6071  case SEC_LEVEL_0:
6072  priv->sys_config.disable_unicast_decryption = 1;
6073  break;
6074  default:
6075  break;
6076  }
6077 }
6078 
6079 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
6080 {
6081  if (priv->ieee->host_encrypt)
6082  return;
6083 
6084  switch (level) {
6085  case SEC_LEVEL_3:
6086  priv->sys_config.disable_multicast_decryption = 0;
6087  break;
6088  case SEC_LEVEL_2:
6089  priv->sys_config.disable_multicast_decryption = 1;
6090  break;
6091  case SEC_LEVEL_1:
6092  priv->sys_config.disable_multicast_decryption = 0;
6093  break;
6094  case SEC_LEVEL_0:
6095  priv->sys_config.disable_multicast_decryption = 1;
6096  break;
6097  default:
6098  break;
6099  }
6100 }
6101 
6102 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6103 {
6104  switch (priv->ieee->sec.level) {
6105  case SEC_LEVEL_3:
6106  if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6107  ipw_send_tgi_tx_key(priv,
6109  priv->ieee->sec.active_key);
6110 
6111  if (!priv->ieee->host_mc_decrypt)
6112  ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6113  break;
6114  case SEC_LEVEL_2:
6115  if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6116  ipw_send_tgi_tx_key(priv,
6118  priv->ieee->sec.active_key);
6119  break;
6120  case SEC_LEVEL_1:
6121  ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6122  ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6123  ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6124  break;
6125  case SEC_LEVEL_0:
6126  default:
6127  break;
6128  }
6129 }
6130 
6131 static void ipw_adhoc_check(void *data)
6132 {
6133  struct ipw_priv *priv = data;
6134 
6135  if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6136  !(priv->config & CFG_ADHOC_PERSIST)) {
6139  "Missed beacon: %d - disassociate\n",
6140  priv->missed_adhoc_beacons);
6141  ipw_remove_current_network(priv);
6142  ipw_disassociate(priv);
6143  return;
6144  }
6145 
6147  le16_to_cpu(priv->assoc_request.beacon_interval));
6148 }
6149 
6150 static void ipw_bg_adhoc_check(struct work_struct *work)
6151 {
6152  struct ipw_priv *priv =
6153  container_of(work, struct ipw_priv, adhoc_check.work);
6154  mutex_lock(&priv->mutex);
6155  ipw_adhoc_check(priv);
6156  mutex_unlock(&priv->mutex);
6157 }
6158 
6159 static void ipw_debug_config(struct ipw_priv *priv)
6160 {
6161  DECLARE_SSID_BUF(ssid);
6162  IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6163  "[CFG 0x%08X]\n", priv->config);
6164  if (priv->config & CFG_STATIC_CHANNEL)
6165  IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6166  else
6167  IPW_DEBUG_INFO("Channel unlocked.\n");
6168  if (priv->config & CFG_STATIC_ESSID)
6169  IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6170  print_ssid(ssid, priv->essid, priv->essid_len));
6171  else
6172  IPW_DEBUG_INFO("ESSID unlocked.\n");
6173  if (priv->config & CFG_STATIC_BSSID)
6174  IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6175  else
6176  IPW_DEBUG_INFO("BSSID unlocked.\n");
6177  if (priv->capability & CAP_PRIVACY_ON)
6178  IPW_DEBUG_INFO("PRIVACY on\n");
6179  else
6180  IPW_DEBUG_INFO("PRIVACY off\n");
6181  IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6182 }
6183 
6184 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6185 {
6186  /* TODO: Verify that this works... */
6187  struct ipw_fixed_rate fr;
6188  u32 reg;
6189  u16 mask = 0;
6190  u16 new_tx_rates = priv->rates_mask;
6191 
6192  /* Identify 'current FW band' and match it with the fixed
6193  * Tx rates */
6194 
6195  switch (priv->ieee->freq_band) {
6196  case LIBIPW_52GHZ_BAND: /* A only */
6197  /* IEEE_A */
6198  if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6199  /* Invalid fixed rate mask */
6200  IPW_DEBUG_WX
6201  ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6202  new_tx_rates = 0;
6203  break;
6204  }
6205 
6206  new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6207  break;
6208 
6209  default: /* 2.4Ghz or Mixed */
6210  /* IEEE_B */
6211  if (mode == IEEE_B) {
6212  if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6213  /* Invalid fixed rate mask */
6214  IPW_DEBUG_WX
6215  ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6216  new_tx_rates = 0;
6217  }
6218  break;
6219  }
6220 
6221  /* IEEE_G */
6222  if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6224  /* Invalid fixed rate mask */
6225  IPW_DEBUG_WX
6226  ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6227  new_tx_rates = 0;
6228  break;
6229  }
6230 
6231  if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6232  mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6233  new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6234  }
6235 
6236  if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6237  mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6238  new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6239  }
6240 
6241  if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6242  mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6243  new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6244  }
6245 
6246  new_tx_rates |= mask;
6247  break;
6248  }
6249 
6250  fr.tx_rates = cpu_to_le16(new_tx_rates);
6251 
6252  reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6253  ipw_write_reg32(priv, reg, *(u32 *) & fr);
6254 }
6255 
6256 static void ipw_abort_scan(struct ipw_priv *priv)
6257 {
6258  int err;
6259 
6260  if (priv->status & STATUS_SCAN_ABORTING) {
6261  IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6262  return;
6263  }
6264  priv->status |= STATUS_SCAN_ABORTING;
6265 
6266  err = ipw_send_scan_abort(priv);
6267  if (err)
6268  IPW_DEBUG_HC("Request to abort scan failed.\n");
6269 }
6270 
6271 static void ipw_add_scan_channels(struct ipw_priv *priv,
6272  struct ipw_scan_request_ext *scan,
6273  int scan_type)
6274 {
6275  int channel_index = 0;
6276  const struct libipw_geo *geo;
6277  int i;
6278 
6279  geo = libipw_get_geo(priv->ieee);
6280 
6281  if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6282  int start = channel_index;
6283  for (i = 0; i < geo->a_channels; i++) {
6284  if ((priv->status & STATUS_ASSOCIATED) &&
6285  geo->a[i].channel == priv->channel)
6286  continue;
6287  channel_index++;
6288  scan->channels_list[channel_index] = geo->a[i].channel;
6289  ipw_set_scan_type(scan, channel_index,
6290  geo->a[i].
6291  flags & LIBIPW_CH_PASSIVE_ONLY ?
6293  scan_type);
6294  }
6295 
6296  if (start != channel_index) {
6297  scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6298  (channel_index - start);
6299  channel_index++;
6300  }
6301  }
6302 
6303  if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6304  int start = channel_index;
6305  if (priv->config & CFG_SPEED_SCAN) {
6306  int index;
6308  /* nop out the list */
6309  [0] = 0
6310  };
6311 
6312  u8 channel;
6313  while (channel_index < IPW_SCAN_CHANNELS - 1) {
6314  channel =
6315  priv->speed_scan[priv->speed_scan_pos];
6316  if (channel == 0) {
6317  priv->speed_scan_pos = 0;
6318  channel = priv->speed_scan[0];
6319  }
6320  if ((priv->status & STATUS_ASSOCIATED) &&
6321  channel == priv->channel) {
6322  priv->speed_scan_pos++;
6323  continue;
6324  }
6325 
6326  /* If this channel has already been
6327  * added in scan, break from loop
6328  * and this will be the first channel
6329  * in the next scan.
6330  */
6331  if (channels[channel - 1] != 0)
6332  break;
6333 
6334  channels[channel - 1] = 1;
6335  priv->speed_scan_pos++;
6336  channel_index++;
6337  scan->channels_list[channel_index] = channel;
6338  index =
6339  libipw_channel_to_index(priv->ieee, channel);
6340  ipw_set_scan_type(scan, channel_index,
6341  geo->bg[index].
6342  flags &
6343  LIBIPW_CH_PASSIVE_ONLY ?
6345  : scan_type);
6346  }
6347  } else {
6348  for (i = 0; i < geo->bg_channels; i++) {
6349  if ((priv->status & STATUS_ASSOCIATED) &&
6350  geo->bg[i].channel == priv->channel)
6351  continue;
6352  channel_index++;
6353  scan->channels_list[channel_index] =
6354  geo->bg[i].channel;
6355  ipw_set_scan_type(scan, channel_index,
6356  geo->bg[i].
6357  flags &
6358  LIBIPW_CH_PASSIVE_ONLY ?
6360  : scan_type);
6361  }
6362  }
6363 
6364  if (start != channel_index) {
6365  scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6366  (channel_index - start);
6367  }
6368  }
6369 }
6370 
6371 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6372 {
6373  /* staying on passive channels longer than the DTIM interval during a
6374  * scan, while associated, causes the firmware to cancel the scan
6375  * without notification. Hence, don't stay on passive channels longer
6376  * than the beacon interval.
6377  */
6378  if (priv->status & STATUS_ASSOCIATED
6379  && priv->assoc_network->beacon_interval > 10)
6380  return priv->assoc_network->beacon_interval - 10;
6381  else
6382  return 120;
6383 }
6384 
6385 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6386 {
6387  struct ipw_scan_request_ext scan;
6388  int err = 0, scan_type;
6389 
6390  if (!(priv->status & STATUS_INIT) ||
6391  (priv->status & STATUS_EXIT_PENDING))
6392  return 0;
6393 
6394  mutex_lock(&priv->mutex);
6395 
6396  if (direct && (priv->direct_scan_ssid_len == 0)) {
6397  IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6399  goto done;
6400  }
6401 
6402  if (priv->status & STATUS_SCANNING) {
6403  IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6404  priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6406  goto done;
6407  }
6408 
6409  if (!(priv->status & STATUS_SCAN_FORCED) &&
6410  priv->status & STATUS_SCAN_ABORTING) {
6411  IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6412  priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6414  goto done;
6415  }
6416 
6417  if (priv->status & STATUS_RF_KILL_MASK) {
6418  IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6419  priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6421  goto done;
6422  }
6423 
6424  memset(&scan, 0, sizeof(scan));
6425  scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6426 
6427  if (type == IW_SCAN_TYPE_PASSIVE) {
6428  IPW_DEBUG_WX("use passive scanning\n");
6431  cpu_to_le16(ipw_passive_dwell_time(priv));
6432  ipw_add_scan_channels(priv, &scan, scan_type);
6433  goto send_request;
6434  }
6435 
6436  /* Use active scan by default. */
6437  if (priv->config & CFG_SPEED_SCAN)
6439  cpu_to_le16(30);
6440  else
6442  cpu_to_le16(20);
6443 
6445  cpu_to_le16(20);
6446 
6448  cpu_to_le16(ipw_passive_dwell_time(priv));
6450 
6451 #ifdef CONFIG_IPW2200_MONITOR
6452  if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6453  u8 channel;
6454  u8 band = 0;
6455 
6456  switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6457  case LIBIPW_52GHZ_BAND:
6458  band = (u8) (IPW_A_MODE << 6) | 1;
6459  channel = priv->channel;
6460  break;
6461 
6462  case LIBIPW_24GHZ_BAND:
6463  band = (u8) (IPW_B_MODE << 6) | 1;
6464  channel = priv->channel;
6465  break;
6466 
6467  default:
6468  band = (u8) (IPW_B_MODE << 6) | 1;
6469  channel = 9;
6470  break;
6471  }
6472 
6473  scan.channels_list[0] = band;
6474  scan.channels_list[1] = channel;
6475  ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6476 
6477  /* NOTE: The card will sit on this channel for this time
6478  * period. Scan aborts are timing sensitive and frequently
6479  * result in firmware restarts. As such, it is best to
6480  * set a small dwell_time here and just keep re-issuing
6481  * scans. Otherwise fast channel hopping will not actually
6482  * hop channels.
6483  *
6484  * TODO: Move SPEED SCAN support to all modes and bands */
6486  cpu_to_le16(2000);
6487  } else {
6488 #endif /* CONFIG_IPW2200_MONITOR */
6489  /* Honor direct scans first, otherwise if we are roaming make
6490  * this a direct scan for the current network. Finally,
6491  * ensure that every other scan is a fast channel hop scan */
6492  if (direct) {
6493  err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6494  priv->direct_scan_ssid_len);
6495  if (err) {
6496  IPW_DEBUG_HC("Attempt to send SSID command "
6497  "failed\n");
6498  goto done;
6499  }
6500 
6502  } else if ((priv->status & STATUS_ROAMING)
6503  || (!(priv->status & STATUS_ASSOCIATED)
6504  && (priv->config & CFG_STATIC_ESSID)
6505  && (le32_to_cpu(scan.full_scan_index) % 2))) {
6506  err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6507  if (err) {
6508  IPW_DEBUG_HC("Attempt to send SSID command "
6509  "failed.\n");
6510  goto done;
6511  }
6512 
6514  } else
6515  scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6516 
6517  ipw_add_scan_channels(priv, &scan, scan_type);
6518 #ifdef CONFIG_IPW2200_MONITOR
6519  }
6520 #endif
6521 
6522 send_request:
6523  err = ipw_send_scan_request_ext(priv, &scan);
6524  if (err) {
6525  IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6526  goto done;
6527  }
6528 
6529  priv->status |= STATUS_SCANNING;
6530  if (direct) {
6532  priv->direct_scan_ssid_len = 0;
6533  } else
6534  priv->status &= ~STATUS_SCAN_PENDING;
6535 
6537 done:
6538  mutex_unlock(&priv->mutex);
6539  return err;
6540 }
6541 
6542 static void ipw_request_passive_scan(struct work_struct *work)
6543 {
6544  struct ipw_priv *priv =
6545  container_of(work, struct ipw_priv, request_passive_scan.work);
6546  ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6547 }
6548 
6549 static void ipw_request_scan(struct work_struct *work)
6550 {
6551  struct ipw_priv *priv =
6552  container_of(work, struct ipw_priv, request_scan.work);
6553  ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6554 }
6555 
6556 static void ipw_request_direct_scan(struct work_struct *work)
6557 {
6558  struct ipw_priv *priv =
6559  container_of(work, struct ipw_priv, request_direct_scan.work);
6560  ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6561 }
6562 
6563 static void ipw_bg_abort_scan(struct work_struct *work)
6564 {
6565  struct ipw_priv *priv =
6566  container_of(work, struct ipw_priv, abort_scan);
6567  mutex_lock(&priv->mutex);
6568  ipw_abort_scan(priv);
6569  mutex_unlock(&priv->mutex);
6570 }
6571 
6572 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6573 {
6574  /* This is called when wpa_supplicant loads and closes the driver
6575  * interface. */
6576  priv->ieee->wpa_enabled = value;
6577  return 0;
6578 }
6579 
6580 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6581 {
6582  struct libipw_device *ieee = priv->ieee;
6583  struct libipw_security sec = {
6584  .flags = SEC_AUTH_MODE,
6585  };
6586  int ret = 0;
6587 
6588  if (value & IW_AUTH_ALG_SHARED_KEY) {
6590  ieee->open_wep = 0;
6591  } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6592  sec.auth_mode = WLAN_AUTH_OPEN;
6593  ieee->open_wep = 1;
6594  } else if (value & IW_AUTH_ALG_LEAP) {
6595  sec.auth_mode = WLAN_AUTH_LEAP;
6596  ieee->open_wep = 1;
6597  } else
6598  return -EINVAL;
6599 
6600  if (ieee->set_security)
6601  ieee->set_security(ieee->dev, &sec);
6602  else
6603  ret = -EOPNOTSUPP;
6604 
6605  return ret;
6606 }
6607 
6608 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6609  int wpa_ie_len)
6610 {
6611  /* make sure WPA is enabled */
6612  ipw_wpa_enable(priv, 1);
6613 }
6614 
6615 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6616  char *capabilities, int length)
6617 {
6618  IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6619 
6620  return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6621  capabilities);
6622 }
6623 
6624 /*
6625  * WE-18 support
6626  */
6627 
6628 /* SIOCSIWGENIE */
6629 static int ipw_wx_set_genie(struct net_device *dev,
6630  struct iw_request_info *info,
6631  union iwreq_data *wrqu, char *extra)
6632 {
6633  struct ipw_priv *priv = libipw_priv(dev);
6634  struct libipw_device *ieee = priv->ieee;
6635  u8 *buf;
6636  int err = 0;
6637 
6638  if (wrqu->data.length > MAX_WPA_IE_LEN ||
6639  (wrqu->data.length && extra == NULL))
6640  return -EINVAL;
6641 
6642  if (wrqu->data.length) {
6643  buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6644  if (buf == NULL) {
6645  err = -ENOMEM;
6646  goto out;
6647  }
6648 
6649  kfree(ieee->wpa_ie);
6650  ieee->wpa_ie = buf;
6651  ieee->wpa_ie_len = wrqu->data.length;
6652  } else {
6653  kfree(ieee->wpa_ie);
6654  ieee->wpa_ie = NULL;
6655  ieee->wpa_ie_len = 0;
6656  }
6657 
6658  ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6659  out:
6660  return err;
6661 }
6662 
6663 /* SIOCGIWGENIE */
6664 static int ipw_wx_get_genie(struct net_device *dev,
6665  struct iw_request_info *info,
6666  union iwreq_data *wrqu, char *extra)
6667 {
6668  struct ipw_priv *priv = libipw_priv(dev);
6669  struct libipw_device *ieee = priv->ieee;
6670  int err = 0;
6671 
6672  if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6673  wrqu->data.length = 0;
6674  goto out;
6675  }
6676 
6677  if (wrqu->data.length < ieee->wpa_ie_len) {
6678  err = -E2BIG;
6679  goto out;
6680  }
6681 
6682  wrqu->data.length = ieee->wpa_ie_len;
6683  memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6684 
6685  out:
6686  return err;
6687 }
6688 
6689 static int wext_cipher2level(int cipher)
6690 {
6691  switch (cipher) {
6692  case IW_AUTH_CIPHER_NONE:
6693  return SEC_LEVEL_0;
6694  case IW_AUTH_CIPHER_WEP40:
6695  case IW_AUTH_CIPHER_WEP104:
6696  return SEC_LEVEL_1;
6697  case IW_AUTH_CIPHER_TKIP:
6698  return SEC_LEVEL_2;
6699  case IW_AUTH_CIPHER_CCMP:
6700  return SEC_LEVEL_3;
6701  default:
6702  return -1;
6703  }
6704 }
6705 
6706 /* SIOCSIWAUTH */
6707 static int ipw_wx_set_auth(struct net_device *dev,
6708  struct iw_request_info *info,
6709  union iwreq_data *wrqu, char *extra)
6710 {
6711  struct ipw_priv *priv = libipw_priv(dev);
6712  struct libipw_device *ieee = priv->ieee;
6713  struct iw_param *param = &wrqu->param;
6714  struct lib80211_crypt_data *crypt;
6715  unsigned long flags;
6716  int ret = 0;
6717 
6718  switch (param->flags & IW_AUTH_INDEX) {
6719  case IW_AUTH_WPA_VERSION:
6720  break;
6722  ipw_set_hw_decrypt_unicast(priv,
6723  wext_cipher2level(param->value));
6724  break;
6725  case IW_AUTH_CIPHER_GROUP:
6726  ipw_set_hw_decrypt_multicast(priv,
6727  wext_cipher2level(param->value));
6728  break;
6729  case IW_AUTH_KEY_MGMT:
6730  /*
6731  * ipw2200 does not use these parameters
6732  */
6733  break;
6734 
6736  crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6737  if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6738  break;
6739 
6740  flags = crypt->ops->get_flags(crypt->priv);
6741 
6742  if (param->value)
6744  else
6746 
6747  crypt->ops->set_flags(flags, crypt->priv);
6748 
6749  break;
6750 
6752  /* HACK:
6753  *
6754  * wpa_supplicant calls set_wpa_enabled when the driver
6755  * is loaded and unloaded, regardless of if WPA is being
6756  * used. No other calls are made which can be used to
6757  * determine if encryption will be used or not prior to
6758  * association being expected. If encryption is not being
6759  * used, drop_unencrypted is set to false, else true -- we
6760  * can use this to determine if the CAP_PRIVACY_ON bit should
6761  * be set.
6762  */
6763  struct libipw_security sec = {
6764  .flags = SEC_ENABLED,
6765  .enabled = param->value,
6766  };
6767  priv->ieee->drop_unencrypted = param->value;
6768  /* We only change SEC_LEVEL for open mode. Others
6769  * are set by ipw_wpa_set_encryption.
6770  */
6771  if (!param->value) {
6772  sec.flags |= SEC_LEVEL;
6773  sec.level = SEC_LEVEL_0;
6774  } else {
6775  sec.flags |= SEC_LEVEL;
6776  sec.level = SEC_LEVEL_1;
6777  }
6778  if (priv->ieee->set_security)
6779  priv->ieee->set_security(priv->ieee->dev, &sec);
6780  break;
6781  }
6782 
6784  ret = ipw_wpa_set_auth_algs(priv, param->value);
6785  break;
6786 
6787  case IW_AUTH_WPA_ENABLED:
6788  ret = ipw_wpa_enable(priv, param->value);
6789  ipw_disassociate(priv);
6790  break;
6791 
6793  ieee->ieee802_1x = param->value;
6794  break;
6795 
6797  ieee->privacy_invoked = param->value;
6798  break;
6799 
6800  default:
6801  return -EOPNOTSUPP;
6802  }
6803  return ret;
6804 }
6805 
6806 /* SIOCGIWAUTH */
6807 static int ipw_wx_get_auth(struct net_device *dev,
6808  struct iw_request_info *info,
6809  union iwreq_data *wrqu, char *extra)
6810 {
6811  struct ipw_priv *priv = libipw_priv(dev);
6812  struct libipw_device *ieee = priv->ieee;
6813  struct lib80211_crypt_data *crypt;
6814  struct iw_param *param = &wrqu->param;
6815  int ret = 0;
6816 
6817  switch (param->flags & IW_AUTH_INDEX) {
6818  case IW_AUTH_WPA_VERSION:
6820  case IW_AUTH_CIPHER_GROUP:
6821  case IW_AUTH_KEY_MGMT:
6822  /*
6823  * wpa_supplicant will control these internally
6824  */
6825  ret = -EOPNOTSUPP;
6826  break;
6827 
6829  crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6830  if (!crypt || !crypt->ops->get_flags)
6831  break;
6832 
6833  param->value = (crypt->ops->get_flags(crypt->priv) &
6835 
6836  break;
6837 
6839  param->value = ieee->drop_unencrypted;
6840  break;
6841 
6843  param->value = ieee->sec.auth_mode;
6844  break;
6845 
6846  case IW_AUTH_WPA_ENABLED:
6847  param->value = ieee->wpa_enabled;
6848  break;
6849 
6851  param->value = ieee->ieee802_1x;
6852  break;
6853 
6856  param->value = ieee->privacy_invoked;
6857  break;
6858 
6859  default:
6860  return -EOPNOTSUPP;
6861  }
6862  return 0;
6863 }
6864 
6865 /* SIOCSIWENCODEEXT */
6866 static int ipw_wx_set_encodeext(struct net_device *dev,
6867  struct iw_request_info *info,
6868  union iwreq_data *wrqu, char *extra)
6869 {
6870  struct ipw_priv *priv = libipw_priv(dev);
6871  struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6872 
6873  if (hwcrypto) {
6874  if (ext->alg == IW_ENCODE_ALG_TKIP) {
6875  /* IPW HW can't build TKIP MIC,
6876  host decryption still needed */
6878  priv->ieee->host_mc_decrypt = 1;
6879  else {
6880  priv->ieee->host_encrypt = 0;
6881  priv->ieee->host_encrypt_msdu = 1;
6882  priv->ieee->host_decrypt = 1;
6883  }
6884  } else {
6885  priv->ieee->host_encrypt = 0;
6886  priv->ieee->host_encrypt_msdu = 0;
6887  priv->ieee->host_decrypt = 0;
6888  priv->ieee->host_mc_decrypt = 0;
6889  }
6890  }
6891 
6892  return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6893 }
6894 
6895 /* SIOCGIWENCODEEXT */
6896 static int ipw_wx_get_encodeext(struct net_device *dev,
6897  struct iw_request_info *info,
6898  union iwreq_data *wrqu, char *extra)
6899 {
6900  struct ipw_priv *priv = libipw_priv(dev);
6901  return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6902 }
6903 
6904 /* SIOCSIWMLME */
6905 static int ipw_wx_set_mlme(struct net_device *dev,
6906  struct iw_request_info *info,
6907  union iwreq_data *wrqu, char *extra)
6908 {
6909  struct ipw_priv *priv = libipw_priv(dev);
6910  struct iw_mlme *mlme = (struct iw_mlme *)extra;
6911  __le16 reason;
6912 
6913  reason = cpu_to_le16(mlme->reason_code);
6914 
6915  switch (mlme->cmd) {
6916  case IW_MLME_DEAUTH:
6917  /* silently ignore */
6918  break;
6919 
6920  case IW_MLME_DISASSOC:
6921  ipw_disassociate(priv);
6922  break;
6923 
6924  default:
6925  return -EOPNOTSUPP;
6926  }
6927  return 0;
6928 }
6929 
6930 #ifdef CONFIG_IPW2200_QOS
6931 
6932 /* QoS */
6933 /*
6934 * get the modulation type of the current network or
6935 * the card current mode
6936 */
6937 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6938 {
6939  u8 mode = 0;
6940 
6941  if (priv->status & STATUS_ASSOCIATED) {
6942  unsigned long flags;
6943 
6944  spin_lock_irqsave(&priv->ieee->lock, flags);
6945  mode = priv->assoc_network->mode;
6946  spin_unlock_irqrestore(&priv->ieee->lock, flags);
6947  } else {
6948  mode = priv->ieee->mode;
6949  }
6950  IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6951  return mode;
6952 }
6953 
6954 /*
6955 * Handle management frame beacon and probe response
6956 */
6957 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6958  int active_network,
6959  struct libipw_network *network)
6960 {
6961  u32 size = sizeof(struct libipw_qos_parameters);
6962 
6963  if (network->capability & WLAN_CAPABILITY_IBSS)
6964  network->qos_data.active = network->qos_data.supported;
6965 
6966  if (network->flags & NETWORK_HAS_QOS_MASK) {
6967  if (active_network &&
6968  (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6969  network->qos_data.active = network->qos_data.supported;
6970 
6971  if ((network->qos_data.active == 1) && (active_network == 1) &&
6972  (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6973  (network->qos_data.old_param_count !=
6974  network->qos_data.param_count)) {
6975  network->qos_data.old_param_count =
6976  network->qos_data.param_count;
6977  schedule_work(&priv->qos_activate);
6978  IPW_DEBUG_QOS("QoS parameters change call "
6979  "qos_activate\n");
6980  }
6981  } else {
6982  if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6983  memcpy(&network->qos_data.parameters,
6984  &def_parameters_CCK, size);
6985  else
6986  memcpy(&network->qos_data.parameters,
6987  &def_parameters_OFDM, size);
6988 
6989  if ((network->qos_data.active == 1) && (active_network == 1)) {
6990  IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6991  schedule_work(&priv->qos_activate);
6992  }
6993 
6994  network->qos_data.active = 0;
6995  network->qos_data.supported = 0;
6996  }
6997  if ((priv->status & STATUS_ASSOCIATED) &&
6998  (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6999  if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
7000  if (network->capability & WLAN_CAPABILITY_IBSS)
7001  if ((network->ssid_len ==
7002  priv->assoc_network->ssid_len) &&
7003  !memcmp(network->ssid,
7004  priv->assoc_network->ssid,
7005  network->ssid_len)) {
7006  schedule_work(&priv->merge_networks);
7007  }
7008  }
7009 
7010  return 0;
7011 }
7012 
7013 /*
7014 * This function set up the firmware to support QoS. It sends
7015 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
7016 */
7017 static int ipw_qos_activate(struct ipw_priv *priv,
7018  struct libipw_qos_data *qos_network_data)
7019 {
7020  int err;
7021  struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
7022  struct libipw_qos_parameters *active_one = NULL;
7023  u32 size = sizeof(struct libipw_qos_parameters);
7024  u32 burst_duration;
7025  int i;
7026  u8 type;
7027 
7028  type = ipw_qos_current_mode(priv);
7029 
7030  active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
7031  memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
7032  active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
7033  memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
7034 
7035  if (qos_network_data == NULL) {
7036  if (type == IEEE_B) {
7037  IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
7038  active_one = &def_parameters_CCK;
7039  } else
7040  active_one = &def_parameters_OFDM;
7041 
7042  memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7043  burst_duration = ipw_qos_get_burst_duration(priv);
7044  for (i = 0; i < QOS_QUEUE_NUM; i++)
7045  qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
7046  cpu_to_le16(burst_duration);
7047  } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7048  if (type == IEEE_B) {
7049  IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
7050  type);
7051  if (priv->qos_data.qos_enable == 0)
7052  active_one = &def_parameters_CCK;
7053  else
7054  active_one = priv->qos_data.def_qos_parm_CCK;
7055  } else {
7056  if (priv->qos_data.qos_enable == 0)
7057  active_one = &def_parameters_OFDM;
7058  else
7059  active_one = priv->qos_data.def_qos_parm_OFDM;
7060  }
7061  memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7062  } else {
7063  unsigned long flags;
7064  int active;
7065 
7066  spin_lock_irqsave(&priv->ieee->lock, flags);
7067  active_one = &(qos_network_data->parameters);
7068  qos_network_data->old_param_count =
7069  qos_network_data->param_count;
7070  memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7071  active = qos_network_data->supported;
7072  spin_unlock_irqrestore(&priv->ieee->lock, flags);
7073 
7074  if (active == 0) {
7075  burst_duration = ipw_qos_get_burst_duration(priv);
7076  for (i = 0; i < QOS_QUEUE_NUM; i++)
7077  qos_parameters[QOS_PARAM_SET_ACTIVE].
7078  tx_op_limit[i] = cpu_to_le16(burst_duration);
7079  }
7080  }
7081 
7082  IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7083  err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
7084  if (err)
7085  IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7086 
7087  return err;
7088 }
7089 
7090 /*
7091 * send IPW_CMD_WME_INFO to the firmware
7092 */
7093 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7094 {
7095  int ret = 0;
7097 
7098  if (priv == NULL)
7099  return -1;
7100 
7101  qos_info.elementID = QOS_ELEMENT_ID;
7102  qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7103 
7104  qos_info.version = QOS_VERSION_1;
7105  qos_info.ac_info = 0;
7106 
7107  memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7108  qos_info.qui_type = QOS_OUI_TYPE;
7109  qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7110 
7111  ret = ipw_send_qos_info_command(priv, &qos_info);
7112  if (ret != 0) {
7113  IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7114  }
7115  return ret;
7116 }
7117 
7118 /*
7119 * Set the QoS parameter with the association request structure
7120 */
7121 static int ipw_qos_association(struct ipw_priv *priv,
7122  struct libipw_network *network)
7123 {
7124  int err = 0;
7125  struct libipw_qos_data *qos_data = NULL;
7126  struct libipw_qos_data ibss_data = {
7127  .supported = 1,
7128  .active = 1,
7129  };
7130 
7131  switch (priv->ieee->iw_mode) {
7132  case IW_MODE_ADHOC:
7133  BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7134 
7135  qos_data = &ibss_data;
7136  break;
7137 
7138  case IW_MODE_INFRA:
7139  qos_data = &network->qos_data;
7140  break;
7141 
7142  default:
7143  BUG();
7144  break;
7145  }
7146 
7147  err = ipw_qos_activate(priv, qos_data);
7148  if (err) {
7149  priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7150  return err;
7151  }
7152 
7153  if (priv->qos_data.qos_enable && qos_data->supported) {
7154  IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7155  priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7156  return ipw_qos_set_info_element(priv);
7157  }
7158 
7159  return 0;
7160 }
7161 
7162 /*
7163 * handling the beaconing responses. if we get different QoS setting
7164 * off the network from the associated setting, adjust the QoS
7165 * setting
7166 */
7167 static int ipw_qos_association_resp(struct ipw_priv *priv,
7168  struct libipw_network *network)
7169 {
7170  int ret = 0;
7171  unsigned long flags;
7172  u32 size = sizeof(struct libipw_qos_parameters);
7173  int set_qos_param = 0;
7174 
7175  if ((priv == NULL) || (network == NULL) ||
7176  (priv->assoc_network == NULL))
7177  return ret;
7178 
7179  if (!(priv->status & STATUS_ASSOCIATED))
7180  return ret;
7181 
7182  if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7183  return ret;
7184 
7185  spin_lock_irqsave(&priv->ieee->lock, flags);
7186  if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7187  memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7188  sizeof(struct libipw_qos_data));
7189  priv->assoc_network->qos_data.active = 1;
7190  if ((network->qos_data.old_param_count !=
7191  network->qos_data.param_count)) {
7192  set_qos_param = 1;
7193  network->qos_data.old_param_count =
7194  network->qos_data.param_count;
7195  }
7196 
7197  } else {
7198  if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7199  memcpy(&priv->assoc_network->qos_data.parameters,
7200  &def_parameters_CCK, size);
7201  else
7202  memcpy(&priv->assoc_network->qos_data.parameters,
7203  &def_parameters_OFDM, size);
7204  priv->assoc_network->qos_data.active = 0;
7205  priv->assoc_network->qos_data.supported = 0;
7206  set_qos_param = 1;
7207  }
7208 
7209  spin_unlock_irqrestore(&priv->ieee->lock, flags);
7210 
7211  if (set_qos_param == 1)
7212  schedule_work(&priv->qos_activate);
7213 
7214  return ret;
7215 }
7216 
7217 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7218 {
7219  u32 ret = 0;
7220 
7221  if ((priv == NULL))
7222  return 0;
7223 
7224  if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7225  ret = priv->qos_data.burst_duration_CCK;
7226  else
7227  ret = priv->qos_data.burst_duration_OFDM;
7228 
7229  return ret;
7230 }
7231 
7232 /*
7233 * Initialize the setting of QoS global
7234 */
7235 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7236  int burst_enable, u32 burst_duration_CCK,
7237  u32 burst_duration_OFDM)
7238 {
7239  priv->qos_data.qos_enable = enable;
7240 
7241  if (priv->qos_data.qos_enable) {
7242  priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7243  priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7244  IPW_DEBUG_QOS("QoS is enabled\n");
7245  } else {
7246  priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7247  priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7248  IPW_DEBUG_QOS("QoS is not enabled\n");
7249  }
7250 
7251  priv->qos_data.burst_enable = burst_enable;
7252 
7253  if (burst_enable) {
7254  priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7255  priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7256  } else {
7257  priv->qos_data.burst_duration_CCK = 0;
7258  priv->qos_data.burst_duration_OFDM = 0;
7259  }
7260 }
7261 
7262 /*
7263 * map the packet priority to the right TX Queue
7264 */
7265 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7266 {
7267  if (priority > 7 || !priv->qos_data.qos_enable)
7268  priority = 0;
7269 
7270  return from_priority_to_tx_queue[priority] - 1;
7271 }
7272 
7273 static int ipw_is_qos_active(struct net_device *dev,
7274  struct sk_buff *skb)
7275 {
7276  struct ipw_priv *priv = libipw_priv(dev);
7277  struct libipw_qos_data *qos_data = NULL;
7278  int active, supported;
7279  u8 *daddr = skb->data + ETH_ALEN;
7280  int unicast = !is_multicast_ether_addr(daddr);
7281 
7282  if (!(priv->status & STATUS_ASSOCIATED))
7283  return 0;
7284 
7285  qos_data = &priv->assoc_network->qos_data;
7286 
7287  if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7288  if (unicast == 0)
7289  qos_data->active = 0;
7290  else
7291  qos_data->active = qos_data->supported;
7292  }
7293  active = qos_data->active;
7294  supported = qos_data->supported;
7295  IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7296  "unicast %d\n",
7297  priv->qos_data.qos_enable, active, supported, unicast);
7298  if (active && priv->qos_data.qos_enable)
7299  return 1;
7300 
7301  return 0;
7302 
7303 }
7304 /*
7305 * add QoS parameter to the TX command
7306 */
7307 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7308  u16 priority,
7309  struct tfd_data *tfd)
7310 {
7311  int tx_queue_id = 0;
7312 
7313 
7314  tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7316 
7317  if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7318  tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7319  tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7320  }
7321  return 0;
7322 }
7323 
7324 /*
7325 * background support to run QoS activate functionality
7326 */
7327 static void ipw_bg_qos_activate(struct work_struct *work)
7328 {
7329  struct ipw_priv *priv =
7330  container_of(work, struct ipw_priv, qos_activate);
7331 
7332  mutex_lock(&priv->mutex);
7333 
7334  if (priv->status & STATUS_ASSOCIATED)
7335  ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7336 
7337  mutex_unlock(&priv->mutex);
7338 }
7339 
7340 static int ipw_handle_probe_response(struct net_device *dev,
7341  struct libipw_probe_response *resp,
7342  struct libipw_network *network)
7343 {
7344  struct ipw_priv *priv = libipw_priv(dev);
7345  int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7346  (network == priv->assoc_network));
7347 
7348  ipw_qos_handle_probe_response(priv, active_network, network);
7349 
7350  return 0;
7351 }
7352 
7353 static int ipw_handle_beacon(struct net_device *dev,
7354  struct libipw_beacon *resp,
7355  struct libipw_network *network)
7356 {
7357  struct ipw_priv *priv = libipw_priv(dev);
7358  int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7359  (network == priv->assoc_network));
7360 
7361  ipw_qos_handle_probe_response(priv, active_network, network);
7362 
7363  return 0;
7364 }
7365 
7366 static int ipw_handle_assoc_response(struct net_device *dev,
7367  struct libipw_assoc_response *resp,
7368  struct libipw_network *network)
7369 {
7370  struct ipw_priv *priv = libipw_priv(dev);
7371  ipw_qos_association_resp(priv, network);
7372  return 0;
7373 }
7374 
7375 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7376  *qos_param)
7377 {
7378  return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7379  sizeof(*qos_param) * 3, qos_param);
7380 }
7381 
7382 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7383  *qos_param)
7384 {
7385  return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7386  qos_param);
7387 }
7388 
7389 #endif /* CONFIG_IPW2200_QOS */
7390 
7391 static int ipw_associate_network(struct ipw_priv *priv,
7392  struct libipw_network *network,
7393  struct ipw_supported_rates *rates, int roaming)
7394 {
7395  int err;
7396  DECLARE_SSID_BUF(ssid);
7397 
7398  if (priv->config & CFG_FIXED_RATE)
7399  ipw_set_fixed_rate(priv, network->mode);
7400 
7401  if (!(priv->config & CFG_STATIC_ESSID)) {
7402  priv->essid_len = min(network->ssid_len,
7403  (u8) IW_ESSID_MAX_SIZE);
7404  memcpy(priv->essid, network->ssid, priv->essid_len);
7405  }
7406 
7407  network->last_associate = jiffies;
7408 
7409  memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7410  priv->assoc_request.channel = network->channel;
7411  priv->assoc_request.auth_key = 0;
7412 
7413  if ((priv->capability & CAP_PRIVACY_ON) &&
7414  (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7415  priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7416  priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7417 
7418  if (priv->ieee->sec.level == SEC_LEVEL_1)
7419  ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7420 
7421  } else if ((priv->capability & CAP_PRIVACY_ON) &&
7422  (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7423  priv->assoc_request.auth_type = AUTH_LEAP;
7424  else
7425  priv->assoc_request.auth_type = AUTH_OPEN;
7426 
7427  if (priv->ieee->wpa_ie_len) {
7428  priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7429  ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7430  priv->ieee->wpa_ie_len);
7431  }
7432 
7433  /*
7434  * It is valid for our ieee device to support multiple modes, but
7435  * when it comes to associating to a given network we have to choose
7436  * just one mode.
7437  */
7438  if (network->mode & priv->ieee->mode & IEEE_A)
7439  priv->assoc_request.ieee_mode = IPW_A_MODE;
7440  else if (network->mode & priv->ieee->mode & IEEE_G)
7441  priv->assoc_request.ieee_mode = IPW_G_MODE;
7442  else if (network->mode & priv->ieee->mode & IEEE_B)
7443  priv->assoc_request.ieee_mode = IPW_B_MODE;
7444 
7445  priv->assoc_request.capability = cpu_to_le16(network->capability);
7447  && !(priv->config & CFG_PREAMBLE_LONG)) {
7448  priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7449  } else {
7450  priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7451 
7452  /* Clear the short preamble if we won't be supporting it */
7453  priv->assoc_request.capability &=
7455  }
7456 
7457  /* Clear capability bits that aren't used in Ad Hoc */
7458  if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7459  priv->assoc_request.capability &=
7461 
7462  IPW_DEBUG_ASSOC("%ssociation attempt: '%s', channel %d, "
7463  "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7464  roaming ? "Rea" : "A",
7465  print_ssid(ssid, priv->essid, priv->essid_len),
7466  network->channel,
7467  ipw_modes[priv->assoc_request.ieee_mode],
7468  rates->num_rates,
7469  (priv->assoc_request.preamble_length ==
7470  DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7471  network->capability &
7472  WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7473  priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7474  priv->capability & CAP_PRIVACY_ON ?
7475  (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7476  "(open)") : "",
7477  priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7478  priv->capability & CAP_PRIVACY_ON ?
7479  '1' + priv->ieee->sec.active_key : '.',
7480  priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7481 
7482  priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7483  if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7484  (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7485  priv->assoc_request.assoc_type = HC_IBSS_START;
7486  priv->assoc_request.assoc_tsf_msw = 0;
7487  priv->assoc_request.assoc_tsf_lsw = 0;
7488  } else {
7489  if (unlikely(roaming))
7490  priv->assoc_request.assoc_type = HC_REASSOCIATE;
7491  else
7492  priv->assoc_request.assoc_type = HC_ASSOCIATE;
7493  priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7494  priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7495  }
7496 
7497  memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7498 
7499  if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7500  memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7501  priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7502  } else {
7503  memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7504  priv->assoc_request.atim_window = 0;
7505  }
7506 
7507  priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7508 
7509  err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7510  if (err) {
7511  IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7512  return err;
7513  }
7514 
7515  rates->ieee_mode = priv->assoc_request.ieee_mode;
7516  rates->purpose = IPW_RATE_CONNECT;
7517  ipw_send_supported_rates(priv, rates);
7518 
7519  if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7520  priv->sys_config.dot11g_auto_detection = 1;
7521  else
7522  priv->sys_config.dot11g_auto_detection = 0;
7523 
7524  if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7525  priv->sys_config.answer_broadcast_ssid_probe = 1;
7526  else
7527  priv->sys_config.answer_broadcast_ssid_probe = 0;
7528 
7529  err = ipw_send_system_config(priv);
7530  if (err) {
7531  IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7532  return err;
7533  }
7534 
7535  IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7536  err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7537  if (err) {
7538  IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7539  return err;
7540  }
7541 
7542  /*
7543  * If preemption is enabled, it is possible for the association
7544  * to complete before we return from ipw_send_associate. Therefore
7545  * we have to be sure and update our priviate data first.
7546  */
7547  priv->channel = network->channel;
7548  memcpy(priv->bssid, network->bssid, ETH_ALEN);
7549  priv->status |= STATUS_ASSOCIATING;
7550  priv->status &= ~STATUS_SECURITY_UPDATED;
7551 
7552  priv->assoc_network = network;
7553 
7554 #ifdef CONFIG_IPW2200_QOS
7555  ipw_qos_association(priv, network);
7556 #endif
7557 
7558  err = ipw_send_associate(priv, &priv->assoc_request);
7559  if (err) {
7560  IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7561  return err;
7562  }
7563 
7564  IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM\n",
7565  print_ssid(ssid, priv->essid, priv->essid_len),
7566  priv->bssid);
7567 
7568  return 0;
7569 }
7570 
7571 static void ipw_roam(void *data)
7572 {
7573  struct ipw_priv *priv = data;
7574  struct libipw_network *network = NULL;
7575  struct ipw_network_match match = {
7576  .network = priv->assoc_network
7577  };
7578 
7579  /* The roaming process is as follows:
7580  *
7581  * 1. Missed beacon threshold triggers the roaming process by
7582  * setting the status ROAM bit and requesting a scan.
7583  * 2. When the scan completes, it schedules the ROAM work
7584  * 3. The ROAM work looks at all of the known networks for one that
7585  * is a better network than the currently associated. If none
7586  * found, the ROAM process is over (ROAM bit cleared)
7587  * 4. If a better network is found, a disassociation request is
7588  * sent.
7589  * 5. When the disassociation completes, the roam work is again
7590  * scheduled. The second time through, the driver is no longer
7591  * associated, and the newly selected network is sent an
7592  * association request.
7593  * 6. At this point ,the roaming process is complete and the ROAM
7594  * status bit is cleared.
7595  */
7596 
7597  /* If we are no longer associated, and the roaming bit is no longer
7598  * set, then we are not actively roaming, so just return */
7599  if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7600  return;
7601 
7602  if (priv->status & STATUS_ASSOCIATED) {
7603  /* First pass through ROAM process -- look for a better
7604  * network */
7605  unsigned long flags;
7606  u8 rssi = priv->assoc_network->stats.rssi;
7607  priv->assoc_network->stats.rssi = -128;
7608  spin_lock_irqsave(&priv->ieee->lock, flags);
7609  list_for_each_entry(network, &priv->ieee->network_list, list) {
7610  if (network != priv->assoc_network)
7611  ipw_best_network(priv, &match, network, 1);
7612  }
7613  spin_unlock_irqrestore(&priv->ieee->lock, flags);
7614  priv->assoc_network->stats.rssi = rssi;
7615 
7616  if (match.network == priv->assoc_network) {
7617  IPW_DEBUG_ASSOC("No better APs in this network to "
7618  "roam to.\n");
7619  priv->status &= ~STATUS_ROAMING;
7620  ipw_debug_config(priv);
7621  return;
7622  }
7623 
7624  ipw_send_disassociate(priv, 1);
7625  priv->assoc_network = match.network;
7626 
7627  return;
7628  }
7629 
7630  /* Second pass through ROAM process -- request association */
7631  ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7632  ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7633  priv->status &= ~STATUS_ROAMING;
7634 }
7635 
7636 static void ipw_bg_roam(struct work_struct *work)
7637 {
7638  struct ipw_priv *priv =
7639  container_of(work, struct ipw_priv, roam);
7640  mutex_lock(&priv->mutex);
7641  ipw_roam(priv);
7642  mutex_unlock(&priv->mutex);
7643 }
7644 
7645 static int ipw_associate(void *data)
7646 {
7647  struct ipw_priv *priv = data;
7648 
7649  struct libipw_network *network = NULL;
7650  struct ipw_network_match match = {
7651  .network = NULL
7652  };
7653  struct ipw_supported_rates *rates;
7654  struct list_head *element;
7655  unsigned long flags;
7656  DECLARE_SSID_BUF(ssid);
7657 
7658  if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7659  IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7660  return 0;
7661  }
7662 
7663  if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7664  IPW_DEBUG_ASSOC("Not attempting association (already in "
7665  "progress)\n");
7666  return 0;
7667  }
7668 
7669  if (priv->status & STATUS_DISASSOCIATING) {
7670  IPW_DEBUG_ASSOC("Not attempting association (in "
7671  "disassociating)\n ");
7672  schedule_work(&priv->associate);
7673  return 0;
7674  }
7675 
7676  if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7677  IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7678  "initialized)\n");
7679  return 0;
7680  }
7681 
7682  if (!(priv->config & CFG_ASSOCIATE) &&
7683  !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7684  IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7685  return 0;
7686  }
7687 
7688  /* Protect our use of the network_list */
7689  spin_lock_irqsave(&priv->ieee->lock, flags);
7690  list_for_each_entry(network, &priv->ieee->network_list, list)
7691  ipw_best_network(priv, &match, network, 0);
7692 
7693  network = match.network;
7694  rates = &match.rates;
7695 
7696  if (network == NULL &&
7697  priv->ieee->iw_mode == IW_MODE_ADHOC &&
7698  priv->config & CFG_ADHOC_CREATE &&
7699  priv->config & CFG_STATIC_ESSID &&
7700  priv->config & CFG_STATIC_CHANNEL) {
7701  /* Use oldest network if the free list is empty */
7702  if (list_empty(&priv->ieee->network_free_list)) {
7703  struct libipw_network *oldest = NULL;
7704  struct libipw_network *target;
7705 
7706  list_for_each_entry(target, &priv->ieee->network_list, list) {
7707  if ((oldest == NULL) ||
7708  (target->last_scanned < oldest->last_scanned))
7709  oldest = target;
7710  }
7711 
7712  /* If there are no more slots, expire the oldest */
7713  list_del(&oldest->list);
7714  target = oldest;
7715  IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7716  "network list.\n",
7717  print_ssid(ssid, target->ssid,
7718  target->ssid_len),
7719  target->bssid);
7720  list_add_tail(&target->list,
7721  &priv->ieee->network_free_list);
7722  }
7723 
7724  element = priv->ieee->network_free_list.next;
7725  network = list_entry(element, struct libipw_network, list);
7726  ipw_adhoc_create(priv, network);
7727  rates = &priv->rates;
7728  list_del(element);
7729  list_add_tail(&network->list, &priv->ieee->network_list);
7730  }
7731  spin_unlock_irqrestore(&priv->ieee->lock, flags);
7732 
7733  /* If we reached the end of the list, then we don't have any valid
7734  * matching APs */
7735  if (!network) {
7736  ipw_debug_config(priv);
7737 
7738  if (!(priv->status & STATUS_SCANNING)) {
7739  if (!(priv->config & CFG_SPEED_SCAN))
7740  schedule_delayed_work(&priv->request_scan,
7741  SCAN_INTERVAL);
7742  else
7743  schedule_delayed_work(&priv->request_scan, 0);
7744  }
7745 
7746  return 0;
7747  }
7748 
7749  ipw_associate_network(priv, network, rates, 0);
7750 
7751  return 1;
7752 }
7753 
7754 static void ipw_bg_associate(struct work_struct *work)
7755 {
7756  struct ipw_priv *priv =
7757  container_of(work, struct ipw_priv, associate);
7758  mutex_lock(&priv->mutex);
7759  ipw_associate(priv);
7760  mutex_unlock(&priv->mutex);
7761 }
7762 
7763 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7764  struct sk_buff *skb)
7765 {
7766  struct ieee80211_hdr *hdr;
7767  u16 fc;
7768 
7769  hdr = (struct ieee80211_hdr *)skb->data;
7770  fc = le16_to_cpu(hdr->frame_control);
7771  if (!(fc & IEEE80211_FCTL_PROTECTED))
7772  return;
7773 
7774  fc &= ~IEEE80211_FCTL_PROTECTED;
7775  hdr->frame_control = cpu_to_le16(fc);
7776  switch (priv->ieee->sec.level) {
7777  case SEC_LEVEL_3:
7778  /* Remove CCMP HDR */
7779  memmove(skb->data + LIBIPW_3ADDR_LEN,
7780  skb->data + LIBIPW_3ADDR_LEN + 8,
7781  skb->len - LIBIPW_3ADDR_LEN - 8);
7782  skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7783  break;
7784  case SEC_LEVEL_2:
7785  break;
7786  case SEC_LEVEL_1:
7787  /* Remove IV */
7788  memmove(skb->data + LIBIPW_3ADDR_LEN,
7789  skb->data + LIBIPW_3ADDR_LEN + 4,
7790  skb->len - LIBIPW_3ADDR_LEN - 4);
7791  skb_trim(skb, skb->len - 8); /* IV + ICV */
7792  break;
7793  case SEC_LEVEL_0:
7794  break;
7795  default:
7796  printk(KERN_ERR "Unknown security level %d\n",
7797  priv->ieee->sec.level);
7798  break;
7799  }
7800 }
7801 
7802 static void ipw_handle_data_packet(struct ipw_priv *priv,
7803  struct ipw_rx_mem_buffer *rxb,
7804  struct libipw_rx_stats *stats)
7805 {
7806  struct net_device *dev = priv->net_dev;
7807  struct libipw_hdr_4addr *hdr;
7808  struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7809 
7810  /* We received data from the HW, so stop the watchdog */
7811  dev->trans_start = jiffies;
7812 
7813  /* We only process data packets if the
7814  * interface is open */
7815  if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7816  skb_tailroom(rxb->skb))) {
7817  dev->stats.rx_errors++;
7818  priv->wstats.discard.misc++;
7819  IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7820  return;
7821  } else if (unlikely(!netif_running(priv->net_dev))) {
7822  dev->stats.rx_dropped++;
7823  priv->wstats.discard.misc++;
7824  IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7825  return;
7826  }
7827 
7828  /* Advance skb->data to the start of the actual payload */
7829  skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7830 
7831  /* Set the size of the skb to the size of the frame */
7832  skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7833 
7834  IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7835 
7836  /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7837  hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7838  if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7839  (is_multicast_ether_addr(hdr->addr1) ?
7840  !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7841  ipw_rebuild_decrypted_skb(priv, rxb->skb);
7842 
7843  if (!libipw_rx(priv->ieee, rxb->skb, stats))
7844  dev->stats.rx_errors++;
7845  else { /* libipw_rx succeeded, so it now owns the SKB */
7846  rxb->skb = NULL;
7847  __ipw_led_activity_on(priv);
7848  }
7849 }
7850 
7851 #ifdef CONFIG_IPW2200_RADIOTAP
7852 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7853  struct ipw_rx_mem_buffer *rxb,
7854  struct libipw_rx_stats *stats)
7855 {
7856  struct net_device *dev = priv->net_dev;
7857  struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7858  struct ipw_rx_frame *frame = &pkt->u.frame;
7859 
7860  /* initial pull of some data */
7861  u16 received_channel = frame->received_channel;
7862  u8 antennaAndPhy = frame->antennaAndPhy;
7863  s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7864  u16 pktrate = frame->rate;
7865 
7866  /* Magic struct that slots into the radiotap header -- no reason
7867  * to build this manually element by element, we can write it much
7868  * more efficiently than we can parse it. ORDER MATTERS HERE */
7869  struct ipw_rt_hdr *ipw_rt;
7870 
7871  unsigned short len = le16_to_cpu(pkt->u.frame.length);
7872 
7873  /* We received data from the HW, so stop the watchdog */
7874  dev->trans_start = jiffies;
7875 
7876  /* We only process data packets if the
7877  * interface is open */
7878  if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7879  skb_tailroom(rxb->skb))) {
7880  dev->stats.rx_errors++;
7881  priv->wstats.discard.misc++;
7882  IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7883  return;
7884  } else if (unlikely(!netif_running(priv->net_dev))) {
7885  dev->stats.rx_dropped++;
7886  priv->wstats.discard.misc++;
7887  IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7888  return;
7889  }
7890 
7891  /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7892  * that now */
7893  if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7894  /* FIXME: Should alloc bigger skb instead */
7895  dev->stats.rx_dropped++;
7896  priv->wstats.discard.misc++;
7897  IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7898  return;
7899  }
7900 
7901  /* copy the frame itself */
7902  memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7903  rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7904 
7905  ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7906 
7907  ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7908  ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7909  ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7910 
7911  /* Big bitfield of all the fields we provide in radiotap */
7912  ipw_rt->rt_hdr.it_present = cpu_to_le32(
7913  (1 << IEEE80211_RADIOTAP_TSFT) |
7914  (1 << IEEE80211_RADIOTAP_FLAGS) |
7915  (1 << IEEE80211_RADIOTAP_RATE) |
7920 
7921  /* Zero the flags, we'll add to them as we go */
7922  ipw_rt->rt_flags = 0;
7923  ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7924  frame->parent_tsf[2] << 16 |
7925  frame->parent_tsf[1] << 8 |
7926  frame->parent_tsf[0]);
7927 
7928  /* Convert signal to DBM */
7929  ipw_rt->rt_dbmsignal = antsignal;
7930  ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7931 
7932  /* Convert the channel data and set the flags */
7933  ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7934  if (received_channel > 14) { /* 802.11a */
7935  ipw_rt->rt_chbitmask =
7937  } else if (antennaAndPhy & 32) { /* 802.11b */
7938  ipw_rt->rt_chbitmask =
7940  } else { /* 802.11g */
7941  ipw_rt->rt_chbitmask =
7943  }
7944 
7945  /* set the rate in multiples of 500k/s */
7946  switch (pktrate) {
7947  case IPW_TX_RATE_1MB:
7948  ipw_rt->rt_rate = 2;
7949  break;
7950  case IPW_TX_RATE_2MB:
7951  ipw_rt->rt_rate = 4;
7952  break;
7953  case IPW_TX_RATE_5MB:
7954  ipw_rt->rt_rate = 10;
7955  break;
7956  case IPW_TX_RATE_6MB:
7957  ipw_rt->rt_rate = 12;
7958  break;
7959  case IPW_TX_RATE_9MB:
7960  ipw_rt->rt_rate = 18;
7961  break;
7962  case IPW_TX_RATE_11MB:
7963  ipw_rt->rt_rate = 22;
7964  break;
7965  case IPW_TX_RATE_12MB:
7966  ipw_rt->rt_rate = 24;
7967  break;
7968  case IPW_TX_RATE_18MB:
7969  ipw_rt->rt_rate = 36;
7970  break;
7971  case IPW_TX_RATE_24MB:
7972  ipw_rt->rt_rate = 48;
7973  break;
7974  case IPW_TX_RATE_36MB:
7975  ipw_rt->rt_rate = 72;
7976  break;
7977  case IPW_TX_RATE_48MB:
7978  ipw_rt->rt_rate = 96;
7979  break;
7980  case IPW_TX_RATE_54MB:
7981  ipw_rt->rt_rate = 108;
7982  break;
7983  default:
7984  ipw_rt->rt_rate = 0;
7985  break;
7986  }
7987 
7988  /* antenna number */
7989  ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7990 
7991  /* set the preamble flag if we have it */
7992  if ((antennaAndPhy & 64))
7993  ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7994 
7995  /* Set the size of the skb to the size of the frame */
7996  skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7997 
7998  IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7999 
8000  if (!libipw_rx(priv->ieee, rxb->skb, stats))
8001  dev->stats.rx_errors++;
8002  else { /* libipw_rx succeeded, so it now owns the SKB */
8003  rxb->skb = NULL;
8004  /* no LED during capture */
8005  }
8006 }
8007 #endif
8008 
8009 #ifdef CONFIG_IPW2200_PROMISCUOUS
8010 #define libipw_is_probe_response(fc) \
8011  ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
8012  (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
8013 
8014 #define libipw_is_management(fc) \
8015  ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
8016 
8017 #define libipw_is_control(fc) \
8018  ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
8019 
8020 #define libipw_is_data(fc) \
8021  ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
8022 
8023 #define libipw_is_assoc_request(fc) \
8024  ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
8025 
8026 #define libipw_is_reassoc_request(fc) \
8027  ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
8028 
8029 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
8030  struct ipw_rx_mem_buffer *rxb,
8031  struct libipw_rx_stats *stats)
8032 {
8033  struct net_device *dev = priv->prom_net_dev;
8034  struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
8035  struct ipw_rx_frame *frame = &pkt->u.frame;
8036  struct ipw_rt_hdr *ipw_rt;
8037 
8038  /* First cache any information we need before we overwrite
8039  * the information provided in the skb from the hardware */
8040  struct ieee80211_hdr *hdr;
8041  u16 channel = frame->received_channel;
8042  u8 phy_flags = frame->antennaAndPhy;
8043  s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
8044  s8 noise = (s8) le16_to_cpu(frame->noise);
8045  u8 rate = frame->rate;
8046  unsigned short len = le16_to_cpu(pkt->u.frame.length);
8047  struct sk_buff *skb;
8048  int hdr_only = 0;
8049  u16 filter = priv->prom_priv->filter;
8050 
8051  /* If the filter is set to not include Rx frames then return */
8052  if (filter & IPW_PROM_NO_RX)
8053  return;
8054 
8055  /* We received data from the HW, so stop the watchdog */
8056  dev->trans_start = jiffies;
8057 
8058  if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
8059  dev->stats.rx_errors++;
8060  IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
8061  return;
8062  }
8063 
8064  /* We only process data packets if the interface is open */
8065  if (unlikely(!netif_running(dev))) {
8066  dev->stats.rx_dropped++;
8067  IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
8068  return;
8069  }
8070 
8071  /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8072  * that now */
8073  if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8074  /* FIXME: Should alloc bigger skb instead */
8075  dev->stats.rx_dropped++;
8076  IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8077  return;
8078  }
8079 
8080  hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8081  if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
8082  if (filter & IPW_PROM_NO_MGMT)
8083  return;
8084  if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8085  hdr_only = 1;
8086  } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
8087  if (filter & IPW_PROM_NO_CTL)
8088  return;
8089  if (filter & IPW_PROM_CTL_HEADER_ONLY)
8090  hdr_only = 1;
8091  } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
8092  if (filter & IPW_PROM_NO_DATA)
8093  return;
8094  if (filter & IPW_PROM_DATA_HEADER_ONLY)
8095  hdr_only = 1;
8096  }
8097 
8098  /* Copy the SKB since this is for the promiscuous side */
8099  skb = skb_copy(rxb->skb, GFP_ATOMIC);
8100  if (skb == NULL) {
8101  IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8102  return;
8103  }
8104 
8105  /* copy the frame data to write after where the radiotap header goes */
8106  ipw_rt = (void *)skb->data;
8107 
8108  if (hdr_only)
8109  len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8110 
8111  memcpy(ipw_rt->payload, hdr, len);
8112 
8113  ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8114  ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
8115  ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
8116 
8117  /* Set the size of the skb to the size of the frame */
8118  skb_put(skb, sizeof(*ipw_rt) + len);
8119 
8120  /* Big bitfield of all the fields we provide in radiotap */
8121  ipw_rt->rt_hdr.it_present = cpu_to_le32(
8122  (1 << IEEE80211_RADIOTAP_TSFT) |
8123  (1 << IEEE80211_RADIOTAP_FLAGS) |
8124  (1 << IEEE80211_RADIOTAP_RATE) |
8129 
8130  /* Zero the flags, we'll add to them as we go */
8131  ipw_rt->rt_flags = 0;
8132  ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8133  frame->parent_tsf[2] << 16 |
8134  frame->parent_tsf[1] << 8 |
8135  frame->parent_tsf[0]);
8136 
8137  /* Convert to DBM */
8138  ipw_rt->rt_dbmsignal = signal;
8139  ipw_rt->rt_dbmnoise = noise;
8140 
8141  /* Convert the channel data and set the flags */
8142  ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8143  if (channel > 14) { /* 802.11a */
8144  ipw_rt->rt_chbitmask =
8146  } else if (phy_flags & (1 << 5)) { /* 802.11b */
8147  ipw_rt->rt_chbitmask =
8149  } else { /* 802.11g */
8150  ipw_rt->rt_chbitmask =
8152  }
8153 
8154  /* set the rate in multiples of 500k/s */
8155  switch (rate) {
8156  case IPW_TX_RATE_1MB:
8157  ipw_rt->rt_rate = 2;
8158  break;
8159  case IPW_TX_RATE_2MB:
8160  ipw_rt->rt_rate = 4;
8161  break;
8162  case IPW_TX_RATE_5MB:
8163  ipw_rt->rt_rate = 10;
8164  break;
8165  case IPW_TX_RATE_6MB:
8166  ipw_rt->rt_rate = 12;
8167  break;
8168  case IPW_TX_RATE_9MB:
8169  ipw_rt->rt_rate = 18;
8170  break;
8171  case IPW_TX_RATE_11MB:
8172  ipw_rt->rt_rate = 22;
8173  break;
8174  case IPW_TX_RATE_12MB:
8175  ipw_rt->rt_rate = 24;
8176  break;
8177  case IPW_TX_RATE_18MB:
8178  ipw_rt->rt_rate = 36;
8179  break;
8180  case IPW_TX_RATE_24MB:
8181  ipw_rt->rt_rate = 48;
8182  break;
8183  case IPW_TX_RATE_36MB:
8184  ipw_rt->rt_rate = 72;
8185  break;
8186  case IPW_TX_RATE_48MB:
8187  ipw_rt->rt_rate = 96;
8188  break;
8189  case IPW_TX_RATE_54MB:
8190  ipw_rt->rt_rate = 108;
8191  break;
8192  default:
8193  ipw_rt->rt_rate = 0;
8194  break;
8195  }
8196 
8197  /* antenna number */
8198  ipw_rt->rt_antenna = (phy_flags & 3);
8199 
8200  /* set the preamble flag if we have it */
8201  if (phy_flags & (1 << 6))
8202  ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8203 
8204  IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8205 
8206  if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8207  dev->stats.rx_errors++;
8208  dev_kfree_skb_any(skb);
8209  }
8210 }
8211 #endif
8212 
8213 static int is_network_packet(struct ipw_priv *priv,
8214  struct libipw_hdr_4addr *header)
8215 {
8216  /* Filter incoming packets to determine if they are targeted toward
8217  * this network, discarding packets coming from ourselves */
8218  switch (priv->ieee->iw_mode) {
8219  case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8220  /* packets from our adapter are dropped (echo) */
8221  if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8222  return 0;
8223 
8224  /* {broad,multi}cast packets to our BSSID go through */
8225  if (is_multicast_ether_addr(header->addr1))
8226  return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8227 
8228  /* packets to our adapter go through */
8229  return !memcmp(header->addr1, priv->net_dev->dev_addr,
8230  ETH_ALEN);
8231 
8232  case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8233  /* packets from our adapter are dropped (echo) */
8234  if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8235  return 0;
8236 
8237  /* {broad,multi}cast packets to our BSS go through */
8238  if (is_multicast_ether_addr(header->addr1))
8239  return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8240 
8241  /* packets to our adapter go through */
8242  return !memcmp(header->addr1, priv->net_dev->dev_addr,
8243  ETH_ALEN);
8244  }
8245 
8246  return 1;
8247 }
8248 
8249 #define IPW_PACKET_RETRY_TIME HZ
8250 
8251 static int is_duplicate_packet(struct ipw_priv *priv,
8252  struct libipw_hdr_4addr *header)
8253 {
8254  u16 sc = le16_to_cpu(header->seq_ctl);
8255  u16 seq = WLAN_GET_SEQ_SEQ(sc);
8256  u16 frag = WLAN_GET_SEQ_FRAG(sc);
8257  u16 *last_seq, *last_frag;
8258  unsigned long *last_time;
8259 
8260  switch (priv->ieee->iw_mode) {
8261  case IW_MODE_ADHOC:
8262  {
8263  struct list_head *p;
8264  struct ipw_ibss_seq *entry = NULL;
8265  u8 *mac = header->addr2;
8266  int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8267 
8268  __list_for_each(p, &priv->ibss_mac_hash[index]) {
8269  entry =
8270  list_entry(p, struct ipw_ibss_seq, list);
8271  if (!memcmp(entry->mac, mac, ETH_ALEN))
8272  break;
8273  }
8274  if (p == &priv->ibss_mac_hash[index]) {
8275  entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8276  if (!entry) {
8277  IPW_ERROR
8278  ("Cannot malloc new mac entry\n");
8279  return 0;
8280  }
8281  memcpy(entry->mac, mac, ETH_ALEN);
8282  entry->seq_num = seq;
8283  entry->frag_num = frag;
8284  entry->packet_time = jiffies;
8285  list_add(&entry->list,
8286  &priv->ibss_mac_hash[index]);
8287  return 0;
8288  }
8289  last_seq = &entry->seq_num;
8290  last_frag = &entry->frag_num;
8291  last_time = &entry->packet_time;
8292  break;
8293  }
8294  case IW_MODE_INFRA:
8295  last_seq = &priv->last_seq_num;
8296  last_frag = &priv->last_frag_num;
8297  last_time = &priv->last_packet_time;
8298  break;
8299  default:
8300  return 0;
8301  }
8302  if ((*last_seq == seq) &&
8303  time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8304  if (*last_frag == frag)
8305  goto drop;
8306  if (*last_frag + 1 != frag)
8307  /* out-of-order fragment */
8308  goto drop;
8309  } else
8310  *last_seq = seq;
8311 
8312  *last_frag = frag;
8313  *last_time = jiffies;
8314  return 0;
8315 
8316  drop:
8317  /* Comment this line now since we observed the card receives
8318  * duplicate packets but the FCTL_RETRY bit is not set in the
8319  * IBSS mode with fragmentation enabled.
8320  BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8321  return 1;
8322 }
8323 
8324 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8325  struct ipw_rx_mem_buffer *rxb,
8326  struct libipw_rx_stats *stats)
8327 {
8328  struct sk_buff *skb = rxb->skb;
8329  struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8330  struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8331  (skb->data + IPW_RX_FRAME_SIZE);
8332 
8333  libipw_rx_mgt(priv->ieee, header, stats);
8334 
8335  if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8336  ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8340  if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8341  ipw_add_station(priv, header->addr2);
8342  }
8343 
8344  if (priv->config & CFG_NET_STATS) {
8345  IPW_DEBUG_HC("sending stat packet\n");
8346 
8347  /* Set the size of the skb to the size of the full
8348  * ipw header and 802.11 frame */
8349  skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8351 
8352  /* Advance past the ipw packet header to the 802.11 frame */
8354 
8355  /* Push the libipw_rx_stats before the 802.11 frame */
8356  memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8357 
8358  skb->dev = priv->ieee->dev;
8359 
8360  /* Point raw at the libipw_stats */
8361  skb_reset_mac_header(skb);
8362 
8363  skb->pkt_type = PACKET_OTHERHOST;
8365  memset(skb->cb, 0, sizeof(rxb->skb->cb));
8366  netif_rx(skb);
8367  rxb->skb = NULL;
8368  }
8369 }
8370 
8371 /*
8372  * Main entry function for receiving a packet with 80211 headers. This
8373  * should be called when ever the FW has notified us that there is a new
8374  * skb in the receive queue.
8375  */
8376 static void ipw_rx(struct ipw_priv *priv)
8377 {
8378  struct ipw_rx_mem_buffer *rxb;
8379  struct ipw_rx_packet *pkt;
8380  struct libipw_hdr_4addr *header;
8381  u32 r, w, i;
8382  u8 network_packet;
8383  u8 fill_rx = 0;
8384 
8385  r = ipw_read32(priv, IPW_RX_READ_INDEX);
8386  w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8387  i = priv->rxq->read;
8388 
8389  if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8390  fill_rx = 1;
8391 
8392  while (i != r) {
8393  rxb = priv->rxq->queue[i];
8394  if (unlikely(rxb == NULL)) {
8395  printk(KERN_CRIT "Queue not allocated!\n");
8396  break;
8397  }
8398  priv->rxq->queue[i] = NULL;
8399 
8400  pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8403 
8404  pkt = (struct ipw_rx_packet *)rxb->skb->data;
8405  IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8406  pkt->header.message_type,
8407  pkt->header.rx_seq_num, pkt->header.control_bits);
8408 
8409  switch (pkt->header.message_type) {
8410  case RX_FRAME_TYPE: /* 802.11 frame */ {
8411  struct libipw_rx_stats stats = {
8412  .rssi = pkt->u.frame.rssi_dbm -
8414  .signal =
8415  pkt->u.frame.rssi_dbm -
8416  IPW_RSSI_TO_DBM + 0x100,
8417  .noise =
8418  le16_to_cpu(pkt->u.frame.noise),
8419  .rate = pkt->u.frame.rate,
8420  .mac_time = jiffies,
8421  .received_channel =
8422  pkt->u.frame.received_channel,
8423  .freq =
8424  (pkt->u.frame.
8425  control & (1 << 0)) ?
8428  .len = le16_to_cpu(pkt->u.frame.length),
8429  };
8430 
8431  if (stats.rssi != 0)
8432  stats.mask |= LIBIPW_STATMASK_RSSI;
8433  if (stats.signal != 0)
8434  stats.mask |= LIBIPW_STATMASK_SIGNAL;
8435  if (stats.noise != 0)
8436  stats.mask |= LIBIPW_STATMASK_NOISE;
8437  if (stats.rate != 0)
8438  stats.mask |= LIBIPW_STATMASK_RATE;
8439 
8440  priv->rx_packets++;
8441 
8442 #ifdef CONFIG_IPW2200_PROMISCUOUS
8443  if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8444  ipw_handle_promiscuous_rx(priv, rxb, &stats);
8445 #endif
8446 
8447 #ifdef CONFIG_IPW2200_MONITOR
8448  if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8449 #ifdef CONFIG_IPW2200_RADIOTAP
8450 
8451  ipw_handle_data_packet_monitor(priv,
8452  rxb,
8453  &stats);
8454 #else
8455  ipw_handle_data_packet(priv, rxb,
8456  &stats);
8457 #endif
8458  break;
8459  }
8460 #endif
8461 
8462  header =
8463  (struct libipw_hdr_4addr *)(rxb->skb->
8464  data +
8466  /* TODO: Check Ad-Hoc dest/source and make sure
8467  * that we are actually parsing these packets
8468  * correctly -- we should probably use the
8469  * frame control of the packet and disregard
8470  * the current iw_mode */
8471 
8472  network_packet =
8473  is_network_packet(priv, header);
8474  if (network_packet && priv->assoc_network) {
8475  priv->assoc_network->stats.rssi =
8476  stats.rssi;
8477  priv->exp_avg_rssi =
8478  exponential_average(priv->exp_avg_rssi,
8479  stats.rssi, DEPTH_RSSI);
8480  }
8481 
8482  IPW_DEBUG_RX("Frame: len=%u\n",
8483  le16_to_cpu(pkt->u.frame.length));
8484 
8485  if (le16_to_cpu(pkt->u.frame.length) <
8486  libipw_get_hdrlen(le16_to_cpu(
8487  header->frame_ctl))) {
8489  ("Received packet is too small. "
8490  "Dropping.\n");
8491  priv->net_dev->stats.rx_errors++;
8492  priv->wstats.discard.misc++;
8493  break;
8494  }
8495 
8496  switch (WLAN_FC_GET_TYPE
8497  (le16_to_cpu(header->frame_ctl))) {
8498 
8499  case IEEE80211_FTYPE_MGMT:
8500  ipw_handle_mgmt_packet(priv, rxb,
8501  &stats);
8502  break;
8503 
8504  case IEEE80211_FTYPE_CTL:
8505  break;
8506 
8507  case IEEE80211_FTYPE_DATA:
8508  if (unlikely(!network_packet ||
8509  is_duplicate_packet(priv,
8510  header)))
8511  {
8512  IPW_DEBUG_DROP("Dropping: "
8513  "%pM, "
8514  "%pM, "
8515  "%pM\n",
8516  header->addr1,
8517  header->addr2,
8518  header->addr3);
8519  break;
8520  }
8521 
8522  ipw_handle_data_packet(priv, rxb,
8523  &stats);
8524 
8525  break;
8526  }
8527  break;
8528  }
8529 
8531  IPW_DEBUG_RX
8532  ("Notification: subtype=%02X flags=%02X size=%d\n",
8533  pkt->u.notification.subtype,
8534  pkt->u.notification.flags,
8535  le16_to_cpu(pkt->u.notification.size));
8536  ipw_rx_notification(priv, &pkt->u.notification);
8537  break;
8538  }
8539 
8540  default:
8541  IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8542  pkt->header.message_type);
8543  break;
8544  }
8545 
8546  /* For now we just don't re-use anything. We can tweak this
8547  * later to try and re-use notification packets and SKBs that
8548  * fail to Rx correctly */
8549  if (rxb->skb != NULL) {
8550  dev_kfree_skb_any(rxb->skb);
8551  rxb->skb = NULL;
8552  }
8553 
8554  pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8556  list_add_tail(&rxb->list, &priv->rxq->rx_used);
8557 
8558  i = (i + 1) % RX_QUEUE_SIZE;
8559 
8560  /* If there are a lot of unsued frames, restock the Rx queue
8561  * so the ucode won't assert */
8562  if (fill_rx) {
8563  priv->rxq->read = i;
8564  ipw_rx_queue_replenish(priv);
8565  }
8566  }
8567 
8568  /* Backtrack one entry */
8569  priv->rxq->read = i;
8570  ipw_rx_queue_restock(priv);
8571 }
8572 
8573 #define DEFAULT_RTS_THRESHOLD 2304U
8574 #define MIN_RTS_THRESHOLD 1U
8575 #define MAX_RTS_THRESHOLD 2304U
8576 #define DEFAULT_BEACON_INTERVAL 100U
8577 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8578 #define DEFAULT_LONG_RETRY_LIMIT 4U
8579 
8587 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8588 {
8589  int band, modulation;
8590  int old_mode = priv->ieee->iw_mode;
8591 
8592  /* Initialize module parameter values here */
8593  priv->config = 0;
8594 
8595  /* We default to disabling the LED code as right now it causes
8596  * too many systems to lock up... */
8597  if (!led_support)
8598  priv->config |= CFG_NO_LED;
8599 
8600  if (associate)
8601  priv->config |= CFG_ASSOCIATE;
8602  else
8603  IPW_DEBUG_INFO("Auto associate disabled.\n");
8604 
8605  if (auto_create)
8606  priv->config |= CFG_ADHOC_CREATE;
8607  else
8608  IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8609 
8610  priv->config &= ~CFG_STATIC_ESSID;
8611  priv->essid_len = 0;
8612  memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8613 
8614  if (disable && option) {
8615  priv->status |= STATUS_RF_KILL_SW;
8616  IPW_DEBUG_INFO("Radio disabled.\n");
8617  }
8618 
8619  if (default_channel != 0) {
8620  priv->config |= CFG_STATIC_CHANNEL;
8621  priv->channel = default_channel;
8622  IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8623  /* TODO: Validate that provided channel is in range */
8624  }
8625 #ifdef CONFIG_IPW2200_QOS
8626  ipw_qos_init(priv, qos_enable, qos_burst_enable,
8627  burst_duration_CCK, burst_duration_OFDM);
8628 #endif /* CONFIG_IPW2200_QOS */
8629 
8630  switch (network_mode) {
8631  case 1:
8632  priv->ieee->iw_mode = IW_MODE_ADHOC;
8633  priv->net_dev->type = ARPHRD_ETHER;
8634 
8635  break;
8636 #ifdef CONFIG_IPW2200_MONITOR
8637  case 2:
8638  priv->ieee->iw_mode = IW_MODE_MONITOR;
8639 #ifdef CONFIG_IPW2200_RADIOTAP
8640  priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8641 #else
8642  priv->net_dev->type = ARPHRD_IEEE80211;
8643 #endif
8644  break;
8645 #endif
8646  default:
8647  case 0:
8648  priv->net_dev->type = ARPHRD_ETHER;
8649  priv->ieee->iw_mode = IW_MODE_INFRA;
8650  break;
8651  }
8652 
8653  if (hwcrypto) {
8654  priv->ieee->host_encrypt = 0;
8655  priv->ieee->host_encrypt_msdu = 0;
8656  priv->ieee->host_decrypt = 0;
8657  priv->ieee->host_mc_decrypt = 0;
8658  }
8659  IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8660 
8661  /* IPW2200/2915 is abled to do hardware fragmentation. */
8662  priv->ieee->host_open_frag = 0;
8663 
8664  if ((priv->pci_dev->device == 0x4223) ||
8665  (priv->pci_dev->device == 0x4224)) {
8666  if (option == 1)
8668  ": Detected Intel PRO/Wireless 2915ABG Network "
8669  "Connection\n");
8670  priv->ieee->abg_true = 1;
8672  modulation = LIBIPW_OFDM_MODULATION |
8674  priv->adapter = IPW_2915ABG;
8675  priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8676  } else {
8677  if (option == 1)
8679  ": Detected Intel PRO/Wireless 2200BG Network "
8680  "Connection\n");
8681 
8682  priv->ieee->abg_true = 0;
8683  band = LIBIPW_24GHZ_BAND;
8684  modulation = LIBIPW_OFDM_MODULATION |
8686  priv->adapter = IPW_2200BG;
8687  priv->ieee->mode = IEEE_G | IEEE_B;
8688  }
8689 
8690  priv->ieee->freq_band = band;
8691  priv->ieee->modulation = modulation;
8692 
8694 
8697 
8701 
8702  /* If power management is turned on, default to AC mode */
8703  priv->power_mode = IPW_POWER_AC;
8705 
8706  return old_mode == priv->ieee->iw_mode;
8707 }
8708 
8709 /*
8710  * This file defines the Wireless Extension handlers. It does not
8711  * define any methods of hardware manipulation and relies on the
8712  * functions defined in ipw_main to provide the HW interaction.
8713  *
8714  * The exception to this is the use of the ipw_get_ordinal()
8715  * function used to poll the hardware vs. making unnecessary calls.
8716  *
8717  */
8718 
8719 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8720 {
8721  if (channel == 0) {
8722  IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8723  priv->config &= ~CFG_STATIC_CHANNEL;
8724  IPW_DEBUG_ASSOC("Attempting to associate with new "
8725  "parameters.\n");
8726  ipw_associate(priv);
8727  return 0;
8728  }
8729 
8730  priv->config |= CFG_STATIC_CHANNEL;
8731 
8732  if (priv->channel == channel) {
8733  IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8734  channel);
8735  return 0;
8736  }
8737 
8738  IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8739  priv->channel = channel;
8740 
8741 #ifdef CONFIG_IPW2200_MONITOR
8742  if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8743  int i;
8744  if (priv->status & STATUS_SCANNING) {
8745  IPW_DEBUG_SCAN("Scan abort triggered due to "
8746  "channel change.\n");
8747  ipw_abort_scan(priv);
8748  }
8749 
8750  for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8751  udelay(10);
8752 
8753  if (priv->status & STATUS_SCANNING)
8754  IPW_DEBUG_SCAN("Still scanning...\n");
8755  else
8756  IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8757  1000 - i);
8758 
8759  return 0;
8760  }
8761 #endif /* CONFIG_IPW2200_MONITOR */
8762 
8763  /* Network configuration changed -- force [re]association */
8764  IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8765  if (!ipw_disassociate(priv))
8766  ipw_associate(priv);
8767 
8768  return 0;
8769 }
8770 
8771 static int ipw_wx_set_freq(struct net_device *dev,
8772  struct iw_request_info *info,
8773  union iwreq_data *wrqu, char *extra)
8774 {
8775  struct ipw_priv *priv = libipw_priv(dev);
8776  const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8777  struct iw_freq *fwrq = &wrqu->freq;
8778  int ret = 0, i;
8779  u8 channel, flags;
8780  int band;
8781 
8782  if (fwrq->m == 0) {
8783  IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8784  mutex_lock(&priv->mutex);
8785  ret = ipw_set_channel(priv, 0);
8786  mutex_unlock(&priv->mutex);
8787  return ret;
8788  }
8789  /* if setting by freq convert to channel */
8790  if (fwrq->e == 1) {
8791  channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8792  if (channel == 0)
8793  return -EINVAL;
8794  } else
8795  channel = fwrq->m;
8796 
8797  if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8798  return -EINVAL;
8799 
8800  if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8801  i = libipw_channel_to_index(priv->ieee, channel);
8802  if (i == -1)
8803  return -EINVAL;
8804 
8805  flags = (band == LIBIPW_24GHZ_BAND) ?
8806  geo->bg[i].flags : geo->a[i].flags;
8807  if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8808  IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8809  return -EINVAL;
8810  }
8811  }
8812 
8813  IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8814  mutex_lock(&priv->mutex);
8815  ret = ipw_set_channel(priv, channel);
8816  mutex_unlock(&priv->mutex);
8817  return ret;
8818 }
8819 
8820 static int ipw_wx_get_freq(struct net_device *dev,
8821  struct iw_request_info *info,
8822  union iwreq_data *wrqu, char *extra)
8823 {
8824  struct ipw_priv *priv = libipw_priv(dev);
8825 
8826  wrqu->freq.e = 0;
8827 
8828  /* If we are associated, trying to associate, or have a statically
8829  * configured CHANNEL then return that; otherwise return ANY */
8830  mutex_lock(&priv->mutex);
8831  if (priv->config & CFG_STATIC_CHANNEL ||
8833  int i;
8834 
8835  i = libipw_channel_to_index(priv->ieee, priv->channel);
8836  BUG_ON(i == -1);
8837  wrqu->freq.e = 1;
8838 
8839  switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8840  case LIBIPW_52GHZ_BAND:
8841  wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8842  break;
8843 
8844  case LIBIPW_24GHZ_BAND:
8845  wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8846  break;
8847 
8848  default:
8849  BUG();
8850  }
8851  } else
8852  wrqu->freq.m = 0;
8853 
8854  mutex_unlock(&priv->mutex);
8855  IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8856  return 0;
8857 }
8858 
8859 static int ipw_wx_set_mode(struct net_device *dev,
8860  struct iw_request_info *info,
8861  union iwreq_data *wrqu, char *extra)
8862 {
8863  struct ipw_priv *priv = libipw_priv(dev);
8864  int err = 0;
8865 
8866  IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8867 
8868  switch (wrqu->mode) {
8869 #ifdef CONFIG_IPW2200_MONITOR
8870  case IW_MODE_MONITOR:
8871 #endif
8872  case IW_MODE_ADHOC:
8873  case IW_MODE_INFRA:
8874  break;
8875  case IW_MODE_AUTO:
8876  wrqu->mode = IW_MODE_INFRA;
8877  break;
8878  default:
8879  return -EINVAL;
8880  }
8881  if (wrqu->mode == priv->ieee->iw_mode)
8882  return 0;
8883 
8884  mutex_lock(&priv->mutex);
8885 
8886  ipw_sw_reset(priv, 0);
8887 
8888 #ifdef CONFIG_IPW2200_MONITOR
8889  if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8890  priv->net_dev->type = ARPHRD_ETHER;
8891 
8892  if (wrqu->mode == IW_MODE_MONITOR)
8893 #ifdef CONFIG_IPW2200_RADIOTAP
8894  priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8895 #else
8896  priv->net_dev->type = ARPHRD_IEEE80211;
8897 #endif
8898 #endif /* CONFIG_IPW2200_MONITOR */
8899 
8900  /* Free the existing firmware and reset the fw_loaded
8901  * flag so ipw_load() will bring in the new firmware */
8902  free_firmware();
8903 
8904  priv->ieee->iw_mode = wrqu->mode;
8905 
8907  mutex_unlock(&priv->mutex);
8908  return err;
8909 }
8910 
8911 static int ipw_wx_get_mode(struct net_device *dev,
8912  struct iw_request_info *info,
8913  union iwreq_data *wrqu, char *extra)
8914 {
8915  struct ipw_priv *priv = libipw_priv(dev);
8916  mutex_lock(&priv->mutex);
8917  wrqu->mode = priv->ieee->iw_mode;
8918  IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8919  mutex_unlock(&priv->mutex);
8920  return 0;
8921 }
8922 
8923 /* Values are in microsecond */
8924 static const s32 timeout_duration[] = {
8925  350000,
8926  250000,
8927  75000,
8928  37000,
8929  25000,
8930 };
8931 
8932 static const s32 period_duration[] = {
8933  400000,
8934  700000,
8935  1000000,
8936  1000000,
8937  1000000
8938 };
8939 
8940 static int ipw_wx_get_range(struct net_device *dev,
8941  struct iw_request_info *info,
8942  union iwreq_data *wrqu, char *extra)
8943 {
8944  struct ipw_priv *priv = libipw_priv(dev);
8945  struct iw_range *range = (struct iw_range *)extra;
8946  const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8947  int i = 0, j;
8948 
8949  wrqu->data.length = sizeof(*range);
8950  memset(range, 0, sizeof(*range));
8951 
8952  /* 54Mbs == ~27 Mb/s real (802.11g) */
8953  range->throughput = 27 * 1000 * 1000;
8954 
8955  range->max_qual.qual = 100;
8956  /* TODO: Find real max RSSI and stick here */
8957  range->max_qual.level = 0;
8958  range->max_qual.noise = 0;
8959  range->max_qual.updated = 7; /* Updated all three */
8960 
8961  range->avg_qual.qual = 70;
8962  /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8963  range->avg_qual.level = 0; /* FIXME to real average level */
8964  range->avg_qual.noise = 0;
8965  range->avg_qual.updated = 7; /* Updated all three */
8966  mutex_lock(&priv->mutex);
8967  range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8968 
8969  for (i = 0; i < range->num_bitrates; i++)
8970  range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8971  500000;
8972 
8973  range->max_rts = DEFAULT_RTS_THRESHOLD;
8974  range->min_frag = MIN_FRAG_THRESHOLD;
8975  range->max_frag = MAX_FRAG_THRESHOLD;
8976 
8977  range->encoding_size[0] = 5;
8978  range->encoding_size[1] = 13;
8979  range->num_encoding_sizes = 2;
8980  range->max_encoding_tokens = WEP_KEYS;
8981 
8982  /* Set the Wireless Extension versions */
8984  range->we_version_source = 18;
8985 
8986  i = 0;
8987  if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8988  for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8989  if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8990  (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8991  continue;
8992 
8993  range->freq[i].i = geo->bg[j].channel;
8994  range->freq[i].m = geo->bg[j].freq * 100000;
8995  range->freq[i].e = 1;
8996  i++;
8997  }
8998  }
8999 
9000  if (priv->ieee->mode & IEEE_A) {
9001  for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
9002  if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
9003  (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
9004  continue;
9005 
9006  range->freq[i].i = geo->a[j].channel;
9007  range->freq[i].m = geo->a[j].freq * 100000;
9008  range->freq[i].e = 1;
9009  i++;
9010  }
9011  }
9012 
9013  range->num_channels = i;
9014  range->num_frequency = i;
9015 
9016  mutex_unlock(&priv->mutex);
9017 
9018  /* Event capability (kernel + driver) */
9019  range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
9023  range->event_capa[1] = IW_EVENT_CAPA_K_1;
9024 
9027 
9029 
9030  IPW_DEBUG_WX("GET Range\n");
9031  return 0;
9032 }
9033 
9034 static int ipw_wx_set_wap(struct net_device *dev,
9035  struct iw_request_info *info,
9036  union iwreq_data *wrqu, char *extra)
9037 {
9038  struct ipw_priv *priv = libipw_priv(dev);
9039 
9040  if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
9041  return -EINVAL;
9042  mutex_lock(&priv->mutex);
9043  if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
9044  is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
9045  /* we disable mandatory BSSID association */
9046  IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9047  priv->config &= ~CFG_STATIC_BSSID;
9048  IPW_DEBUG_ASSOC("Attempting to associate with new "
9049  "parameters.\n");
9050  ipw_associate(priv);
9051  mutex_unlock(&priv->mutex);
9052  return 0;
9053  }
9054 
9055  priv->config |= CFG_STATIC_BSSID;
9056  if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9057  IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9058  mutex_unlock(&priv->mutex);
9059  return 0;
9060  }
9061 
9062  IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9063  wrqu->ap_addr.sa_data);
9064 
9065  memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9066 
9067  /* Network configuration changed -- force [re]association */
9068  IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9069  if (!ipw_disassociate(priv))
9070  ipw_associate(priv);
9071 
9072  mutex_unlock(&priv->mutex);
9073  return 0;
9074 }
9075 
9076 static int ipw_wx_get_wap(struct net_device *dev,
9077  struct iw_request_info *info,
9078  union iwreq_data *wrqu, char *extra)
9079 {
9080  struct ipw_priv *priv = libipw_priv(dev);
9081 
9082  /* If we are associated, trying to associate, or have a statically
9083  * configured BSSID then return that; otherwise return ANY */
9084  mutex_lock(&priv->mutex);
9085  if (priv->config & CFG_STATIC_BSSID ||
9087  wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9088  memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9089  } else
9090  memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9091 
9092  IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9093  wrqu->ap_addr.sa_data);
9094  mutex_unlock(&priv->mutex);
9095  return 0;
9096 }
9097 
9098 static int ipw_wx_set_essid(struct net_device *dev,
9099  struct iw_request_info *info,
9100  union iwreq_data *wrqu, char *extra)
9101 {
9102  struct ipw_priv *priv = libipw_priv(dev);
9103  int length;
9104  DECLARE_SSID_BUF(ssid);
9105 
9106  mutex_lock(&priv->mutex);
9107 
9108  if (!wrqu->essid.flags)
9109  {
9110  IPW_DEBUG_WX("Setting ESSID to ANY\n");
9111  ipw_disassociate(priv);
9112  priv->config &= ~CFG_STATIC_ESSID;
9113  ipw_associate(priv);
9114  mutex_unlock(&priv->mutex);
9115  return 0;
9116  }
9117 
9118  length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9119 
9120  priv->config |= CFG_STATIC_ESSID;
9121 
9122  if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9123  && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9124  IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9125  mutex_unlock(&priv->mutex);
9126  return 0;
9127  }
9128 
9129  IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9130  print_ssid(ssid, extra, length), length);
9131 
9132  priv->essid_len = length;
9133  memcpy(priv->essid, extra, priv->essid_len);
9134 
9135  /* Network configuration changed -- force [re]association */
9136  IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9137  if (!ipw_disassociate(priv))
9138  ipw_associate(priv);
9139 
9140  mutex_unlock(&priv->mutex);
9141  return 0;
9142 }
9143 
9144 static int ipw_wx_get_essid(struct net_device *dev,
9145  struct iw_request_info *info,
9146  union iwreq_data *wrqu, char *extra)
9147 {
9148  struct ipw_priv *priv = libipw_priv(dev);
9149  DECLARE_SSID_BUF(ssid);
9150 
9151  /* If we are associated, trying to associate, or have a statically
9152  * configured ESSID then return that; otherwise return ANY */
9153  mutex_lock(&priv->mutex);
9154  if (priv->config & CFG_STATIC_ESSID ||
9156  IPW_DEBUG_WX("Getting essid: '%s'\n",
9157  print_ssid(ssid, priv->essid, priv->essid_len));
9158  memcpy(extra, priv->essid, priv->essid_len);
9159  wrqu->essid.length = priv->essid_len;
9160  wrqu->essid.flags = 1; /* active */
9161  } else {
9162  IPW_DEBUG_WX("Getting essid: ANY\n");
9163  wrqu->essid.length = 0;
9164  wrqu->essid.flags = 0; /* active */
9165  }
9166  mutex_unlock(&priv->mutex);
9167  return 0;
9168 }
9169 
9170 static int ipw_wx_set_nick(struct net_device *dev,
9171  struct iw_request_info *info,
9172  union iwreq_data *wrqu, char *extra)
9173 {
9174  struct ipw_priv *priv = libipw_priv(dev);
9175 
9176  IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9177  if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9178  return -E2BIG;
9179  mutex_lock(&priv->mutex);
9180  wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9181  memset(priv->nick, 0, sizeof(priv->nick));
9182  memcpy(priv->nick, extra, wrqu->data.length);
9183  IPW_DEBUG_TRACE("<<\n");
9184  mutex_unlock(&priv->mutex);
9185  return 0;
9186 
9187 }
9188 
9189 static int ipw_wx_get_nick(struct net_device *dev,
9190  struct iw_request_info *info,
9191  union iwreq_data *wrqu, char *extra)
9192 {
9193  struct ipw_priv *priv = libipw_priv(dev);
9194  IPW_DEBUG_WX("Getting nick\n");
9195  mutex_lock(&priv->mutex);
9196  wrqu->data.length = strlen(priv->nick);
9197  memcpy(extra, priv->nick, wrqu->data.length);
9198  wrqu->data.flags = 1; /* active */
9199  mutex_unlock(&priv->mutex);
9200  return 0;
9201 }
9202 
9203 static int ipw_wx_set_sens(struct net_device *dev,
9204  struct iw_request_info *info,
9205  union iwreq_data *wrqu, char *extra)
9206 {
9207  struct ipw_priv *priv = libipw_priv(dev);
9208  int err = 0;
9209 
9210  IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9211  IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9212  mutex_lock(&priv->mutex);
9213 
9214  if (wrqu->sens.fixed == 0)
9215  {
9218  goto out;
9219  }
9220  if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9221  (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9222  err = -EINVAL;
9223  goto out;
9224  }
9225 
9226  priv->roaming_threshold = wrqu->sens.value;
9227  priv->disassociate_threshold = 3*wrqu->sens.value;
9228  out:
9229  mutex_unlock(&priv->mutex);
9230  return err;
9231 }
9232 
9233 static int ipw_wx_get_sens(struct net_device *dev,
9234  struct iw_request_info *info,
9235  union iwreq_data *wrqu, char *extra)
9236 {
9237  struct ipw_priv *priv = libipw_priv(dev);
9238  mutex_lock(&priv->mutex);
9239  wrqu->sens.fixed = 1;
9240  wrqu->sens.value = priv->roaming_threshold;
9241  mutex_unlock(&priv->mutex);
9242 
9243  IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9244  wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9245 
9246  return 0;
9247 }
9248 
9249 static int ipw_wx_set_rate(struct net_device *dev,
9250  struct iw_request_info *info,
9251  union iwreq_data *wrqu, char *extra)
9252 {
9253  /* TODO: We should use semaphores or locks for access to priv */
9254  struct ipw_priv *priv = libipw_priv(dev);
9255  u32 target_rate = wrqu->bitrate.value;
9256  u32 fixed, mask;
9257 
9258  /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9259  /* value = X, fixed = 1 means only rate X */
9260  /* value = X, fixed = 0 means all rates lower equal X */
9261 
9262  if (target_rate == -1) {
9263  fixed = 0;
9265  /* Now we should reassociate */
9266  goto apply;
9267  }
9268 
9269  mask = 0;
9270  fixed = wrqu->bitrate.fixed;
9271 
9272  if (target_rate == 1000000 || !fixed)
9273  mask |= LIBIPW_CCK_RATE_1MB_MASK;
9274  if (target_rate == 1000000)
9275  goto apply;
9276 
9277  if (target_rate == 2000000 || !fixed)
9278  mask |= LIBIPW_CCK_RATE_2MB_MASK;
9279  if (target_rate == 2000000)
9280  goto apply;
9281 
9282  if (target_rate == 5500000 || !fixed)
9283  mask |= LIBIPW_CCK_RATE_5MB_MASK;
9284  if (target_rate == 5500000)
9285  goto apply;
9286 
9287  if (target_rate == 6000000 || !fixed)
9288  mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9289  if (target_rate == 6000000)
9290  goto apply;
9291 
9292  if (target_rate == 9000000 || !fixed)
9293  mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9294  if (target_rate == 9000000)
9295  goto apply;
9296 
9297  if (target_rate == 11000000 || !fixed)
9298  mask |= LIBIPW_CCK_RATE_11MB_MASK;
9299  if (target_rate == 11000000)
9300  goto apply;
9301 
9302  if (target_rate == 12000000 || !fixed)
9304  if (target_rate == 12000000)
9305  goto apply;
9306 
9307  if (target_rate == 18000000 || !fixed)
9309  if (target_rate == 18000000)
9310  goto apply;
9311 
9312  if (target_rate == 24000000 || !fixed)
9314  if (target_rate == 24000000)
9315  goto apply;
9316 
9317  if (target_rate == 36000000 || !fixed)
9319  if (target_rate == 36000000)
9320  goto apply;
9321 
9322  if (target_rate == 48000000 || !fixed)
9324  if (target_rate == 48000000)
9325  goto apply;
9326 
9327  if (target_rate == 54000000 || !fixed)
9329  if (target_rate == 54000000)
9330  goto apply;
9331 
9332  IPW_DEBUG_WX("invalid rate specified, returning error\n");
9333  return -EINVAL;
9334 
9335  apply:
9336  IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9337  mask, fixed ? "fixed" : "sub-rates");
9338  mutex_lock(&priv->mutex);
9339  if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9340  priv->config &= ~CFG_FIXED_RATE;
9341  ipw_set_fixed_rate(priv, priv->ieee->mode);
9342  } else
9343  priv->config |= CFG_FIXED_RATE;
9344 
9345  if (priv->rates_mask == mask) {
9346  IPW_DEBUG_WX("Mask set to current mask.\n");
9347  mutex_unlock(&priv->mutex);
9348  return 0;
9349  }
9350 
9351  priv->rates_mask = mask;
9352 
9353  /* Network configuration changed -- force [re]association */
9354  IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9355  if (!ipw_disassociate(priv))
9356  ipw_associate(priv);
9357 
9358  mutex_unlock(&priv->mutex);
9359  return 0;
9360 }
9361 
9362 static int ipw_wx_get_rate(struct net_device *dev,
9363  struct iw_request_info *info,
9364  union iwreq_data *wrqu, char *extra)
9365 {
9366  struct ipw_priv *priv = libipw_priv(dev);
9367  mutex_lock(&priv->mutex);
9368  wrqu->bitrate.value = priv->last_rate;
9369  wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9370  mutex_unlock(&priv->mutex);
9371  IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9372  return 0;
9373 }
9374 
9375 static int ipw_wx_set_rts(struct net_device *dev,
9376  struct iw_request_info *info,
9377  union iwreq_data *wrqu, char *extra)
9378 {
9379  struct ipw_priv *priv = libipw_priv(dev);
9380  mutex_lock(&priv->mutex);
9381  if (wrqu->rts.disabled || !wrqu->rts.fixed)
9383  else {
9384  if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9385  wrqu->rts.value > MAX_RTS_THRESHOLD) {
9386  mutex_unlock(&priv->mutex);
9387  return -EINVAL;
9388  }
9389  priv->rts_threshold = wrqu->rts.value;
9390  }
9391 
9392  ipw_send_rts_threshold(priv, priv->rts_threshold);
9393  mutex_unlock(&priv->mutex);
9394  IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9395  return 0;
9396 }
9397 
9398 static int ipw_wx_get_rts(struct net_device *dev,
9399  struct iw_request_info *info,
9400  union iwreq_data *wrqu, char *extra)
9401 {
9402  struct ipw_priv *priv = libipw_priv(dev);
9403  mutex_lock(&priv->mutex);
9404  wrqu->rts.value = priv->rts_threshold;
9405  wrqu->rts.fixed = 0; /* no auto select */
9406  wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9407  mutex_unlock(&priv->mutex);
9408  IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9409  return 0;
9410 }
9411 
9412 static int ipw_wx_set_txpow(struct net_device *dev,
9413  struct iw_request_info *info,
9414  union iwreq_data *wrqu, char *extra)
9415 {
9416  struct ipw_priv *priv = libipw_priv(dev);
9417  int err = 0;
9418 
9419  mutex_lock(&priv->mutex);
9420  if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9421  err = -EINPROGRESS;
9422  goto out;
9423  }
9424 
9425  if (!wrqu->power.fixed)
9426  wrqu->power.value = IPW_TX_POWER_DEFAULT;
9427 
9428  if (wrqu->power.flags != IW_TXPOW_DBM) {
9429  err = -EINVAL;
9430  goto out;
9431  }
9432 
9433  if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9434  (wrqu->power.value < IPW_TX_POWER_MIN)) {
9435  err = -EINVAL;
9436  goto out;
9437  }
9438 
9439  priv->tx_power = wrqu->power.value;
9440  err = ipw_set_tx_power(priv);
9441  out:
9442  mutex_unlock(&priv->mutex);
9443  return err;
9444 }
9445 
9446 static int ipw_wx_get_txpow(struct net_device *dev,
9447  struct iw_request_info *info,
9448  union iwreq_data *wrqu, char *extra)
9449 {
9450  struct ipw_priv *priv = libipw_priv(dev);
9451  mutex_lock(&priv->mutex);
9452  wrqu->power.value = priv->tx_power;
9453  wrqu->power.fixed = 1;
9454  wrqu->power.flags = IW_TXPOW_DBM;
9455  wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9456  mutex_unlock(&priv->mutex);
9457 
9458  IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9459  wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9460 
9461  return 0;
9462 }
9463 
9464 static int ipw_wx_set_frag(struct net_device *dev,
9465  struct iw_request_info *info,
9466  union iwreq_data *wrqu, char *extra)
9467 {
9468  struct ipw_priv *priv = libipw_priv(dev);
9469  mutex_lock(&priv->mutex);
9470  if (wrqu->frag.disabled || !wrqu->frag.fixed)
9471  priv->ieee->fts = DEFAULT_FTS;
9472  else {
9473  if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9474  wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9475  mutex_unlock(&priv->mutex);
9476  return -EINVAL;
9477  }
9478 
9479  priv->ieee->fts = wrqu->frag.value & ~0x1;
9480  }
9481 
9482  ipw_send_frag_threshold(priv, wrqu->frag.value);
9483  mutex_unlock(&priv->mutex);
9484  IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9485  return 0;
9486 }
9487 
9488 static int ipw_wx_get_frag(struct net_device *dev,
9489  struct iw_request_info *info,
9490  union iwreq_data *wrqu, char *extra)
9491 {
9492  struct ipw_priv *priv = libipw_priv(dev);
9493  mutex_lock(&priv->mutex);
9494  wrqu->frag.value = priv->ieee->fts;
9495  wrqu->frag.fixed = 0; /* no auto select */
9496  wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9497  mutex_unlock(&priv->mutex);
9498  IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9499 
9500  return 0;
9501 }
9502 
9503 static int ipw_wx_set_retry(struct net_device *dev,
9504  struct iw_request_info *info,
9505  union iwreq_data *wrqu, char *extra)
9506 {
9507  struct ipw_priv *priv = libipw_priv(dev);
9508 
9509  if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9510  return -EINVAL;
9511 
9512  if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9513  return 0;
9514 
9515  if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9516  return -EINVAL;
9517 
9518  mutex_lock(&priv->mutex);
9519  if (wrqu->retry.flags & IW_RETRY_SHORT)
9520  priv->short_retry_limit = (u8) wrqu->retry.value;
9521  else if (wrqu->retry.flags & IW_RETRY_LONG)
9522  priv->long_retry_limit = (u8) wrqu->retry.value;
9523  else {
9524  priv->short_retry_limit = (u8) wrqu->retry.value;
9525  priv->long_retry_limit = (u8) wrqu->retry.value;
9526  }
9527 
9528  ipw_send_retry_limit(priv, priv->short_retry_limit,
9529  priv->long_retry_limit);
9530  mutex_unlock(&priv->mutex);
9531  IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9532  priv->short_retry_limit, priv->long_retry_limit);
9533  return 0;
9534 }
9535 
9536 static int ipw_wx_get_retry(struct net_device *dev,
9537  struct iw_request_info *info,
9538  union iwreq_data *wrqu, char *extra)
9539 {
9540  struct ipw_priv *priv = libipw_priv(dev);
9541 
9542  mutex_lock(&priv->mutex);
9543  wrqu->retry.disabled = 0;
9544 
9545  if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9546  mutex_unlock(&priv->mutex);
9547  return -EINVAL;
9548  }
9549 
9550  if (wrqu->retry.flags & IW_RETRY_LONG) {
9551  wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9552  wrqu->retry.value = priv->long_retry_limit;
9553  } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9554  wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9555  wrqu->retry.value = priv->short_retry_limit;
9556  } else {
9557  wrqu->retry.flags = IW_RETRY_LIMIT;
9558  wrqu->retry.value = priv->short_retry_limit;
9559  }
9560  mutex_unlock(&priv->mutex);
9561 
9562  IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9563 
9564  return 0;
9565 }
9566 
9567 static int ipw_wx_set_scan(struct net_device *dev,
9568  struct iw_request_info *info,
9569  union iwreq_data *wrqu, char *extra)
9570 {
9571  struct ipw_priv *priv = libipw_priv(dev);
9572  struct iw_scan_req *req = (struct iw_scan_req *)extra;
9573  struct delayed_work *work = NULL;
9574 
9575  mutex_lock(&priv->mutex);
9576 
9577  priv->user_requested_scan = 1;
9578 
9579  if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9580  if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9581  int len = min((int)req->essid_len,
9582  (int)sizeof(priv->direct_scan_ssid));
9583  memcpy(priv->direct_scan_ssid, req->essid, len);
9584  priv->direct_scan_ssid_len = len;
9585  work = &priv->request_direct_scan;
9586  } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9587  work = &priv->request_passive_scan;
9588  }
9589  } else {
9590  /* Normal active broadcast scan */
9591  work = &priv->request_scan;
9592  }
9593 
9594  mutex_unlock(&priv->mutex);
9595 
9596  IPW_DEBUG_WX("Start scan\n");
9597 
9598  schedule_delayed_work(work, 0);
9599 
9600  return 0;
9601 }
9602 
9603 static int ipw_wx_get_scan(struct net_device *dev,
9604  struct iw_request_info *info,
9605  union iwreq_data *wrqu, char *extra)
9606 {
9607  struct ipw_priv *priv = libipw_priv(dev);
9608  return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9609 }
9610 
9611 static int ipw_wx_set_encode(struct net_device *dev,
9612  struct iw_request_info *info,
9613  union iwreq_data *wrqu, char *key)
9614 {
9615  struct ipw_priv *priv = libipw_priv(dev);
9616  int ret;
9617  u32 cap = priv->capability;
9618 
9619  mutex_lock(&priv->mutex);
9620  ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9621 
9622  /* In IBSS mode, we need to notify the firmware to update
9623  * the beacon info after we changed the capability. */
9624  if (cap != priv->capability &&
9625  priv->ieee->iw_mode == IW_MODE_ADHOC &&
9626  priv->status & STATUS_ASSOCIATED)
9627  ipw_disassociate(priv);
9628 
9629  mutex_unlock(&priv->mutex);
9630  return ret;
9631 }
9632 
9633 static int ipw_wx_get_encode(struct net_device *dev,
9634  struct iw_request_info *info,
9635  union iwreq_data *wrqu, char *key)
9636 {
9637  struct ipw_priv *priv = libipw_priv(dev);
9638  return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9639 }
9640 
9641 static int ipw_wx_set_power(struct net_device *dev,
9642  struct iw_request_info *info,
9643  union iwreq_data *wrqu, char *extra)
9644 {
9645  struct ipw_priv *priv = libipw_priv(dev);
9646  int err;
9647  mutex_lock(&priv->mutex);
9648  if (wrqu->power.disabled) {
9649  priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9650  err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9651  if (err) {
9652  IPW_DEBUG_WX("failed setting power mode.\n");
9653  mutex_unlock(&priv->mutex);
9654  return err;
9655  }
9656  IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9657  mutex_unlock(&priv->mutex);
9658  return 0;
9659  }
9660 
9661  switch (wrqu->power.flags & IW_POWER_MODE) {
9662  case IW_POWER_ON: /* If not specified */
9663  case IW_POWER_MODE: /* If set all mask */
9664  case IW_POWER_ALL_R: /* If explicitly state all */
9665  break;
9666  default: /* Otherwise we don't support it */
9667  IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9668  wrqu->power.flags);
9669  mutex_unlock(&priv->mutex);
9670  return -EOPNOTSUPP;
9671  }
9672 
9673  /* If the user hasn't specified a power management mode yet, default
9674  * to BATTERY */
9675  if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9677  else
9678  priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9679 
9680  err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9681  if (err) {
9682  IPW_DEBUG_WX("failed setting power mode.\n");
9683  mutex_unlock(&priv->mutex);
9684  return err;
9685  }
9686 
9687  IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9688  mutex_unlock(&priv->mutex);
9689  return 0;
9690 }
9691 
9692 static int ipw_wx_get_power(struct net_device *dev,
9693  struct iw_request_info *info,
9694  union iwreq_data *wrqu, char *extra)
9695 {
9696  struct ipw_priv *priv = libipw_priv(dev);
9697  mutex_lock(&priv->mutex);
9698  if (!(priv->power_mode & IPW_POWER_ENABLED))
9699  wrqu->power.disabled = 1;
9700  else
9701  wrqu->power.disabled = 0;
9702 
9703  mutex_unlock(&priv->mutex);
9704  IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9705 
9706  return 0;
9707 }
9708 
9709 static int ipw_wx_set_powermode(struct net_device *dev,
9710  struct iw_request_info *info,
9711  union iwreq_data *wrqu, char *extra)
9712 {
9713  struct ipw_priv *priv = libipw_priv(dev);
9714  int mode = *(int *)extra;
9715  int err;
9716 
9717  mutex_lock(&priv->mutex);
9718  if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9719  mode = IPW_POWER_AC;
9720 
9721  if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9722  err = ipw_send_power_mode(priv, mode);
9723  if (err) {
9724  IPW_DEBUG_WX("failed setting power mode.\n");
9725  mutex_unlock(&priv->mutex);
9726  return err;
9727  }
9728  priv->power_mode = IPW_POWER_ENABLED | mode;
9729  }
9730  mutex_unlock(&priv->mutex);
9731  return 0;
9732 }
9733 
9734 #define MAX_WX_STRING 80
9735 static int ipw_wx_get_powermode(struct net_device *dev,
9736  struct iw_request_info *info,
9737  union iwreq_data *wrqu, char *extra)
9738 {
9739  struct ipw_priv *priv = libipw_priv(dev);
9740  int level = IPW_POWER_LEVEL(priv->power_mode);
9741  char *p = extra;
9742 
9743  p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9744 
9745  switch (level) {
9746  case IPW_POWER_AC:
9747  p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9748  break;
9749  case IPW_POWER_BATTERY:
9750  p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9751  break;
9752  default:
9753  p += snprintf(p, MAX_WX_STRING - (p - extra),
9754  "(Timeout %dms, Period %dms)",
9755  timeout_duration[level - 1] / 1000,
9756  period_duration[level - 1] / 1000);
9757  }
9758 
9759  if (!(priv->power_mode & IPW_POWER_ENABLED))
9760  p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9761 
9762  wrqu->data.length = p - extra + 1;
9763 
9764  return 0;
9765 }
9766 
9767 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9768  struct iw_request_info *info,
9769  union iwreq_data *wrqu, char *extra)
9770 {
9771  struct ipw_priv *priv = libipw_priv(dev);
9772  int mode = *(int *)extra;
9773  u8 band = 0, modulation = 0;
9774 
9775  if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9776  IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9777  return -EINVAL;
9778  }
9779  mutex_lock(&priv->mutex);
9780  if (priv->adapter == IPW_2915ABG) {
9781  priv->ieee->abg_true = 1;
9782  if (mode & IEEE_A) {
9783  band |= LIBIPW_52GHZ_BAND;
9784  modulation |= LIBIPW_OFDM_MODULATION;
9785  } else
9786  priv->ieee->abg_true = 0;
9787  } else {
9788  if (mode & IEEE_A) {
9789  IPW_WARNING("Attempt to set 2200BG into "
9790  "802.11a mode\n");
9791  mutex_unlock(&priv->mutex);
9792  return -EINVAL;
9793  }
9794 
9795  priv->ieee->abg_true = 0;
9796  }
9797 
9798  if (mode & IEEE_B) {
9799  band |= LIBIPW_24GHZ_BAND;
9800  modulation |= LIBIPW_CCK_MODULATION;
9801  } else
9802  priv->ieee->abg_true = 0;
9803 
9804  if (mode & IEEE_G) {
9805  band |= LIBIPW_24GHZ_BAND;
9806  modulation |= LIBIPW_OFDM_MODULATION;
9807  } else
9808  priv->ieee->abg_true = 0;
9809 
9810  priv->ieee->mode = mode;
9811  priv->ieee->freq_band = band;
9812  priv->ieee->modulation = modulation;
9813  init_supported_rates(priv, &priv->rates);
9814 
9815  /* Network configuration changed -- force [re]association */
9816  IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9817  if (!ipw_disassociate(priv)) {
9818  ipw_send_supported_rates(priv, &priv->rates);
9819  ipw_associate(priv);
9820  }
9821 
9822  /* Update the band LEDs */
9823  ipw_led_band_on(priv);
9824 
9825  IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9826  mode & IEEE_A ? 'a' : '.',
9827  mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9828  mutex_unlock(&priv->mutex);
9829  return 0;
9830 }
9831 
9832 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9833  struct iw_request_info *info,
9834  union iwreq_data *wrqu, char *extra)
9835 {
9836  struct ipw_priv *priv = libipw_priv(dev);
9837  mutex_lock(&priv->mutex);
9838  switch (priv->ieee->mode) {
9839  case IEEE_A:
9840  strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9841  break;
9842  case IEEE_B:
9843  strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9844  break;
9845  case IEEE_A | IEEE_B:
9846  strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9847  break;
9848  case IEEE_G:
9849  strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9850  break;
9851  case IEEE_A | IEEE_G:
9852  strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9853  break;
9854  case IEEE_B | IEEE_G:
9855  strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9856  break;
9857  case IEEE_A | IEEE_B | IEEE_G:
9858  strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9859  break;
9860  default:
9861  strncpy(extra, "unknown", MAX_WX_STRING);
9862  break;
9863  }
9864 
9865  IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9866 
9867  wrqu->data.length = strlen(extra) + 1;
9868  mutex_unlock(&priv->mutex);
9869 
9870  return 0;
9871 }
9872 
9873 static int ipw_wx_set_preamble(struct net_device *dev,
9874  struct iw_request_info *info,
9875  union iwreq_data *wrqu, char *extra)
9876 {
9877  struct ipw_priv *priv = libipw_priv(dev);
9878  int mode = *(int *)extra;
9879  mutex_lock(&priv->mutex);
9880  /* Switching from SHORT -> LONG requires a disassociation */
9881  if (mode == 1) {
9882  if (!(priv->config & CFG_PREAMBLE_LONG)) {
9883  priv->config |= CFG_PREAMBLE_LONG;
9884 
9885  /* Network configuration changed -- force [re]association */
9887  ("[re]association triggered due to preamble change.\n");
9888  if (!ipw_disassociate(priv))
9889  ipw_associate(priv);
9890  }
9891  goto done;
9892  }
9893 
9894  if (mode == 0) {
9895  priv->config &= ~CFG_PREAMBLE_LONG;
9896  goto done;
9897  }
9898  mutex_unlock(&priv->mutex);
9899  return -EINVAL;
9900 
9901  done:
9902  mutex_unlock(&priv->mutex);
9903  return 0;
9904 }
9905 
9906 static int ipw_wx_get_preamble(struct net_device *dev,
9907  struct iw_request_info *info,
9908  union iwreq_data *wrqu, char *extra)
9909 {
9910  struct ipw_priv *priv = libipw_priv(dev);
9911  mutex_lock(&priv->mutex);
9912  if (priv->config & CFG_PREAMBLE_LONG)
9913  snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9914  else
9915  snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9916  mutex_unlock(&priv->mutex);
9917  return 0;
9918 }
9919 
9920 #ifdef CONFIG_IPW2200_MONITOR
9921 static int ipw_wx_set_monitor(struct net_device *dev,
9922  struct iw_request_info *info,
9923  union iwreq_data *wrqu, char *extra)
9924 {
9925  struct ipw_priv *priv = libipw_priv(dev);
9926  int *parms = (int *)extra;
9927  int enable = (parms[0] > 0);
9928  mutex_lock(&priv->mutex);
9929  IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9930  if (enable) {
9931  if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9932 #ifdef CONFIG_IPW2200_RADIOTAP
9933  priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9934 #else
9935  priv->net_dev->type = ARPHRD_IEEE80211;
9936 #endif
9938  }
9939 
9940  ipw_set_channel(priv, parms[1]);
9941  } else {
9942  if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9943  mutex_unlock(&priv->mutex);
9944  return 0;
9945  }
9946  priv->net_dev->type = ARPHRD_ETHER;
9948  }
9949  mutex_unlock(&priv->mutex);
9950  return 0;
9951 }
9952 
9953 #endif /* CONFIG_IPW2200_MONITOR */
9954 
9955 static int ipw_wx_reset(struct net_device *dev,
9956  struct iw_request_info *info,
9957  union iwreq_data *wrqu, char *extra)
9958 {
9959  struct ipw_priv *priv = libipw_priv(dev);
9960  IPW_DEBUG_WX("RESET\n");
9962  return 0;
9963 }
9964 
9965 static int ipw_wx_sw_reset(struct net_device *dev,
9966  struct iw_request_info *info,
9967  union iwreq_data *wrqu, char *extra)
9968 {
9969  struct ipw_priv *priv = libipw_priv(dev);
9970  union iwreq_data wrqu_sec = {
9971  .encoding = {
9972  .flags = IW_ENCODE_DISABLED,
9973  },
9974  };
9975  int ret;
9976 
9977  IPW_DEBUG_WX("SW_RESET\n");
9978 
9979  mutex_lock(&priv->mutex);
9980 
9981  ret = ipw_sw_reset(priv, 2);
9982  if (!ret) {
9983  free_firmware();
9984  ipw_adapter_restart(priv);
9985  }
9986 
9987  /* The SW reset bit might have been toggled on by the 'disable'
9988  * module parameter, so take appropriate action */
9989  ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9990 
9991  mutex_unlock(&priv->mutex);
9992  libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9993  mutex_lock(&priv->mutex);
9994 
9995  if (!(priv->status & STATUS_RF_KILL_MASK)) {
9996  /* Configuration likely changed -- force [re]association */
9997  IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9998  "reset.\n");
9999  if (!ipw_disassociate(priv))
10000  ipw_associate(priv);
10001  }
10002 
10003  mutex_unlock(&priv->mutex);
10004 
10005  return 0;
10006 }
10007 
10008 /* Rebase the WE IOCTLs to zero for the handler array */
10009 static iw_handler ipw_wx_handlers[] = {
10011  IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
10012  IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
10013  IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
10014  IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
10015  IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
10016  IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
10017  IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
10018  IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
10019  IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
10020  IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
10021  IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
10022  IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
10023  IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
10024  IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
10025  IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
10026  IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
10027  IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
10028  IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
10029  IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
10030  IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
10031  IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
10032  IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
10033  IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
10034  IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
10035  IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
10036  IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
10037  IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
10038  IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
10039  IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
10044  IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
10045  IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
10046  IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
10047  IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
10048  IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
10049  IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
10050  IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
10051 };
10052 
10053 enum {
10062 #ifdef CONFIG_IPW2200_MONITOR
10063  IPW_PRIV_SET_MONITOR,
10064 #endif
10065 };
10066 
10067 static struct iw_priv_args ipw_priv_args[] = {
10068  {
10069  .cmd = IPW_PRIV_SET_POWER,
10070  .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10071  .name = "set_power"},
10072  {
10073  .cmd = IPW_PRIV_GET_POWER,
10075  .name = "get_power"},
10076  {
10077  .cmd = IPW_PRIV_SET_MODE,
10078  .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10079  .name = "set_mode"},
10080  {
10081  .cmd = IPW_PRIV_GET_MODE,
10083  .name = "get_mode"},
10084  {
10085  .cmd = IPW_PRIV_SET_PREAMBLE,
10086  .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10087  .name = "set_preamble"},
10088  {
10089  .cmd = IPW_PRIV_GET_PREAMBLE,
10091  .name = "get_preamble"},
10092  {
10094  IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10095  {
10097  IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10098 #ifdef CONFIG_IPW2200_MONITOR
10099  {
10100  IPW_PRIV_SET_MONITOR,
10101  IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10102 #endif /* CONFIG_IPW2200_MONITOR */
10103 };
10104 
10105 static iw_handler ipw_priv_handler[] = {
10106  ipw_wx_set_powermode,
10107  ipw_wx_get_powermode,
10108  ipw_wx_set_wireless_mode,
10109  ipw_wx_get_wireless_mode,
10110  ipw_wx_set_preamble,
10111  ipw_wx_get_preamble,
10112  ipw_wx_reset,
10113  ipw_wx_sw_reset,
10114 #ifdef CONFIG_IPW2200_MONITOR
10115  ipw_wx_set_monitor,
10116 #endif
10117 };
10118 
10119 static struct iw_handler_def ipw_wx_handler_def = {
10120  .standard = ipw_wx_handlers,
10121  .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10122  .num_private = ARRAY_SIZE(ipw_priv_handler),
10123  .num_private_args = ARRAY_SIZE(ipw_priv_args),
10124  .private = ipw_priv_handler,
10125  .private_args = ipw_priv_args,
10126  .get_wireless_stats = ipw_get_wireless_stats,
10127 };
10128 
10129 /*
10130  * Get wireless statistics.
10131  * Called by /proc/net/wireless
10132  * Also called by SIOCGIWSTATS
10133  */
10134 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10135 {
10136  struct ipw_priv *priv = libipw_priv(dev);
10137  struct iw_statistics *wstats;
10138 
10139  wstats = &priv->wstats;
10140 
10141  /* if hw is disabled, then ipw_get_ordinal() can't be called.
10142  * netdev->get_wireless_stats seems to be called before fw is
10143  * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10144  * and associated; if not associcated, the values are all meaningless
10145  * anyway, so set them all to NULL and INVALID */
10146  if (!(priv->status & STATUS_ASSOCIATED)) {
10147  wstats->miss.beacon = 0;
10148  wstats->discard.retries = 0;
10149  wstats->qual.qual = 0;
10150  wstats->qual.level = 0;
10151  wstats->qual.noise = 0;
10152  wstats->qual.updated = 7;
10153  wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10155  return wstats;
10156  }
10157 
10158  wstats->qual.qual = priv->quality;
10159  wstats->qual.level = priv->exp_avg_rssi;
10160  wstats->qual.noise = priv->exp_avg_noise;
10161  wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10163 
10164  wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10165  wstats->discard.retries = priv->last_tx_failures;
10166  wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10167 
10168 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10169  goto fail_get_ordinal;
10170  wstats->discard.retries += tx_retry; */
10171 
10172  return wstats;
10173 }
10174 
10175 /* net device stuff */
10176 
10177 static void init_sys_config(struct ipw_sys_config *sys_config)
10178 {
10179  memset(sys_config, 0, sizeof(struct ipw_sys_config));
10180  sys_config->bt_coexistence = 0;
10181  sys_config->answer_broadcast_ssid_probe = 0;
10182  sys_config->accept_all_data_frames = 0;
10183  sys_config->accept_non_directed_frames = 1;
10184  sys_config->exclude_unicast_unencrypted = 0;
10185  sys_config->disable_unicast_decryption = 1;
10186  sys_config->exclude_multicast_unencrypted = 0;
10187  sys_config->disable_multicast_decryption = 1;
10190  sys_config->antenna_diversity = antenna;
10191  sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10192  sys_config->dot11g_auto_detection = 0;
10193  sys_config->enable_cts_to_self = 0;
10194  sys_config->bt_coexist_collision_thr = 0;
10195  sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10196  sys_config->silence_threshold = 0x1e;
10197 }
10198 
10199 static int ipw_net_open(struct net_device *dev)
10200 {
10201  IPW_DEBUG_INFO("dev->open\n");
10202  netif_start_queue(dev);
10203  return 0;
10204 }
10205 
10206 static int ipw_net_stop(struct net_device *dev)
10207 {
10208  IPW_DEBUG_INFO("dev->close\n");
10209  netif_stop_queue(dev);
10210  return 0;
10211 }
10212 
10213 /*
10214 todo:
10215 
10216 modify to send one tfd per fragment instead of using chunking. otherwise
10217 we need to heavily modify the libipw_skb_to_txb.
10218 */
10219 
10220 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10221  int pri)
10222 {
10223  struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10224  txb->fragments[0]->data;
10225  int i = 0;
10226  struct tfd_frame *tfd;
10227 #ifdef CONFIG_IPW2200_QOS
10228  int tx_id = ipw_get_tx_queue_number(priv, pri);
10229  struct clx2_tx_queue *txq = &priv->txq[tx_id];
10230 #else
10231  struct clx2_tx_queue *txq = &priv->txq[0];
10232 #endif
10233  struct clx2_queue *q = &txq->q;
10234  u8 id, hdr_len, unicast;
10235  int fc;
10236 
10237  if (!(priv->status & STATUS_ASSOCIATED))
10238  goto drop;
10239 
10240  hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10241  switch (priv->ieee->iw_mode) {
10242  case IW_MODE_ADHOC:
10243  unicast = !is_multicast_ether_addr(hdr->addr1);
10244  id = ipw_find_station(priv, hdr->addr1);
10245  if (id == IPW_INVALID_STATION) {
10246  id = ipw_add_station(priv, hdr->addr1);
10247  if (id == IPW_INVALID_STATION) {
10248  IPW_WARNING("Attempt to send data to "
10249  "invalid cell: %pM\n",
10250  hdr->addr1);
10251  goto drop;
10252  }
10253  }
10254  break;
10255 
10256  case IW_MODE_INFRA:
10257  default:
10258  unicast = !is_multicast_ether_addr(hdr->addr3);
10259  id = 0;
10260  break;
10261  }
10262 
10263  tfd = &txq->bd[q->first_empty];
10264  txq->txb[q->first_empty] = txb;
10265  memset(tfd, 0, sizeof(*tfd));
10266  tfd->u.data.station_number = id;
10267 
10268  tfd->control_flags.message_type = TX_FRAME_TYPE;
10269  tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10270 
10271  tfd->u.data.cmd_id = DINO_CMD_TX;
10272  tfd->u.data.len = cpu_to_le16(txb->payload_size);
10273 
10274  if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10275  tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10276  else
10277  tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10278 
10279  if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10280  tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10281 
10282  fc = le16_to_cpu(hdr->frame_ctl);
10284 
10285  memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10286 
10287  if (likely(unicast))
10288  tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10289 
10290  if (txb->encrypted && !priv->ieee->host_encrypt) {
10291  switch (priv->ieee->sec.level) {
10292  case SEC_LEVEL_3:
10293  tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10294  cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10295  /* XXX: ACK flag must be set for CCMP even if it
10296  * is a multicast/broadcast packet, because CCMP
10297  * group communication encrypted by GTK is
10298  * actually done by the AP. */
10299  if (!unicast)
10300  tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10301 
10302  tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10303  tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10304  tfd->u.data.key_index = 0;
10305  tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10306  break;
10307  case SEC_LEVEL_2:
10308  tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10309  cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10310  tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10312  tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10313  break;
10314  case SEC_LEVEL_1:
10315  tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10316  cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10317  tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10318  if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10319  40)
10320  tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10321  else
10322  tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10323  break;
10324  case SEC_LEVEL_0:
10325  break;
10326  default:
10327  printk(KERN_ERR "Unknown security level %d\n",
10328  priv->ieee->sec.level);
10329  break;
10330  }
10331  } else
10332  /* No hardware encryption */
10333  tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10334 
10335 #ifdef CONFIG_IPW2200_QOS
10336  if (fc & IEEE80211_STYPE_QOS_DATA)
10337  ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10338 #endif /* CONFIG_IPW2200_QOS */
10339 
10340  /* payload */
10341  tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10342  txb->nr_frags));
10343  IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10344  txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10345  for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10346  IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10347  i, le32_to_cpu(tfd->u.data.num_chunks),
10348  txb->fragments[i]->len - hdr_len);
10349  IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10350  i, tfd->u.data.num_chunks,
10351  txb->fragments[i]->len - hdr_len);
10352  printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10353  txb->fragments[i]->len - hdr_len);
10354 
10355  tfd->u.data.chunk_ptr[i] =
10356  cpu_to_le32(pci_map_single
10357  (priv->pci_dev,
10358  txb->fragments[i]->data + hdr_len,
10359  txb->fragments[i]->len - hdr_len,
10360  PCI_DMA_TODEVICE));
10361  tfd->u.data.chunk_len[i] =
10362  cpu_to_le16(txb->fragments[i]->len - hdr_len);
10363  }
10364 
10365  if (i != txb->nr_frags) {
10366  struct sk_buff *skb;
10367  u16 remaining_bytes = 0;
10368  int j;
10369 
10370  for (j = i; j < txb->nr_frags; j++)
10371  remaining_bytes += txb->fragments[j]->len - hdr_len;
10372 
10373  printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10374  remaining_bytes);
10375  skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10376  if (skb != NULL) {
10377  tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10378  for (j = i; j < txb->nr_frags; j++) {
10379  int size = txb->fragments[j]->len - hdr_len;
10380 
10381  printk(KERN_INFO "Adding frag %d %d...\n",
10382  j, size);
10383  memcpy(skb_put(skb, size),
10384  txb->fragments[j]->data + hdr_len, size);
10385  }
10386  dev_kfree_skb_any(txb->fragments[i]);
10387  txb->fragments[i] = skb;
10388  tfd->u.data.chunk_ptr[i] =
10389  cpu_to_le32(pci_map_single
10390  (priv->pci_dev, skb->data,
10391  remaining_bytes,
10392  PCI_DMA_TODEVICE));
10393 
10394  le32_add_cpu(&tfd->u.data.num_chunks, 1);
10395  }
10396  }
10397 
10398  /* kick DMA */
10399  q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10400  ipw_write32(priv, q->reg_w, q->first_empty);
10401 
10402  if (ipw_tx_queue_space(q) < q->high_mark)
10403  netif_stop_queue(priv->net_dev);
10404 
10405  return NETDEV_TX_OK;
10406 
10407  drop:
10408  IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10409  libipw_txb_free(txb);
10410  return NETDEV_TX_OK;
10411 }
10412 
10413 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10414 {
10415  struct ipw_priv *priv = libipw_priv(dev);
10416 #ifdef CONFIG_IPW2200_QOS
10417  int tx_id = ipw_get_tx_queue_number(priv, pri);
10418  struct clx2_tx_queue *txq = &priv->txq[tx_id];
10419 #else
10420  struct clx2_tx_queue *txq = &priv->txq[0];
10421 #endif /* CONFIG_IPW2200_QOS */
10422 
10423  if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10424  return 1;
10425 
10426  return 0;
10427 }
10428 
10429 #ifdef CONFIG_IPW2200_PROMISCUOUS
10430 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10431  struct libipw_txb *txb)
10432 {
10433  struct libipw_rx_stats dummystats;
10434  struct ieee80211_hdr *hdr;
10435  u8 n;
10436  u16 filter = priv->prom_priv->filter;
10437  int hdr_only = 0;
10438 
10439  if (filter & IPW_PROM_NO_TX)
10440  return;
10441 
10442  memset(&dummystats, 0, sizeof(dummystats));
10443 
10444  /* Filtering of fragment chains is done against the first fragment */
10445  hdr = (void *)txb->fragments[0]->data;
10446  if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10447  if (filter & IPW_PROM_NO_MGMT)
10448  return;
10449  if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10450  hdr_only = 1;
10451  } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10452  if (filter & IPW_PROM_NO_CTL)
10453  return;
10454  if (filter & IPW_PROM_CTL_HEADER_ONLY)
10455  hdr_only = 1;
10456  } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10457  if (filter & IPW_PROM_NO_DATA)
10458  return;
10459  if (filter & IPW_PROM_DATA_HEADER_ONLY)
10460  hdr_only = 1;
10461  }
10462 
10463  for(n=0; n<txb->nr_frags; ++n) {
10464  struct sk_buff *src = txb->fragments[n];
10465  struct sk_buff *dst;
10466  struct ieee80211_radiotap_header *rt_hdr;
10467  int len;
10468 
10469  if (hdr_only) {
10470  hdr = (void *)src->data;
10471  len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10472  } else
10473  len = src->len;
10474 
10475  dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10476  if (!dst)
10477  continue;
10478 
10479  rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10480 
10482  rt_hdr->it_pad = 0;
10483  rt_hdr->it_present = 0; /* after all, it's just an idea */
10485 
10486  *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10487  ieee80211chan2mhz(priv->channel));
10488  if (priv->channel > 14) /* 802.11a */
10489  *(__le16*)skb_put(dst, sizeof(u16)) =
10492  else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10493  *(__le16*)skb_put(dst, sizeof(u16)) =
10496  else /* 802.11g */
10497  *(__le16*)skb_put(dst, sizeof(u16)) =
10500 
10501  rt_hdr->it_len = cpu_to_le16(dst->len);
10502 
10503  skb_copy_from_linear_data(src, skb_put(dst, len), len);
10504 
10505  if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10506  dev_kfree_skb_any(dst);
10507  }
10508 }
10509 #endif
10510 
10511 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10512  struct net_device *dev, int pri)
10513 {
10514  struct ipw_priv *priv = libipw_priv(dev);
10515  unsigned long flags;
10516  netdev_tx_t ret;
10517 
10518  IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10519  spin_lock_irqsave(&priv->lock, flags);
10520 
10521 #ifdef CONFIG_IPW2200_PROMISCUOUS
10522  if (rtap_iface && netif_running(priv->prom_net_dev))
10523  ipw_handle_promiscuous_tx(priv, txb);
10524 #endif
10525 
10526  ret = ipw_tx_skb(priv, txb, pri);
10527  if (ret == NETDEV_TX_OK)
10528  __ipw_led_activity_on(priv);
10529  spin_unlock_irqrestore(&priv->lock, flags);
10530 
10531  return ret;
10532 }
10533 
10534 static void ipw_net_set_multicast_list(struct net_device *dev)
10535 {
10536 
10537 }
10538 
10539 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10540 {
10541  struct ipw_priv *priv = libipw_priv(dev);
10542  struct sockaddr *addr = p;
10543 
10544  if (!is_valid_ether_addr(addr->sa_data))
10545  return -EADDRNOTAVAIL;
10546  mutex_lock(&priv->mutex);
10547  priv->config |= CFG_CUSTOM_MAC;
10548  memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10549  printk(KERN_INFO "%s: Setting MAC to %pM\n",
10550  priv->net_dev->name, priv->mac_addr);
10552  mutex_unlock(&priv->mutex);
10553  return 0;
10554 }
10555 
10556 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10557  struct ethtool_drvinfo *info)
10558 {
10559  struct ipw_priv *p = libipw_priv(dev);
10560  char vers[64];
10561  char date[32];
10562  u32 len;
10563 
10564  strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10565  strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10566 
10567  len = sizeof(vers);
10568  ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10569  len = sizeof(date);
10570  ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10571 
10572  snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10573  vers, date);
10574  strlcpy(info->bus_info, pci_name(p->pci_dev),
10575  sizeof(info->bus_info));
10577 }
10578 
10579 static u32 ipw_ethtool_get_link(struct net_device *dev)
10580 {
10581  struct ipw_priv *priv = libipw_priv(dev);
10582  return (priv->status & STATUS_ASSOCIATED) != 0;
10583 }
10584 
10585 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10586 {
10587  return IPW_EEPROM_IMAGE_SIZE;
10588 }
10589 
10590 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10591  struct ethtool_eeprom *eeprom, u8 * bytes)
10592 {
10593  struct ipw_priv *p = libipw_priv(dev);
10594 
10595  if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10596  return -EINVAL;
10597  mutex_lock(&p->mutex);
10598  memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10599  mutex_unlock(&p->mutex);
10600  return 0;
10601 }
10602 
10603 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10604  struct ethtool_eeprom *eeprom, u8 * bytes)
10605 {
10606  struct ipw_priv *p = libipw_priv(dev);
10607  int i;
10608 
10609  if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10610  return -EINVAL;
10611  mutex_lock(&p->mutex);
10612  memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10613  for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10614  ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10615  mutex_unlock(&p->mutex);
10616  return 0;
10617 }
10618 
10619 static const struct ethtool_ops ipw_ethtool_ops = {
10620  .get_link = ipw_ethtool_get_link,
10621  .get_drvinfo = ipw_ethtool_get_drvinfo,
10622  .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10623  .get_eeprom = ipw_ethtool_get_eeprom,
10624  .set_eeprom = ipw_ethtool_set_eeprom,
10625 };
10626 
10627 static irqreturn_t ipw_isr(int irq, void *data)
10628 {
10629  struct ipw_priv *priv = data;
10630  u32 inta, inta_mask;
10631 
10632  if (!priv)
10633  return IRQ_NONE;
10634 
10635  spin_lock(&priv->irq_lock);
10636 
10637  if (!(priv->status & STATUS_INT_ENABLED)) {
10638  /* IRQ is disabled */
10639  goto none;
10640  }
10641 
10642  inta = ipw_read32(priv, IPW_INTA_RW);
10643  inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10644 
10645  if (inta == 0xFFFFFFFF) {
10646  /* Hardware disappeared */
10647  IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10648  goto none;
10649  }
10650 
10651  if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10652  /* Shared interrupt */
10653  goto none;
10654  }
10655 
10656  /* tell the device to stop sending interrupts */
10657  __ipw_disable_interrupts(priv);
10658 
10659  /* ack current interrupts */
10660  inta &= (IPW_INTA_MASK_ALL & inta_mask);
10661  ipw_write32(priv, IPW_INTA_RW, inta);
10662 
10663  /* Cache INTA value for our tasklet */
10664  priv->isr_inta = inta;
10665 
10666  tasklet_schedule(&priv->irq_tasklet);
10667 
10668  spin_unlock(&priv->irq_lock);
10669 
10670  return IRQ_HANDLED;
10671  none:
10672  spin_unlock(&priv->irq_lock);
10673  return IRQ_NONE;
10674 }
10675 
10676 static void ipw_rf_kill(void *adapter)
10677 {
10678  struct ipw_priv *priv = adapter;
10679  unsigned long flags;
10680 
10681  spin_lock_irqsave(&priv->lock, flags);
10682 
10683  if (rf_kill_active(priv)) {
10684  IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10685  schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10686  goto exit_unlock;
10687  }
10688 
10689  /* RF Kill is now disabled, so bring the device back up */
10690 
10691  if (!(priv->status & STATUS_RF_KILL_MASK)) {
10692  IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10693  "device\n");
10694 
10695  /* we can not do an adapter restart while inside an irq lock */
10697  } else
10698  IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10699  "enabled\n");
10700 
10701  exit_unlock:
10702  spin_unlock_irqrestore(&priv->lock, flags);
10703 }
10704 
10705 static void ipw_bg_rf_kill(struct work_struct *work)
10706 {
10707  struct ipw_priv *priv =
10708  container_of(work, struct ipw_priv, rf_kill.work);
10709  mutex_lock(&priv->mutex);
10710  ipw_rf_kill(priv);
10711  mutex_unlock(&priv->mutex);
10712 }
10713 
10714 static void ipw_link_up(struct ipw_priv *priv)
10715 {
10716  priv->last_seq_num = -1;
10717  priv->last_frag_num = -1;
10718  priv->last_packet_time = 0;
10719 
10720  netif_carrier_on(priv->net_dev);
10721 
10726  ipw_reset_stats(priv);
10727  /* Ensure the rate is updated immediately */
10728  priv->last_rate = ipw_get_current_rate(priv);
10729  ipw_gather_stats(priv);
10730  ipw_led_link_up(priv);
10731  notify_wx_assoc_event(priv);
10732 
10733  if (priv->config & CFG_BACKGROUND_SCAN)
10735 }
10736 
10737 static void ipw_bg_link_up(struct work_struct *work)
10738 {
10739  struct ipw_priv *priv =
10740  container_of(work, struct ipw_priv, link_up);
10741  mutex_lock(&priv->mutex);
10742  ipw_link_up(priv);
10743  mutex_unlock(&priv->mutex);
10744 }
10745 
10746 static void ipw_link_down(struct ipw_priv *priv)
10747 {
10748  ipw_led_link_down(priv);
10749  netif_carrier_off(priv->net_dev);
10750  notify_wx_assoc_event(priv);
10751 
10752  /* Cancel any queued work ... */
10758 
10759  ipw_reset_stats(priv);
10760 
10761  if (!(priv->status & STATUS_EXIT_PENDING)) {
10762  /* Queue up another scan... */
10764  } else
10766 }
10767 
10768 static void ipw_bg_link_down(struct work_struct *work)
10769 {
10770  struct ipw_priv *priv =
10771  container_of(work, struct ipw_priv, link_down);
10772  mutex_lock(&priv->mutex);
10773  ipw_link_down(priv);
10774  mutex_unlock(&priv->mutex);
10775 }
10776 
10777 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10778 {
10779  int ret = 0;
10780 
10783 
10784  INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10785  INIT_WORK(&priv->associate, ipw_bg_associate);
10786  INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10787  INIT_WORK(&priv->system_config, ipw_system_config);
10788  INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10789  INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10790  INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10791  INIT_WORK(&priv->up, ipw_bg_up);
10792  INIT_WORK(&priv->down, ipw_bg_down);
10793  INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10794  INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10795  INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10796  INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10797  INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10798  INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10799  INIT_WORK(&priv->roam, ipw_bg_roam);
10800  INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10801  INIT_WORK(&priv->link_up, ipw_bg_link_up);
10802  INIT_WORK(&priv->link_down, ipw_bg_link_down);
10803  INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10804  INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10805  INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10806  INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10807 
10808 #ifdef CONFIG_IPW2200_QOS
10809  INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10810 #endif /* CONFIG_IPW2200_QOS */
10811 
10812  tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10813  ipw_irq_tasklet, (unsigned long)priv);
10814 
10815  return ret;
10816 }
10817 
10818 static void shim__set_security(struct net_device *dev,
10819  struct libipw_security *sec)
10820 {
10821  struct ipw_priv *priv = libipw_priv(dev);
10822  int i;
10823  for (i = 0; i < 4; i++) {
10824  if (sec->flags & (1 << i)) {
10825  priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10826  priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10827  if (sec->key_sizes[i] == 0)
10828  priv->ieee->sec.flags &= ~(1 << i);
10829  else {
10830  memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10831  sec->key_sizes[i]);
10832  priv->ieee->sec.flags |= (1 << i);
10833  }
10835  } else if (sec->level != SEC_LEVEL_1)
10836  priv->ieee->sec.flags &= ~(1 << i);
10837  }
10838 
10839  if (sec->flags & SEC_ACTIVE_KEY) {
10840  if (sec->active_key <= 3) {
10841  priv->ieee->sec.active_key = sec->active_key;
10842  priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10843  } else
10844  priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10846  } else
10847  priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10848 
10849  if ((sec->flags & SEC_AUTH_MODE) &&
10850  (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10851  priv->ieee->sec.auth_mode = sec->auth_mode;
10852  priv->ieee->sec.flags |= SEC_AUTH_MODE;
10853  if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10854  priv->capability |= CAP_SHARED_KEY;
10855  else
10856  priv->capability &= ~CAP_SHARED_KEY;
10858  }
10859 
10860  if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10861  priv->ieee->sec.flags |= SEC_ENABLED;
10862  priv->ieee->sec.enabled = sec->enabled;
10864  if (sec->enabled)
10865  priv->capability |= CAP_PRIVACY_ON;
10866  else
10867  priv->capability &= ~CAP_PRIVACY_ON;
10868  }
10869 
10870  if (sec->flags & SEC_ENCRYPT)
10871  priv->ieee->sec.encrypt = sec->encrypt;
10872 
10873  if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10874  priv->ieee->sec.level = sec->level;
10875  priv->ieee->sec.flags |= SEC_LEVEL;
10877  }
10878 
10879  if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10880  ipw_set_hwcrypto_keys(priv);
10881 
10882  /* To match current functionality of ipw2100 (which works well w/
10883  * various supplicants, we don't force a disassociate if the
10884  * privacy capability changes ... */
10885 #if 0
10886  if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10887  (((priv->assoc_request.capability &
10889  (!(priv->assoc_request.capability &
10891  IPW_DEBUG_ASSOC("Disassociating due to capability "
10892  "change.\n");
10893  ipw_disassociate(priv);
10894  }
10895 #endif
10896 }
10897 
10898 static int init_supported_rates(struct ipw_priv *priv,
10899  struct ipw_supported_rates *rates)
10900 {
10901  /* TODO: Mask out rates based on priv->rates_mask */
10902 
10903  memset(rates, 0, sizeof(*rates));
10904  /* configure supported rates */
10905  switch (priv->ieee->freq_band) {
10906  case LIBIPW_52GHZ_BAND:
10907  rates->ieee_mode = IPW_A_MODE;
10908  rates->purpose = IPW_RATE_CAPABILITIES;
10909  ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10911  break;
10912 
10913  default: /* Mixed or 2.4Ghz */
10914  rates->ieee_mode = IPW_G_MODE;
10915  rates->purpose = IPW_RATE_CAPABILITIES;
10916  ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10918  if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10919  ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10921  }
10922  break;
10923  }
10924 
10925  return 0;
10926 }
10927 
10928 static int ipw_config(struct ipw_priv *priv)
10929 {
10930  /* This is only called from ipw_up, which resets/reloads the firmware
10931  so, we don't need to first disable the card before we configure
10932  it */
10933  if (ipw_set_tx_power(priv))
10934  goto error;
10935 
10936  /* initialize adapter address */
10937  if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10938  goto error;
10939 
10940  /* set basic system config settings */
10941  init_sys_config(&priv->sys_config);
10942 
10943  /* Support Bluetooth if we have BT h/w on board, and user wants to.
10944  * Does not support BT priority yet (don't abort or defer our Tx) */
10945  if (bt_coexist) {
10946  unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10947 
10948  if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10949  priv->sys_config.bt_coexistence
10951  if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10952  priv->sys_config.bt_coexistence
10954  }
10955 
10956 #ifdef CONFIG_IPW2200_PROMISCUOUS
10957  if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10958  priv->sys_config.accept_all_data_frames = 1;
10959  priv->sys_config.accept_non_directed_frames = 1;
10960  priv->sys_config.accept_all_mgmt_bcpr = 1;
10961  priv->sys_config.accept_all_mgmt_frames = 1;
10962  }
10963 #endif
10964 
10965  if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10966  priv->sys_config.answer_broadcast_ssid_probe = 1;
10967  else
10968  priv->sys_config.answer_broadcast_ssid_probe = 0;
10969 
10970  if (ipw_send_system_config(priv))
10971  goto error;
10972 
10973  init_supported_rates(priv, &priv->rates);
10974  if (ipw_send_supported_rates(priv, &priv->rates))
10975  goto error;
10976 
10977  /* Set request-to-send threshold */
10978  if (priv->rts_threshold) {
10979  if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10980  goto error;
10981  }
10982 #ifdef CONFIG_IPW2200_QOS
10983  IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10984  ipw_qos_activate(priv, NULL);
10985 #endif /* CONFIG_IPW2200_QOS */
10986 
10987  if (ipw_set_random_seed(priv))
10988  goto error;
10989 
10990  /* final state transition to the RUN state */
10991  if (ipw_send_host_complete(priv))
10992  goto error;
10993 
10994  priv->status |= STATUS_INIT;
10995 
10996  ipw_led_init(priv);
10997  ipw_led_radio_on(priv);
10998  priv->notif_missed_beacons = 0;
10999 
11000  /* Set hardware WEP key if it is configured. */
11001  if ((priv->capability & CAP_PRIVACY_ON) &&
11002  (priv->ieee->sec.level == SEC_LEVEL_1) &&
11003  !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
11004  ipw_set_hwcrypto_keys(priv);
11005 
11006  return 0;
11007 
11008  error:
11009  return -EIO;
11010 }
11011 
11012 /*
11013  * NOTE:
11014  *
11015  * These tables have been tested in conjunction with the
11016  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
11017  *
11018  * Altering this values, using it on other hardware, or in geographies
11019  * not intended for resale of the above mentioned Intel adapters has
11020  * not been tested.
11021  *
11022  * Remember to update the table in README.ipw2200 when changing this
11023  * table.
11024  *
11025  */
11026 static const struct libipw_geo ipw_geos[] = {
11027  { /* Restricted */
11028  "---",
11029  .bg_channels = 11,
11030  .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11031  {2427, 4}, {2432, 5}, {2437, 6},
11032  {2442, 7}, {2447, 8}, {2452, 9},
11033  {2457, 10}, {2462, 11}},
11034  },
11035 
11036  { /* Custom US/Canada */
11037  "ZZF",
11038  .bg_channels = 11,
11039  .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11040  {2427, 4}, {2432, 5}, {2437, 6},
11041  {2442, 7}, {2447, 8}, {2452, 9},
11042  {2457, 10}, {2462, 11}},
11043  .a_channels = 8,
11044  .a = {{5180, 36},
11045  {5200, 40},
11046  {5220, 44},
11047  {5240, 48},
11048  {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11049  {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11050  {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11051  {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
11052  },
11053 
11054  { /* Rest of World */
11055  "ZZD",
11056  .bg_channels = 13,
11057  .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11058  {2427, 4}, {2432, 5}, {2437, 6},
11059  {2442, 7}, {2447, 8}, {2452, 9},
11060  {2457, 10}, {2462, 11}, {2467, 12},
11061  {2472, 13}},
11062  },
11063 
11064  { /* Custom USA & Europe & High */
11065  "ZZA",
11066  .bg_channels = 11,
11067  .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11068  {2427, 4}, {2432, 5}, {2437, 6},
11069  {2442, 7}, {2447, 8}, {2452, 9},
11070  {2457, 10}, {2462, 11}},
11071  .a_channels = 13,
11072  .a = {{5180, 36},
11073  {5200, 40},
11074  {5220, 44},
11075  {5240, 48},
11076  {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11077  {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11078  {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11079  {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11080  {5745, 149},
11081  {5765, 153},
11082  {5785, 157},
11083  {5805, 161},
11084  {5825, 165}},
11085  },
11086 
11087  { /* Custom NA & Europe */
11088  "ZZB",
11089  .bg_channels = 11,
11090  .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11091  {2427, 4}, {2432, 5}, {2437, 6},
11092  {2442, 7}, {2447, 8}, {2452, 9},
11093  {2457, 10}, {2462, 11}},
11094  .a_channels = 13,
11095  .a = {{5180, 36},
11096  {5200, 40},
11097  {5220, 44},
11098  {5240, 48},
11099  {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11100  {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11101  {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11102  {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11103  {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11104  {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11105  {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11106  {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11107  {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11108  },
11109 
11110  { /* Custom Japan */
11111  "ZZC",
11112  .bg_channels = 11,
11113  .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11114  {2427, 4}, {2432, 5}, {2437, 6},
11115  {2442, 7}, {2447, 8}, {2452, 9},
11116  {2457, 10}, {2462, 11}},
11117  .a_channels = 4,
11118  .a = {{5170, 34}, {5190, 38},
11119  {5210, 42}, {5230, 46}},
11120  },
11121 
11122  { /* Custom */
11123  "ZZM",
11124  .bg_channels = 11,
11125  .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11126  {2427, 4}, {2432, 5}, {2437, 6},
11127  {2442, 7}, {2447, 8}, {2452, 9},
11128  {2457, 10}, {2462, 11}},
11129  },
11130 
11131  { /* Europe */
11132  "ZZE",
11133  .bg_channels = 13,
11134  .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11135  {2427, 4}, {2432, 5}, {2437, 6},
11136  {2442, 7}, {2447, 8}, {2452, 9},
11137  {2457, 10}, {2462, 11}, {2467, 12},
11138  {2472, 13}},
11139  .a_channels = 19,
11140  .a = {{5180, 36},
11141  {5200, 40},
11142  {5220, 44},
11143  {5240, 48},
11144  {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11145  {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11146  {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11147  {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11148  {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11149  {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11150  {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11151  {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11152  {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11153  {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11154  {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11155  {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11156  {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11157  {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11158  {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11159  },
11160 
11161  { /* Custom Japan */
11162  "ZZJ",
11163  .bg_channels = 14,
11164  .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11165  {2427, 4}, {2432, 5}, {2437, 6},
11166  {2442, 7}, {2447, 8}, {2452, 9},
11167  {2457, 10}, {2462, 11}, {2467, 12},
11168  {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11169  .a_channels = 4,
11170  .a = {{5170, 34}, {5190, 38},
11171  {5210, 42}, {5230, 46}},
11172  },
11173 
11174  { /* Rest of World */
11175  "ZZR",
11176  .bg_channels = 14,
11177  .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11178  {2427, 4}, {2432, 5}, {2437, 6},
11179  {2442, 7}, {2447, 8}, {2452, 9},
11180  {2457, 10}, {2462, 11}, {2467, 12},
11181  {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11182  LIBIPW_CH_PASSIVE_ONLY}},
11183  },
11184 
11185  { /* High Band */
11186  "ZZH",
11187  .bg_channels = 13,
11188  .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11189  {2427, 4}, {2432, 5}, {2437, 6},
11190  {2442, 7}, {2447, 8}, {2452, 9},
11191  {2457, 10}, {2462, 11},
11192  {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11193  {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11194  .a_channels = 4,
11195  .a = {{5745, 149}, {5765, 153},
11196  {5785, 157}, {5805, 161}},
11197  },
11198 
11199  { /* Custom Europe */
11200  "ZZG",
11201  .bg_channels = 13,
11202  .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11203  {2427, 4}, {2432, 5}, {2437, 6},
11204  {2442, 7}, {2447, 8}, {2452, 9},
11205  {2457, 10}, {2462, 11},
11206  {2467, 12}, {2472, 13}},
11207  .a_channels = 4,
11208  .a = {{5180, 36}, {5200, 40},
11209  {5220, 44}, {5240, 48}},
11210  },
11211 
11212  { /* Europe */
11213  "ZZK",
11214  .bg_channels = 13,
11215  .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11216  {2427, 4}, {2432, 5}, {2437, 6},
11217  {2442, 7}, {2447, 8}, {2452, 9},
11218  {2457, 10}, {2462, 11},
11219  {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11220  {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11221  .a_channels = 24,
11222  .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11223  {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11224  {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11225  {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11226  {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11227  {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11228  {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11229  {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11230  {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11231  {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11232  {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11233  {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11234  {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11235  {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11236  {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11237  {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11238  {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11239  {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11240  {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11241  {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11242  {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11243  {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11244  {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11245  {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11246  },
11247 
11248  { /* Europe */
11249  "ZZL",
11250  .bg_channels = 11,
11251  .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11252  {2427, 4}, {2432, 5}, {2437, 6},
11253  {2442, 7}, {2447, 8}, {2452, 9},
11254  {2457, 10}, {2462, 11}},
11255  .a_channels = 13,
11256  .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11257  {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11258  {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11259  {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11260  {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11261  {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11262  {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11263  {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11264  {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11265  {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11266  {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11267  {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11268  {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11269  }
11270 };
11271 
11272 #define MAX_HW_RESTARTS 5
11273 static int ipw_up(struct ipw_priv *priv)
11274 {
11275  int rc, i, j;
11276 
11277  /* Age scan list entries found before suspend */
11278  if (priv->suspend_time) {
11279  libipw_networks_age(priv->ieee, priv->suspend_time);
11280  priv->suspend_time = 0;
11281  }
11282 
11283  if (priv->status & STATUS_EXIT_PENDING)
11284  return -EIO;
11285 
11286  if (cmdlog && !priv->cmdlog) {
11287  priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11288  GFP_KERNEL);
11289  if (priv->cmdlog == NULL) {
11290  IPW_ERROR("Error allocating %d command log entries.\n",
11291  cmdlog);
11292  return -ENOMEM;
11293  } else {
11294  priv->cmdlog_len = cmdlog;
11295  }
11296  }
11297 
11298  for (i = 0; i < MAX_HW_RESTARTS; i++) {
11299  /* Load the microcode, firmware, and eeprom.
11300  * Also start the clocks. */
11301  rc = ipw_load(priv);
11302  if (rc) {
11303  IPW_ERROR("Unable to load firmware: %d\n", rc);
11304  return rc;
11305  }
11306 
11307  ipw_init_ordinals(priv);
11308  if (!(priv->config & CFG_CUSTOM_MAC))
11309  eeprom_parse_mac(priv, priv->mac_addr);
11310  memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11311  memcpy(priv->net_dev->perm_addr, priv->mac_addr, ETH_ALEN);
11312 
11313  for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11314  if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11315  ipw_geos[j].name, 3))
11316  break;
11317  }
11318  if (j == ARRAY_SIZE(ipw_geos)) {
11319  IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11320  priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11321  priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11322  priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11323  j = 0;
11324  }
11325  if (libipw_set_geo(priv->ieee, &ipw_geos[j])) {
11326  IPW_WARNING("Could not set geography.");
11327  return 0;
11328  }
11329 
11330  if (priv->status & STATUS_RF_KILL_SW) {
11331  IPW_WARNING("Radio disabled by module parameter.\n");
11332  return 0;
11333  } else if (rf_kill_active(priv)) {
11334  IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11335  "Kill switch must be turned off for "
11336  "wireless networking to work.\n");
11337  schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11338  return 0;
11339  }
11340 
11341  rc = ipw_config(priv);
11342  if (!rc) {
11343  IPW_DEBUG_INFO("Configured device on count %i\n", i);
11344 
11345  /* If configure to try and auto-associate, kick
11346  * off a scan. */
11348 
11349  return 0;
11350  }
11351 
11352  IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11353  IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11354  i, MAX_HW_RESTARTS);
11355 
11356  /* We had an error bringing up the hardware, so take it
11357  * all the way back down so we can try again */
11358  ipw_down(priv);
11359  }
11360 
11361  /* tried to restart and config the device for as long as our
11362  * patience could withstand */
11363  IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11364 
11365  return -EIO;
11366 }
11367 
11368 static void ipw_bg_up(struct work_struct *work)
11369 {
11370  struct ipw_priv *priv =
11371  container_of(work, struct ipw_priv, up);
11372  mutex_lock(&priv->mutex);
11373  ipw_up(priv);
11374  mutex_unlock(&priv->mutex);
11375 }
11376 
11377 static void ipw_deinit(struct ipw_priv *priv)
11378 {
11379  int i;
11380 
11381  if (priv->status & STATUS_SCANNING) {
11382  IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11383  ipw_abort_scan(priv);
11384  }
11385 
11386  if (priv->status & STATUS_ASSOCIATED) {
11387  IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11388  ipw_disassociate(priv);
11389  }
11390 
11391  ipw_led_shutdown(priv);
11392 
11393  /* Wait up to 1s for status to change to not scanning and not
11394  * associated (disassociation can take a while for a ful 802.11
11395  * exchange */
11396  for (i = 1000; i && (priv->status &
11399  udelay(10);
11400 
11401  if (priv->status & (STATUS_DISASSOCIATING |
11403  IPW_DEBUG_INFO("Still associated or scanning...\n");
11404  else
11405  IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11406 
11407  /* Attempt to disable the card */
11408  ipw_send_card_disable(priv, 0);
11409 
11410  priv->status &= ~STATUS_INIT;
11411 }
11412 
11413 static void ipw_down(struct ipw_priv *priv)
11414 {
11415  int exit_pending = priv->status & STATUS_EXIT_PENDING;
11416 
11417  priv->status |= STATUS_EXIT_PENDING;
11418 
11419  if (ipw_is_init(priv))
11420  ipw_deinit(priv);
11421 
11422  /* Wipe out the EXIT_PENDING status bit if we are not actually
11423  * exiting the module */
11424  if (!exit_pending)
11425  priv->status &= ~STATUS_EXIT_PENDING;
11426 
11427  /* tell the device to stop sending interrupts */
11428  ipw_disable_interrupts(priv);
11429 
11430  /* Clear all bits but the RF Kill */
11432  netif_carrier_off(priv->net_dev);
11433 
11434  ipw_stop_nic(priv);
11435 
11436  ipw_led_radio_off(priv);
11437 }
11438 
11439 static void ipw_bg_down(struct work_struct *work)
11440 {
11441  struct ipw_priv *priv =
11442  container_of(work, struct ipw_priv, down);
11443  mutex_lock(&priv->mutex);
11444  ipw_down(priv);
11445  mutex_unlock(&priv->mutex);
11446 }
11447 
11448 static int ipw_wdev_init(struct net_device *dev)
11449 {
11450  int i, rc = 0;
11451  struct ipw_priv *priv = libipw_priv(dev);
11452  const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11453  struct wireless_dev *wdev = &priv->ieee->wdev;
11454 
11455  memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11456 
11457  /* fill-out priv->ieee->bg_band */
11458  if (geo->bg_channels) {
11459  struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11460 
11461  bg_band->band = IEEE80211_BAND_2GHZ;
11462  bg_band->n_channels = geo->bg_channels;
11463  bg_band->channels = kcalloc(geo->bg_channels,
11464  sizeof(struct ieee80211_channel),
11465  GFP_KERNEL);
11466  if (!bg_band->channels) {
11467  rc = -ENOMEM;
11468  goto out;
11469  }
11470  /* translate geo->bg to bg_band.channels */
11471  for (i = 0; i < geo->bg_channels; i++) {
11472  bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
11473  bg_band->channels[i].center_freq = geo->bg[i].freq;
11474  bg_band->channels[i].hw_value = geo->bg[i].channel;
11475  bg_band->channels[i].max_power = geo->bg[i].max_power;
11476  if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11477  bg_band->channels[i].flags |=
11479  if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11480  bg_band->channels[i].flags |=
11482  if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11483  bg_band->channels[i].flags |=
11485  /* No equivalent for LIBIPW_CH_80211H_RULES,
11486  LIBIPW_CH_UNIFORM_SPREADING, or
11487  LIBIPW_CH_B_ONLY... */
11488  }
11489  /* point at bitrate info */
11490  bg_band->bitrates = ipw2200_bg_rates;
11491  bg_band->n_bitrates = ipw2200_num_bg_rates;
11492 
11493  wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
11494  }
11495 
11496  /* fill-out priv->ieee->a_band */
11497  if (geo->a_channels) {
11498  struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11499 
11500  a_band->band = IEEE80211_BAND_5GHZ;
11501  a_band->n_channels = geo->a_channels;
11502  a_band->channels = kcalloc(geo->a_channels,
11503  sizeof(struct ieee80211_channel),
11504  GFP_KERNEL);
11505  if (!a_band->channels) {
11506  rc = -ENOMEM;
11507  goto out;
11508  }
11509  /* translate geo->a to a_band.channels */
11510  for (i = 0; i < geo->a_channels; i++) {
11511  a_band->channels[i].band = IEEE80211_BAND_5GHZ;
11512  a_band->channels[i].center_freq = geo->a[i].freq;
11513  a_band->channels[i].hw_value = geo->a[i].channel;
11514  a_band->channels[i].max_power = geo->a[i].max_power;
11515  if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11516  a_band->channels[i].flags |=
11518  if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11519  a_band->channels[i].flags |=
11521  if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11522  a_band->channels[i].flags |=
11524  /* No equivalent for LIBIPW_CH_80211H_RULES,
11525  LIBIPW_CH_UNIFORM_SPREADING, or
11526  LIBIPW_CH_B_ONLY... */
11527  }
11528  /* point at bitrate info */
11529  a_band->bitrates = ipw2200_a_rates;
11530  a_band->n_bitrates = ipw2200_num_a_rates;
11531 
11532  wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = a_band;
11533  }
11534 
11535  wdev->wiphy->cipher_suites = ipw_cipher_suites;
11536  wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11537 
11538  set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11539 
11540  /* With that information in place, we can now register the wiphy... */
11541  if (wiphy_register(wdev->wiphy))
11542  rc = -EIO;
11543 out:
11544  return rc;
11545 }
11546 
11547 /* PCI driver stuff */
11548 static DEFINE_PCI_DEVICE_TABLE(card_ids) = {
11549  {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11550  {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11551  {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11552  {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11553  {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11554  {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11555  {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11556  {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11557  {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11558  {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11559  {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11560  {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11561  {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11562  {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11563  {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11564  {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11565  {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11566  {PCI_VDEVICE(INTEL, 0x104f), 0},
11567  {PCI_VDEVICE(INTEL, 0x4220), 0}, /* BG */
11568  {PCI_VDEVICE(INTEL, 0x4221), 0}, /* BG */
11569  {PCI_VDEVICE(INTEL, 0x4223), 0}, /* ABG */
11570  {PCI_VDEVICE(INTEL, 0x4224), 0}, /* ABG */
11571 
11572  /* required last entry */
11573  {0,}
11574 };
11575 
11576 MODULE_DEVICE_TABLE(pci, card_ids);
11577 
11578 static struct attribute *ipw_sysfs_entries[] = {
11579  &dev_attr_rf_kill.attr,
11580  &dev_attr_direct_dword.attr,
11581  &dev_attr_indirect_byte.attr,
11582  &dev_attr_indirect_dword.attr,
11583  &dev_attr_mem_gpio_reg.attr,
11584  &dev_attr_command_event_reg.attr,
11585  &dev_attr_nic_type.attr,
11586  &dev_attr_status.attr,
11587  &dev_attr_cfg.attr,
11588  &dev_attr_error.attr,
11589  &dev_attr_event_log.attr,
11590  &dev_attr_cmd_log.attr,
11591  &dev_attr_eeprom_delay.attr,
11592  &dev_attr_ucode_version.attr,
11593  &dev_attr_rtc.attr,
11594  &dev_attr_scan_age.attr,
11595  &dev_attr_led.attr,
11596  &dev_attr_speed_scan.attr,
11597  &dev_attr_net_stats.attr,
11598  &dev_attr_channels.attr,
11599 #ifdef CONFIG_IPW2200_PROMISCUOUS
11600  &dev_attr_rtap_iface.attr,
11601  &dev_attr_rtap_filter.attr,
11602 #endif
11603  NULL
11604 };
11605 
11606 static struct attribute_group ipw_attribute_group = {
11607  .name = NULL, /* put in device directory */
11608  .attrs = ipw_sysfs_entries,
11609 };
11610 
11611 #ifdef CONFIG_IPW2200_PROMISCUOUS
11612 static int ipw_prom_open(struct net_device *dev)
11613 {
11614  struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11615  struct ipw_priv *priv = prom_priv->priv;
11616 
11617  IPW_DEBUG_INFO("prom dev->open\n");
11618  netif_carrier_off(dev);
11619 
11620  if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11621  priv->sys_config.accept_all_data_frames = 1;
11622  priv->sys_config.accept_non_directed_frames = 1;
11623  priv->sys_config.accept_all_mgmt_bcpr = 1;
11624  priv->sys_config.accept_all_mgmt_frames = 1;
11625 
11626  ipw_send_system_config(priv);
11627  }
11628 
11629  return 0;
11630 }
11631 
11632 static int ipw_prom_stop(struct net_device *dev)
11633 {
11634  struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11635  struct ipw_priv *priv = prom_priv->priv;
11636 
11637  IPW_DEBUG_INFO("prom dev->stop\n");
11638 
11639  if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11640  priv->sys_config.accept_all_data_frames = 0;
11641  priv->sys_config.accept_non_directed_frames = 0;
11642  priv->sys_config.accept_all_mgmt_bcpr = 0;
11643  priv->sys_config.accept_all_mgmt_frames = 0;
11644 
11645  ipw_send_system_config(priv);
11646  }
11647 
11648  return 0;
11649 }
11650 
11651 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11652  struct net_device *dev)
11653 {
11654  IPW_DEBUG_INFO("prom dev->xmit\n");
11655  dev_kfree_skb(skb);
11656  return NETDEV_TX_OK;
11657 }
11658 
11659 static const struct net_device_ops ipw_prom_netdev_ops = {
11660  .ndo_open = ipw_prom_open,
11661  .ndo_stop = ipw_prom_stop,
11662  .ndo_start_xmit = ipw_prom_hard_start_xmit,
11663  .ndo_change_mtu = libipw_change_mtu,
11664  .ndo_set_mac_address = eth_mac_addr,
11665  .ndo_validate_addr = eth_validate_addr,
11666 };
11667 
11668 static int ipw_prom_alloc(struct ipw_priv *priv)
11669 {
11670  int rc = 0;
11671 
11672  if (priv->prom_net_dev)
11673  return -EPERM;
11674 
11675  priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11676  if (priv->prom_net_dev == NULL)
11677  return -ENOMEM;
11678 
11679  priv->prom_priv = libipw_priv(priv->prom_net_dev);
11680  priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11681  priv->prom_priv->priv = priv;
11682 
11683  strcpy(priv->prom_net_dev->name, "rtap%d");
11684  memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11685 
11686  priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11687  priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11688 
11689  priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11690  SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11691 
11692  rc = register_netdev(priv->prom_net_dev);
11693  if (rc) {
11694  free_libipw(priv->prom_net_dev, 1);
11695  priv->prom_net_dev = NULL;
11696  return rc;
11697  }
11698 
11699  return 0;
11700 }
11701 
11702 static void ipw_prom_free(struct ipw_priv *priv)
11703 {
11704  if (!priv->prom_net_dev)
11705  return;
11706 
11707  unregister_netdev(priv->prom_net_dev);
11708  free_libipw(priv->prom_net_dev, 1);
11709 
11710  priv->prom_net_dev = NULL;
11711 }
11712 
11713 #endif
11714 
11715 static const struct net_device_ops ipw_netdev_ops = {
11716  .ndo_open = ipw_net_open,
11717  .ndo_stop = ipw_net_stop,
11718  .ndo_set_rx_mode = ipw_net_set_multicast_list,
11719  .ndo_set_mac_address = ipw_net_set_mac_address,
11720  .ndo_start_xmit = libipw_xmit,
11721  .ndo_change_mtu = libipw_change_mtu,
11722  .ndo_validate_addr = eth_validate_addr,
11723 };
11724 
11725 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11726  const struct pci_device_id *ent)
11727 {
11728  int err = 0;
11729  struct net_device *net_dev;
11730  void __iomem *base;
11731  u32 length, val;
11732  struct ipw_priv *priv;
11733  int i;
11734 
11735  net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11736  if (net_dev == NULL) {
11737  err = -ENOMEM;
11738  goto out;
11739  }
11740 
11741  priv = libipw_priv(net_dev);
11742  priv->ieee = netdev_priv(net_dev);
11743 
11744  priv->net_dev = net_dev;
11745  priv->pci_dev = pdev;
11746  ipw_debug_level = debug;
11747  spin_lock_init(&priv->irq_lock);
11748  spin_lock_init(&priv->lock);
11749  for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11750  INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11751 
11752  mutex_init(&priv->mutex);
11753  if (pci_enable_device(pdev)) {
11754  err = -ENODEV;
11755  goto out_free_libipw;
11756  }
11757 
11758  pci_set_master(pdev);
11759 
11760  err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11761  if (!err)
11762  err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11763  if (err) {
11764  printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11765  goto out_pci_disable_device;
11766  }
11767 
11768  pci_set_drvdata(pdev, priv);
11769 
11770  err = pci_request_regions(pdev, DRV_NAME);
11771  if (err)
11772  goto out_pci_disable_device;
11773 
11774  /* We disable the RETRY_TIMEOUT register (0x41) to keep
11775  * PCI Tx retries from interfering with C3 CPU state */
11776  pci_read_config_dword(pdev, 0x40, &val);
11777  if ((val & 0x0000ff00) != 0)
11778  pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11779 
11780  length = pci_resource_len(pdev, 0);
11781  priv->hw_len = length;
11782 
11783  base = pci_ioremap_bar(pdev, 0);
11784  if (!base) {
11785  err = -ENODEV;
11786  goto out_pci_release_regions;
11787  }
11788 
11789  priv->hw_base = base;
11790  IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11791  IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11792 
11793  err = ipw_setup_deferred_work(priv);
11794  if (err) {
11795  IPW_ERROR("Unable to setup deferred work\n");
11796  goto out_iounmap;
11797  }
11798 
11799  ipw_sw_reset(priv, 1);
11800 
11801  err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11802  if (err) {
11803  IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11804  goto out_iounmap;
11805  }
11806 
11807  SET_NETDEV_DEV(net_dev, &pdev->dev);
11808 
11809  mutex_lock(&priv->mutex);
11810 
11811  priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11812  priv->ieee->set_security = shim__set_security;
11813  priv->ieee->is_queue_full = ipw_net_is_queue_full;
11814 
11815 #ifdef CONFIG_IPW2200_QOS
11816  priv->ieee->is_qos_active = ipw_is_qos_active;
11817  priv->ieee->handle_probe_response = ipw_handle_beacon;
11818  priv->ieee->handle_beacon = ipw_handle_probe_response;
11819  priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11820 #endif /* CONFIG_IPW2200_QOS */
11821 
11822  priv->ieee->perfect_rssi = -20;
11823  priv->ieee->worst_rssi = -85;
11824 
11825  net_dev->netdev_ops = &ipw_netdev_ops;
11826  priv->wireless_data.spy_data = &priv->ieee->spy_data;
11827  net_dev->wireless_data = &priv->wireless_data;
11828  net_dev->wireless_handlers = &ipw_wx_handler_def;
11829  net_dev->ethtool_ops = &ipw_ethtool_ops;
11830 
11831  err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11832  if (err) {
11833  IPW_ERROR("failed to create sysfs device attributes\n");
11834  mutex_unlock(&priv->mutex);
11835  goto out_release_irq;
11836  }
11837 
11838  if (ipw_up(priv)) {
11839  mutex_unlock(&priv->mutex);
11840  err = -EIO;
11841  goto out_remove_sysfs;
11842  }
11843 
11844  mutex_unlock(&priv->mutex);
11845 
11846  err = ipw_wdev_init(net_dev);
11847  if (err) {
11848  IPW_ERROR("failed to register wireless device\n");
11849  goto out_remove_sysfs;
11850  }
11851 
11852  err = register_netdev(net_dev);
11853  if (err) {
11854  IPW_ERROR("failed to register network device\n");
11855  goto out_unregister_wiphy;
11856  }
11857 
11858 #ifdef CONFIG_IPW2200_PROMISCUOUS
11859  if (rtap_iface) {
11860  err = ipw_prom_alloc(priv);
11861  if (err) {
11862  IPW_ERROR("Failed to register promiscuous network "
11863  "device (error %d).\n", err);
11864  unregister_netdev(priv->net_dev);
11865  goto out_unregister_wiphy;
11866  }
11867  }
11868 #endif
11869 
11870  printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11871  "channels, %d 802.11a channels)\n",
11872  priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11873  priv->ieee->geo.a_channels);
11874 
11875  return 0;
11876 
11877  out_unregister_wiphy:
11878  wiphy_unregister(priv->ieee->wdev.wiphy);
11879  kfree(priv->ieee->a_band.channels);
11880  kfree(priv->ieee->bg_band.channels);
11881  out_remove_sysfs:
11882  sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11883  out_release_irq:
11884  free_irq(pdev->irq, priv);
11885  out_iounmap:
11886  iounmap(priv->hw_base);
11887  out_pci_release_regions:
11888  pci_release_regions(pdev);
11889  out_pci_disable_device:
11890  pci_disable_device(pdev);
11891  pci_set_drvdata(pdev, NULL);
11892  out_free_libipw:
11893  free_libipw(priv->net_dev, 0);
11894  out:
11895  return err;
11896 }
11897 
11898 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11899 {
11900  struct ipw_priv *priv = pci_get_drvdata(pdev);
11901  struct list_head *p, *q;
11902  int i;
11903 
11904  if (!priv)
11905  return;
11906 
11907  mutex_lock(&priv->mutex);
11908 
11909  priv->status |= STATUS_EXIT_PENDING;
11910  ipw_down(priv);
11911  sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11912 
11913  mutex_unlock(&priv->mutex);
11914 
11915  unregister_netdev(priv->net_dev);
11916 
11917  if (priv->rxq) {
11918  ipw_rx_queue_free(priv, priv->rxq);
11919  priv->rxq = NULL;
11920  }
11921  ipw_tx_queue_free(priv);
11922 
11923  if (priv->cmdlog) {
11924  kfree(priv->cmdlog);
11925  priv->cmdlog = NULL;
11926  }
11927 
11928  /* make sure all works are inactive */
11930  cancel_work_sync(&priv->associate);
11936  cancel_work_sync(&priv->up);
11937  cancel_work_sync(&priv->down);
11943  cancel_work_sync(&priv->abort_scan);
11944  cancel_work_sync(&priv->roam);
11946  cancel_work_sync(&priv->link_up);
11947  cancel_work_sync(&priv->link_down);
11952 
11953  /* Free MAC hash list for ADHOC */
11954  for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11955  list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11956  list_del(p);
11957  kfree(list_entry(p, struct ipw_ibss_seq, list));
11958  }
11959  }
11960 
11961  kfree(priv->error);
11962  priv->error = NULL;
11963 
11964 #ifdef CONFIG_IPW2200_PROMISCUOUS
11965  ipw_prom_free(priv);
11966 #endif
11967 
11968  free_irq(pdev->irq, priv);
11969  iounmap(priv->hw_base);
11970  pci_release_regions(pdev);
11971  pci_disable_device(pdev);
11972  pci_set_drvdata(pdev, NULL);
11973  /* wiphy_unregister needs to be here, before free_libipw */
11974  wiphy_unregister(priv->ieee->wdev.wiphy);
11975  kfree(priv->ieee->a_band.channels);
11976  kfree(priv->ieee->bg_band.channels);
11977  free_libipw(priv->net_dev, 0);
11978  free_firmware();
11979 }
11980 
11981 #ifdef CONFIG_PM
11982 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11983 {
11984  struct ipw_priv *priv = pci_get_drvdata(pdev);
11985  struct net_device *dev = priv->net_dev;
11986 
11987  printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11988 
11989  /* Take down the device; powers it off, etc. */
11990  ipw_down(priv);
11991 
11992  /* Remove the PRESENT state of the device */
11993  netif_device_detach(dev);
11994 
11995  pci_save_state(pdev);
11996  pci_disable_device(pdev);
11997  pci_set_power_state(pdev, pci_choose_state(pdev, state));
11998 
11999  priv->suspend_at = get_seconds();
12000 
12001  return 0;
12002 }
12003 
12004 static int ipw_pci_resume(struct pci_dev *pdev)
12005 {
12006  struct ipw_priv *priv = pci_get_drvdata(pdev);
12007  struct net_device *dev = priv->net_dev;
12008  int err;
12009  u32 val;
12010 
12011  printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
12012 
12013  pci_set_power_state(pdev, PCI_D0);
12014  err = pci_enable_device(pdev);
12015  if (err) {
12016  printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
12017  dev->name);
12018  return err;
12019  }
12020  pci_restore_state(pdev);
12021 
12022  /*
12023  * Suspend/Resume resets the PCI configuration space, so we have to
12024  * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
12025  * from interfering with C3 CPU state. pci_restore_state won't help
12026  * here since it only restores the first 64 bytes pci config header.
12027  */
12028  pci_read_config_dword(pdev, 0x40, &val);
12029  if ((val & 0x0000ff00) != 0)
12030  pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
12031 
12032  /* Set the device back into the PRESENT state; this will also wake
12033  * the queue of needed */
12034  netif_device_attach(dev);
12035 
12036  priv->suspend_time = get_seconds() - priv->suspend_at;
12037 
12038  /* Bring the device back up */
12039  schedule_work(&priv->up);
12040 
12041  return 0;
12042 }
12043 #endif
12044 
12045 static void ipw_pci_shutdown(struct pci_dev *pdev)
12046 {
12047  struct ipw_priv *priv = pci_get_drvdata(pdev);
12048 
12049  /* Take down the device; powers it off, etc. */
12050  ipw_down(priv);
12051 
12052  pci_disable_device(pdev);
12053 }
12054 
12055 /* driver initialization stuff */
12056 static struct pci_driver ipw_driver = {
12057  .name = DRV_NAME,
12058  .id_table = card_ids,
12059  .probe = ipw_pci_probe,
12060  .remove = __devexit_p(ipw_pci_remove),
12061 #ifdef CONFIG_PM
12062  .suspend = ipw_pci_suspend,
12063  .resume = ipw_pci_resume,
12064 #endif
12065  .shutdown = ipw_pci_shutdown,
12066 };
12067 
12068 static int __init ipw_init(void)
12069 {
12070  int ret;
12071 
12074 
12075  ret = pci_register_driver(&ipw_driver);
12076  if (ret) {
12077  IPW_ERROR("Unable to initialize PCI module\n");
12078  return ret;
12079  }
12080 
12081  ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
12082  if (ret) {
12083  IPW_ERROR("Unable to create driver sysfs file\n");
12084  pci_unregister_driver(&ipw_driver);
12085  return ret;
12086  }
12087 
12088  return ret;
12089 }
12090 
12091 static void __exit ipw_exit(void)
12092 {
12093  driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
12094  pci_unregister_driver(&ipw_driver);
12095 }
12096 
12097 module_param(disable, int, 0444);
12098 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
12099 
12100 module_param(associate, int, 0444);
12101 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12102 
12103 module_param(auto_create, int, 0444);
12104 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12105 
12106 module_param_named(led, led_support, int, 0444);
12107 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
12108 
12109 module_param(debug, int, 0444);
12110 MODULE_PARM_DESC(debug, "debug output mask");
12111 
12112 module_param_named(channel, default_channel, int, 0444);
12113 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12114 
12115 #ifdef CONFIG_IPW2200_PROMISCUOUS
12116 module_param(rtap_iface, int, 0444);
12117 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12118 #endif
12119 
12120 #ifdef CONFIG_IPW2200_QOS
12121 module_param(qos_enable, int, 0444);
12122 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12123 
12124 module_param(qos_burst_enable, int, 0444);
12125 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12126 
12127 module_param(qos_no_ack_mask, int, 0444);
12128 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12129 
12130 module_param(burst_duration_CCK, int, 0444);
12131 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12132 
12133 module_param(burst_duration_OFDM, int, 0444);
12134 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12135 #endif /* CONFIG_IPW2200_QOS */
12136 
12137 #ifdef CONFIG_IPW2200_MONITOR
12138 module_param_named(mode, network_mode, int, 0444);
12139 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12140 #else
12141 module_param_named(mode, network_mode, int, 0444);
12142 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12143 #endif
12144 
12145 module_param(bt_coexist, int, 0444);
12146 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12147 
12148 module_param(hwcrypto, int, 0444);
12149 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12150 
12151 module_param(cmdlog, int, 0444);
12152 MODULE_PARM_DESC(cmdlog,
12153  "allocate a ring buffer for logging firmware commands");
12154 
12155 module_param(roaming, int, 0444);
12156 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12157 
12158 module_param(antenna, int, 0444);
12159 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12160 
12161 module_exit(ipw_exit);
12162 module_init(ipw_init);